Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation Conditions
2.2. Soil Properties, Microclimatological Conditions, and Measurements
2.3. Sampling and Analysis of the Qualitative Traits of Tomatoes
2.4. Analysis of Chemical Components
2.4.1. Determination of Dry Matter Content
2.4.2. Determination of Total Acidity
2.4.3. Determination of Ascorbic Acid
2.4.4. Determination of Carotenoids
2.5. Organoleptic Evaluation of Fruit Quality
2.6. Statistical and Multivariate Data Analysis
3. Results
3.1. Main Physico-Morphological Traits of the Fruits
3.2. Chemical Analyses and Content of Fruit in Compounds of Interest
3.3. Organoleptic Evaluation of Fruits
3.4. Correlations between the Analyzed Characteristics and the Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoleru, V.; Inculet, S.-C.; Mihalache, G.; Cojocaru, A.; Teliban, G.-C.; Caruso, G. Yield and Nutritional Response of Greenhouse Grown Tomato Cultivars to Sustainable Fertilization and Irrigation Management. Plants 2020, 9, 1053. [Google Scholar] [CrossRef] [PubMed]
- Heuvelink, E. Tomatoes; CABI: Boston, MA, USA, 2018. [Google Scholar]
- Argento, S.; Melilli, M.G.; Branca, F. Enhancing Greenhouse Tomato-Crop Productivity by Using Brassica macrocarpa Guss. Leaves for Controlling Root-Knot Nematodes. Agronomy 2019, 9, 820. [Google Scholar] [CrossRef] [Green Version]
- FAO. Faostat. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 23 November 2021).
- Helyes, L.; Lugasi, A.; Pogonyi, Á.; Pék, Z. Effect of variety and grafting on lycopene content of tomato (Lycopersicon lycopersicum L. Karsten) fruit. J. Acta Aliment. 2009, 38, 27–34. [Google Scholar] [CrossRef]
- Ray, R.C.; El Sheikha, A.F.; Panda, S.H.; Montet, D. Anti-oxidant properties and other functional attributes of tomato: An overview. Int. J. Food Ferm. Technol. 2011, 1, 139–148. [Google Scholar]
- Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.; Aoki, K.; et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Felföldi, Z.; Ranga, F.; Socaci, S.A.; Farcas, A.; Plazas, M.; Sestras, A.F.; Vodnar, D.C.; Prohens, J.; Sestras, R.E. Physico-Chemical, Nutritional, and Sensory Evaluation of Two New Commercial Tomato Hybrids and Their Parental Lines. Plants 2021, 10, 2480. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Mayeaux, M.; Xu, Z.; King, J.M.; Prinyawiwatkul, W. Effects of Cooking Conditions on the Lycopene Content in Tomatoes. J. Food Sci. 2006, 71, C461–C464. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M.; et al. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef]
- Borguini, R.G.; Ferraz Da Silva Torres, E.A. Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Maršić, N.K.; Gašperlin, L.; Abram, V.; Budič, M.; Vidrih, R. Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turk. J. Agric. For. 2011, 185–194. [Google Scholar]
- Vinkovic Vrcek, I.; Samobor, V.; Bojic, M.; Medic-Saric, M.; Vukobratovic, M.; Erhatic, R.; Horvat, D.; Matotan, Z. The effect of grafting on the antioxidant properties of tomato (Solanum lycopersicum L.). Span. J. Agric. Res. 2011, 9, 844–851. [Google Scholar] [CrossRef]
- Fortis Hernandez, M.; Antonio-Ordoñez, E.; Preciado-Rangel, P.; Gallegos-Robles, M.A.; Vázquez-Vázquez, C.; Reyes-Gonzales, A.; Esparza-Rivera, J.R. Effect of substrates formulated with organic materials on yielding, commercial and phytochemical quality, and benefit-cost ratio of tomato (Solanum lycopersicum L.) produced under greenhouse conditions. Not. Bot. Horti Agrobot. 2021, 49, 11999. [Google Scholar] [CrossRef]
- Tonucci, L.H.; Holden, J.M.; Beecher, G.R.; Khachik, F.; Davis, C.S.; Mulokozis, G. Carotenoid content of thermally processed tomato-based food products. J. Agric. Food Chem. 1995, 43, 579–586. [Google Scholar] [CrossRef]
- De Sio, F.; Rapacciuolo, M.; De Giorgi, A.; Trifirò, A.; Giuliano, B.; Morano, G.; Cuciniello, A.; Caruso, G. Yield, quality, antioxidant, and sensorial properties of diced tomato as affected by genotype and industrial processing in Southern Italy. Acta Aliment. 2019, 48, 132–141. [Google Scholar] [CrossRef]
- San Martín-Hernández, C.; Gómez-Merino, F.C.; Saucedo-Veloz, C.; Quintana-Obregón, E.A.; Muy-Rangel, M.D.; Trejo-Téllez, L.I. Nitrogen and potassium supplied by phenological stages affect the carotenoid and nutritive content of the tomato fruit. Not. Bot. Hortic. Agrobot. 2021, 49, 12320. [Google Scholar] [CrossRef]
- Toma, R.B.; Frank, G.C.; Nakayama, K.; Tawfik, E. Lycopene content in raw tomato varieties and tomato products. J. Foodserv. 2008, 19, 127–132. [Google Scholar] [CrossRef]
- Liu, L.; Shao, Z.; Zhang, M.; Wang, Q. Regulation of Carotenoid Metabolism in Tomato. Mol. Plant 2015, 8, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Ilahy, R.; Tlili, I.; Siddiqui, M.W.; Hdider, C.; Lenucci, M.S. Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. Front. Plant Sci. 2019, 10, 769. [Google Scholar] [CrossRef] [Green Version]
- Clinton, S.K. Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev. 1998, 56, 35–51. [Google Scholar] [CrossRef]
- Heuvelink, E. Tomatoes; CABI Publishing: Boston, MA, USA; Wageningen University: Wageningen, The Netherlands, 2005. [Google Scholar]
- Heuvelink, E. Dry Matter Production in a Tomato Crop: Measurements and Simulation. Ann. Bot. 1995, 75, 369–379. [Google Scholar] [CrossRef]
- Das, P.; Islam, M.M.; Kabir, M.H.; Islam, M.M.; Islam, S.S.; Islam, M.R.; Jahan, M.T.; Roy, P.K.; Halder, R.; Roy, P.K.; et al. Study on the effect of γ-irradiation (Co-60) on seed germination and agronomic traits in tomato plants (Lycopersicon esculentum L.). Not. Sci. Biol. 2021, 13, 11061. [Google Scholar] [CrossRef]
- Bénard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Génard, M. Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds. J. Agric. Food Chem. 2009, 57, 4112–4123. [Google Scholar] [CrossRef] [PubMed]
- Luthria, D.L.; Mukhopadhyay, S.; Krizek, D.T. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. J. Food Compos. Anal. 2006, 19, 771–777. [Google Scholar] [CrossRef]
- Fernández-Ruiz, V.; Olives, A.I.; Cámara, M.; Sánchez-Mata, M.D.C.; Torija, M.E. Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biol. Trace Elem. Res. 2011, 141, 329–339. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef]
- Antonious, G.; Turley, E.; Dawood, M. Ascorbic Acid, Sugars, Phenols, and Nitrates Concentrations in Tomato Grown in Animal Manure Amended Soil. Agriculture 2019, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Rosales, M.A.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.d.M.; Blasco, B.; Ríos, J.J.; Soriano, T.; Castilla, N.; Romero, L.; Ruiz, J.M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Y.; Ding, Q.; Huang, X.; Zhang, Y.; Zou, Z.; Li, M.; Cui, L.; Zhang, J. Association Mapping of Main Tomato Fruit Sugars and Organic Acids. Front. Plant Sci. 2016, 7, 1286. [Google Scholar] [CrossRef] [Green Version]
- Bădulescu, A.; Popescu, C.F.; Dumitru, A.M.; Sumedrea, D.I. New varieties of tomato—Morphological aspects and molecular characterisation with RAPD and SSR markers. Not. Sci. Biol. 2020, 12, 818–828. [Google Scholar] [CrossRef]
- Harker, F.R.; Gunson, F.A.; Jaeger, S.R. The case for fruit quality: An interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol. Technol. 2003, 28, 333–347. [Google Scholar] [CrossRef]
- Thumula, P. Studies on Storage Behaviour of Tomatoes Coated with Chitosan-Lysozyme Films. Master’s Thesis, McGill University, Montreal, QC, Canada, 2006. [Google Scholar]
- Dan, C.; Șerban, C.; Sestras, A.F.; Militaru, M.; Morariu, P.; Sestras, R.E. Consumer perception concerning apple fruit quality, depending on cultivars and hedonic scale of evaluation—A case study. Not. Sci. Biol. 2015, 7, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Vindras, C.; Sinoir, N.; Coulombel, A.; Taupier-Letage, B.; Rey, F.; ITAB. Tasting Guide: Tools to Integrate Organoleptic Quality Criteria into Breeding Programs; Technical booklet; Diversifood Project; Institut de l’Agriculture et de l’Alimentation Biologiques: Paris, France, 2018. [Google Scholar]
- Sestras, A.F. Modele Statistice Aplicate în Cercetarea Horticola; Editura Risoprint: Cluj-Napoca, Romania, 2019. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 4–9. [Google Scholar]
- Microsoft Corporation. Microsoft Excel. Available online: https://office.microsoft.com/excel (accessed on 10 January 2022).
- UPOV. Tomato (Lycopersicon lycopersicum (L.) Karsten ex Farw.). Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability TG/44/10; International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 2001. [Google Scholar]
- Ladewig, P.; Trejo-Téllez, L.I.; Servín-Juárez, R.; Contreras-Oliva, A.; Gómez-Merino, F.C. Growth, yield and fruit quality of Mexican tomato landraces in response to salt stress. Not. Bot. Horti Agrobot. 2021, 49, 12005. [Google Scholar] [CrossRef]
- Scott, J.W.; Myers, J.R.; Boches, P.S. Classical genetics and traditional breeding. In Genetics, Genomics and Breeding of Tomato; Liedl, B.E., Labate, J.A., Stommel, J.R., Slade, A., Kole, C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 37–73. [Google Scholar]
- Lee, T.G.; Shekasteband, R.; Menda, N.; Mueller, L.A.; Hutton, S.F. Molecular markers to select for the j-2–mediated jointless pedicel in tomato. HortScience 2018, 53, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Panthee, D.R.; Labate, J.A.; McGrath, M.T.; Breksa, A.P.; Robertson, L.D. Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica 2013, 193, 169–182. [Google Scholar] [CrossRef]
- NAQS. Reform on Agricultural Products Quality Standards; NAQS Notification No. 2011-45; National Agricultural Products Quality Management Service: Gimcheon, Korea, 2011.
- Bustan, A.; Cohen, S.; Erlich, O.; Tsror (Lahkim), L. Cladosporium species and Alternaria alternate cause serious post-harvest early calyx decay in truss tomatoes in Israel. New Dis. Rep. 2007, 15, 7–12. [Google Scholar]
- Mansouri, N.; Benslama, O. In vitro and in silico investigation of the antifungal activity of endophytic fungi against phytopathogenic fungi of tomato. Not. Sci. Biol. 2022, 14, 11050. [Google Scholar] [CrossRef]
- Smid, E.J.; Hendriks, L.; Boerrigter, H.A.M.; Gorris, L.G.M. Surface disinfection of tomatoes using the natural plant compound trans-cinnamaldehyde. Postharvest Biol. Technol. 1996, 9, 343–350. [Google Scholar] [CrossRef]
- Yang, C.X.; Shewfelt, R.L. Effect of sealing of stem scar on ripening rate and internal ethylene, oxygen and carbon dioxide concentrations of tomato fruits. Acta Hortic. Sin. 1999, 485, 399–404. [Google Scholar] [CrossRef]
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E.; Lipowski, J.; Marszałek, K.; Rembiałkowska, E. The seasonal variation in bioactive compounds content in juice from organic and non-organic tomatoes. Plant Foods Hum. Nutr. 2013, 68, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Verheul, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- Riadh, I.; Wasim, S.M.; Imen, T.; Gabriela, P.; Salvatore, L.M.; Chafik, H. Functional quality and colour attributes of two high-lycopene tomato breeding lines grown under greenhouse conditions. Turk. J. Agric. Food Sci. Technol. 2016, 4, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Lumpkin, H.M. A Comparison of Lycopene and Other Phytochemicals in Tomatoes Grown under Conventional and Organic Management Systems; AVRDC: Shanhua, Taiwan, 2005; p. 48. [Google Scholar]
- Serrano, M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Post-harvest ripening of tomato. In Tomatoes and Tomato Products: Nutritional, Medicinal and Therapeutic Properties; Preedy, V.R., Watson, R.R., Eds.; Science Publishers: New York, NY, USA, 2008; pp. 67–84. [Google Scholar]
- Helyes, L.; Pék, Z.N.; Lugasi, A. Tomato fruit quality and content depend on stage of maturity. HortScience 2006, 41, 1400–1401. [Google Scholar] [CrossRef] [Green Version]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef]
- Abushita, A.A.; Daood, H.G.; Biacs, P.A. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000, 48, 2075–2081. [Google Scholar] [CrossRef]
- Kuti, J.O.; Konuru, H.B. Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. J. Sci. Food Agric. 2005, 85, 2021–2026. [Google Scholar] [CrossRef]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.A.; Marshall, M.R.; Sims, C.A.; Wei, C.I.; Sargent, S.A.; Scott, J.W. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. Food Chem. Toxicol. 2000, 65, 791–795. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Grierson, D.; Kader, D.D. Fruit ripening and quality. In The Tomato Crop (A scientific Basis for Improvement); Atherton, J.G., Rudich, J., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 1389–1393. [Google Scholar]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Durante, M.; Caretto, S.; Milano, F.; D’Imperio, M.; Serio, F.; Santamaria, P. Supplementary Light Differently Influences Physico-Chemical Parameters and Antioxidant Compounds of Tomato Fruits Hybrids. Antioxidants 2021, 10, 687. [Google Scholar] [CrossRef]
- Marković, K.; Hruškar, M.; Vahčić, N. Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 2006, 26, 556–560. [Google Scholar] [CrossRef]
- Lăcătuş, V.; Botez, C.; Chelu, M.; Popescu, N.; Voican, V. Chemical composition of tomato and sweet pepper fruits cultivated on active substrates. Acta Hortic. 1995, 412, 168–175. [Google Scholar] [CrossRef]
- Ilahy, R.; Hdider, C.; Lenucci, M.S.; Tlili, I.; Dalessandro, G. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compos. Anal. 2011, 24, 588–595. [Google Scholar] [CrossRef]
- Massantini, R.; Radicetti, E.; Frangipane, M.T.; Campiglia, E. Quality of tomato (Solanum lycopersicum L.) changes under different cover crops, soil tillage and nitrogen fertilization management. Agriculture 2021, 11, 106. [Google Scholar] [CrossRef]
- Farneti, B.; Schouten, R.E.; Woltering, E.J. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biol Technol. 2012, 73, 22–27. [Google Scholar] [CrossRef]
- Murariu, O.C.; Brezeanu, C.; Jităreanu, C.D.; Robu, T.; Irimia, L.M.; Trofin, A.E.; Popa, L.-D.; Stoleru, V.; Murariu, F.; Brezeanu, P.M. Functional quality of improved tomato genotypes grown in open field and in plastic tunnel under organic farming. Agriculture 2021, 11, 609. [Google Scholar] [CrossRef]
- Sinesio, F.; Cammareri, M.; Cottet, V.; Fontanet, L.; Jost, M.; Moneta, E.; Palombieri, S.; Peparaio, M.; Romero del Castillo, R.; Saggia Civitelli, E.; et al. Sensory traits and consumer’s perceived quality of traditional and modern fresh market tomato varieties: A study in three European countries. Foods 2021, 10, 2521. [Google Scholar] [CrossRef] [PubMed]
- Schouten, H.J.; Tikunov, Y.; Verkerke, W.; Finkers, R.; Bovy, A.; Bai, Y.; Visser, R.G.F. Breeding has increased the diversity of cultivated tomato in the Netherlands. Front. Plant Sci. 2019, 10, 1606. [Google Scholar] [CrossRef]
- Causse, M.; Buret, M.; Robini, K.; Verschave, P. Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J. Food Sci. 2003, 68, 2342–2350. [Google Scholar] [CrossRef]
- Carli, P.; Barone, A.; Fogliano, V.; Frusciante, L.; Ercolano, M.R. Dissection of genetic and environmental factors involved in tomato organoleptic quality. BMC Plant Biol. 2011, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Casals, J.; Rivera, A.; Sabaté, J.; Romero del Castillo, R.; Simó, J. Cherry and fresh market tomatoes: Differences in chemical, morphological, and sensory traits and their implications for consumer acceptance. Agronomy 2019, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Causse, M.; Friguet, C.; Coiret, C.; Lépicier, M.; Navez, B.; Lee, M.; Holthuysen, N.; Sinesio, F.; Moneta, E.; Grandillo, S. Consumer preferences for fresh tomato at the European scale: A common segmentation on taste and firmness. J. Food Sci. 2010, 75, S531–S541. [Google Scholar] [CrossRef]
- Pagliarini, E.; Monteleone, E.; Ratti, S. Sensory profile of eight tomato cultivars (Lycopersicon esculentum) and its relationship to consumer preference. Ital. J. Food Sci. 2001, 13, 285–296. [Google Scholar]
- Oltman, A.; Yates, M.; Drake, M. Preference mapping of fresh tomatoes across three stages of consumption. J. Food Sci. 2016, 81, S1495–S1505. [Google Scholar] [CrossRef]
- Rocha, M.C.; Deliza, R.; Ares, G.; Freitas, D.D.G.; Silva, A.L.; Carmo, M.G.; Abboud, A.C. Identifying promising accessions of cherry tomato: A sensory strategy using consumers and chefs. J. Sci. Food Agric. 2012, 93, 1903–1914. [Google Scholar] [CrossRef] [PubMed]
- Sinesio, F.; Cammareri, M.; Moneta, E.; Navez, B.; Peparaio, M.; Causse, M.; Grandillo, S. Sensory quality of fresh French and Dutch market tomatoes: A preference mapping study with Italian consumers. J. Food Sci. 2010, 75, S55–S67. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.; Zhu, G.; Resende, M.F., Jr.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.; Bliss, P.; McIntyre, L.M.; Blandon-Ubeda, A.; Bies, D.; Odabasi, A.Z.; Rodríguez, G.R.; van der Knaap, E.; Taylor, M.G.; Goulet, C.; et al. The chemical interactions underlying tomato flavor preferences. Curr. Biol. 2012, 22, 1035–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genotype/ Trait | Fruit Height (cm) | Fruit Diameter (cm) | Fruit Shape Index | Fruit Volume (cm3) | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | |
AS 300 | 10.65 a ± 1.00 | 29.8 | 7.60 b ± 0.21 | 8.7 | 1.42 a ± 0.15 | 34.4 | 101.88 a ± 8.96 | 27.8 |
AS 400 | 10.45 a ± 0.17 | 5.3 | 8.45 a ± 0.16 | 5.9 | 1.24 ab ± 0.03 | 7.9 | 124.24 a ± 5.00 | 12.7 |
Precos | 6.75 b ± 0.21 | 10.0 | 6.50 c ± 0.20 | 9.6 | 1.04 b ± 0.02 | 6.6 | 48.38 b ± 4.20 | 27.5 |
Addalyn | 9.45 a ± 0.32 | 10.7 | 8.15 ab ± 0.18 | 7.1 | 1.16 ab ± 0.04 | 10.9 | 105.17 a ± 6.77 | 20.4 |
Genotype/ Trait | 1st Harvest | 2nd Harvest | 3rd Harvest | 4th Harvest | 5th Harvest | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | |
AS 300 | 210.0 a ± 1.0 | 0.7 | 216.0 a ± 3.0 | 2.0 | 208.0 a ± 1.0 | 0.7 | 208.5 a ± 4.4 | 3.7 | - | - |
AS 400 | 222.5 a ± 16.5 | 10.5 | 222.0 a ± 11.0 | 7.0 | 226.0 a ± 4.0 | 2.5 | 221.0 a ± 3.8 | 5.0 | 220.5 a ± 9.5 | 6.1 |
Precos | 108.5 b ± 1.5 | 2.0 | 107.0 b ± 2.0 | 2.6 | 102.5 b ± 3.5 | 4.8 | 107.0 b ± 1.3 | 8.8 | - | - |
Addalyn | 225.0 a ± 14.0 | 8.8 | 219.5 a ± 4.5 | 2.9 | 223.0 a ± 13.0 | 8.2 | 224.0 a ± 5.7 | 6.1 | 228.5 a ± 10.5 | 6.5 |
Genotype/ Trait | I Cluster | II Cluster | III Cluster | IV Cluster | V Cluster | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | Mean ± SEM | CV% | |
Pedicel–calyx distance (cm) | ||||||||||
AS 300 | 2.16 b ± 0.08 | 11.6 | 2.41 a ± 0.11 | 14.0 | 2.33 b ± 0.07 | 9.7 | 2.44 b ± 0.06 | 8.0 | - | - |
AS 400 | 2.37 ab ± 0.09 | 11.9 | 2.08 b ± 0.10 | 15.5 | 2.30 b ± 0.09 | 12.0 | 2.46 b ± 0.06 | 7.9 | 2.46 b ± 0.06 | 7.9 |
Precos | 2.44 a ± 0.03 | 4.4 | 2.62 a ± 0.03 | 3.9 | 2.40 b ± 0.06 | 7.9 | 2.66 a ± 0.03 | 4.0 | - | - |
Addalyn | 2.54 a ± 0.06 | 7.9 | 2.65 a ± 0.07 | 8.2 | 2.94 a ± 0.05 | 5.4 | 2.66 a ± 0.05 | 5.9 | 2.67 a ± 0.06 | 6.8 |
Calyx size (cm) | ||||||||||
AS 300 | 2.59 c ± 0.06 | 7.4 | 2.81 b ± 0.08 | 9.6 | 2.80 b ± 0.07 | 8.2 | 2.84 a ± 0.03 | 3.8 | - | - |
AS 400 | 2.84 b ± 0.05 | 5.0 | 2.66 b ± 0.03 | 3.2 | 2.63 b ± 0.03 | 3.6 | 2.63 a ± 0.03 | 3.6 | 2.74 b ± 0.05 | 5.5 |
Precos | 2.21 d ± 0.07 | 10.3 | 2.28 c ± 0.03 | 8.7 | 2.38 bc ± 0.08 | 11.0 | 2.38 b ± 0.08 | 11.0 | - | - |
Addalyn | 3.30 a ± 0.08 | 7.4 | 3.43 a ± 0.06 | 3.1 | 3.56 a ± 0.08 | 7.4 | 2.38 b ± 0.08 | 11.0 | 3.36 a ± 0.04 | 4.0 |
Peduncle scar (cm) | ||||||||||
AS 300 | 2.14 c ± 0.06 | 9.1 | 2.22 b ± 0.02 | 3.6 | 2.34 b ± 0.02 | 2.2 | 2.26 b ± 0.03 | 3.7 | - | - |
AS 400 | 2.38 b ± 0.02 | 3.3 | 2.36 b ± 0.07 | 9.2 | 2.44 ab ± 0.05 | 5.9 | 2.54 a ± 0.04 | 5.0 | 2.40 a ± 0.04 | 5.6 |
Precos | 1.96 c ± 0.03 | 5.5 | 1.98 c ± 0.06 | 9.2 | 1.96 c ± 0.06 | 10.0 | 1.94 c ± 0.05 | 8.8 | - | - |
Addalyn | 2.58 a ± 0.07 | 8.9 | 2.60 a ± 0.04 | 5.1 | 2.60 a ± 0.04 | 4.4 | 2.52 a ± 0.05 | 6.1 | 2.40 a ± 0.04 | 5.6 |
Number of locules per fruit | ||||||||||
AS 300 | 7.5 a ± 0.5 | 9.4 | 7.5 a ± 0.5 | 9.4 | 7.5 a ± 0.5 | 9.4 | 7.5 a ± 0.5 | 9.4 | ||
AS 400 | 6.5 a ± 0.5 | 10.9 | 6.5 b ± 0.5 | 10.9 | 6.5 b ± 0.5 | 10.9 | 6.5 b ± 0.5 | 10.9 | 5.5 a ± 0.5 | 12.9 |
Precos | 4.5 b ± 0.5 | 15.7 | 5.5 c ± 0.5 | 12.9 | 6.5 b ± 0.5 | 10.9 | 5.5 c ± 0.5 | 12.9 | ||
Addalyn | 4.5 b ± 0.5 | 15.7 | 5.5 c ± 0.5 | 12.9 | 5.5 c ± 0.5 | 12.9 | 5.5 c ± 0.5 | 12.9 | 5.5 a ± 0.5 | 12.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felföldi, Z.; Ranga, F.; Roman, I.A.; Sestras, A.F.; Vodnar, D.C.; Prohens, J.; Sestras, R.E. Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality. Agronomy 2022, 12, 1232. https://doi.org/10.3390/agronomy12051232
Felföldi Z, Ranga F, Roman IA, Sestras AF, Vodnar DC, Prohens J, Sestras RE. Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality. Agronomy. 2022; 12(5):1232. https://doi.org/10.3390/agronomy12051232
Chicago/Turabian StyleFelföldi, Zoltán, Florica Ranga, Ioana A. Roman, Adriana F. Sestras, Dan C. Vodnar, Jaime Prohens, and Radu E. Sestras. 2022. "Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality" Agronomy 12, no. 5: 1232. https://doi.org/10.3390/agronomy12051232
APA StyleFelföldi, Z., Ranga, F., Roman, I. A., Sestras, A. F., Vodnar, D. C., Prohens, J., & Sestras, R. E. (2022). Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality. Agronomy, 12(5), 1232. https://doi.org/10.3390/agronomy12051232