Combination of Biochar with N–Fertilizer Affects Properties of Soil and N2O emissions in Maize Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site
2.2. Characterization of the Treating Materials: Biochar and Nitrogen Fertilizer
2.3. Design of the Experimental Plots and Treatments
2.4. Soil Sampling and Analyses
2.5. Gas Sampling and Analysis
2.6. Maize Yield Determination
2.7. Statistical Analyses
3. Results and Discussion
3.1. Soil Chemical Properties
3.2. Soil Physical Properties
3.3. Nitrous Oxide Emissions
3.4. Maize Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blasing, T.J. Recent Greenhouse Gas Concentrations; Carbon Dioxide Information Analysis Center (CDIAC): Oak Ridge, TN, USA; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Ashiq, W.; Vasava, H.; Ghimire, U.; Daggupati, P.; Biswas, A. Topography controls N2O emissions differently during early and late corn growing season. Agronomy 2021, 11, 187. [Google Scholar] [CrossRef]
- Bavin, T.K.; Griffis, T.J.; Baker, J.M.; Venterea, R.T. Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem. Agric. Ecosyst. Environ. 2009, 134, 234–242. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Tomer, R.; Harit, R.C.; Jain, N.; Bhowmik, A.; Kaushik, R. Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environ. Sci Pollut. 2021, 28, 51425–51439. [Google Scholar] [CrossRef] [PubMed]
- Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Mayer, L.A. Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Groffman, P.M.; Altabet, M.A.; Böhlke, J.K.; Butterbach–BBahl, K.; David, M.B.; Firestone, M.K.; Giblin, A.E.; Kana, T.M.; Nielsen, L.P.; Voytek, M.A. Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol. Appl. 2006, 16, 2091–2122. [Google Scholar] [CrossRef]
- Bremner, J.M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 1997, 49, 7–16. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; Van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil. Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An Investigation into the Reactions of Biochar in Soil. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Brunn, E.W.; Müller, S.; Ver, D.; Ambus, P.; Hauggaard-Nielsen, H. Application of biochar to soil and N2O emissions: Potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur. J. Soil Sci. 2011, 62, 581–589. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Muller, C.; Koyro, H.W.; Conte, P.; Stephen, J. Plant Growth Improvement Mediated by Nitrate Capture in Co–Composted Biochar. Sci. Rep. 2015, 5, 12378. [Google Scholar] [CrossRef] [Green Version]
- Githinji, L. Effect of biochar application rate on physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Duarte, S.J.; Glaser, B.; Cerri, C.E.P. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water hodling capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Šimanský, V. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotechn. Zootechn. 2016, 19, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Juriga, M.; Šimanský, V. Effect of biochar on soil structure—Review. Acta Fytotech. Zootech. 2018, 21, 11–19. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizao, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Horák, J. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Hortic. Regiotecturae 2015, 18, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Juriga, M.; Šimanský, V. Effect of biochar and its reapplication on soil pH and sorption properties of silt loam Haplic Luvisol. Acta Hortic. Regiotect. 2019, 22, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Šrank, D.; Šimanský, V. Differences in soil organic matter and humus of sandy soil after application of biochar substrates and combination of biochar substrates with mineral fertilizers. Acta Fytotechn. Zootechn. 2020, 23, 117–124. [Google Scholar] [CrossRef]
- Šimanský, V.; Šrank, D. Relationships between soil organic matter and crop yield after biochar substrates application and their combination with mineral fertilizers on sandy soil. Acta Hortic. Regiotect. 2021, 24, 14–20. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendments on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Kondrlová, E.; Horák, J.; Igaz, D.; Dobiášová, D. The possibility of using digital images in assessment of plant canopy development and weed spread. Acta Hortic. Regiotect. 2017, 20, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Malyan, S.K.; Kumar, S.S.; Fagodiya, R.K.; Ghosh, P.; Kumar, A.; Singh, R.; Singh, L. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew. Sustain. Energy Rev. 2021, 149, 111379. [Google Scholar] [CrossRef]
- Kotuš, T.; Horák, J. Does Biochar Influence Soil CO2 Emission Four Years after Its Application to Soil? Acta Hortic. Regiotect. 2021, 24, 109–116. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, X.; Duan, P.; Shen, H.; Gunina, A.; Yan, Z.; Xiong, Z. Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season. Environ. Pollut. 2021, 281, 117026. [Google Scholar] [CrossRef] [PubMed]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The Effect of Biochar Addition on N2O and CO2 Emissions from a Sandy Loam Soil—The Role of Soil Aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Horák, J.; Kotuš, T.; Toková, L.; Aydın, E.; Igaz, D.; Šimanský, V. A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application. Agronomy 2021, 11, 582. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Duan, P.; Jiang, X.; Shen, H.; Yan, X.; Xiong, Z. The effect of long-term biochar amendment on N2O emissions: Experiments with N15–O18 isotopes combined with specific inhibition approaches. Sci. Total Environ. 2021, 769, 144–533. [Google Scholar] [CrossRef]
- Hoang, N.T.; Maeda, M. Nitrous oxide and carbon dioxide emissions from agricultural soil amended with different types of biochar at three temperatures. J. Environ. Sci. Sustain. Soc. 2018, 8, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, S.; Riondino, M.; Baronti, S.; Esposito, F.R.; Marzaioli, R.; Rutigliano, F.A.; Vaccari, F.P.; Miglietta, F. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 2011, 85, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, Y.X.; Wu, W.X.; Shi, D.Z.; Yang, M.; Zhong, Z.K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 2010, 213, 47–55. [Google Scholar] [CrossRef]
- Krause, H.M.; Roman, H.; Leifeld, J.; El-Hadidi, M.; Gattinger, A. Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biol. Biochem. 2018, 119, 143–151. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Zhang, A.; Rahaman, A.; Yang, Z. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China. Sci. Total Environ. 2020, 721, 137636. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Xiong, Z.Q.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Verhoeven, E.; Pereira, E.; Decock, C.; Suddick, E.; Angst, T.; Six, J. Toward a better assessment of biochar-nitrous oxide mitigation potential at the field scale. J. Environ. Qual. 2017, 46, 237–246. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Koppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Hrivňáková, K.; Makovníková, J.; Barančíková, G.; Bezák, P.; Bezáková, Z.; Dodok, R.; Grečo, V.; Chlpík, J.; Kobza, J.; Lištjak, J.; et al. Jednotné Pracovné Postupy Rozborov Pôd. (Uniform Operation Procedures of Soil Analyses); VÚPOP: Bratislava, Slovakia, 2011; p. 113. (In Slovak) [Google Scholar]
- Dziadowiec, H.; Gonet, S. Przewodnik Metodyczny do Bada´n Materii Organicznej Gleb (Methodological Guidebook for The Organic Matter Researches); Prace Komisji Naukowych Polskiego Towarzystwa Naukowego 120; PTG: Warszawa, Poland, 1999; pp. 31–34. (In Polish) [Google Scholar]
- Elder, J.W.; Lal, R. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Tillage Res. 2008, 98, 45–55. [Google Scholar] [CrossRef]
- Parkin, T.B.; Venterea, R.T.; Hargreaves, S.K. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J. Environ. Qual. 2012, 41, 705–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AHDB. Barley Growth Guide. Available online: https://projectblue.blob.core.windows.net/media/Default/Imported%20Publication%20Docs/Barley%20growth%20guide%20130718.pdf (accessed on 27 April 2022).
- Dell™ Statistica™ 13.1. Release Notes. June 2016. Available online: http://support-public.cfm.quest.com/35859_Dell_Statistica_13_1_ReleaseNotes_Rev03_ENGLISH.pdf (accessed on 15 March 2022).
- Kubaczyński, A.; Walkiewicz, A.; Pytlak, A.; Grządziel, J.; Gałązka, A.; Brzezińska, M. Biochar dose determines methane uptake and methanotroph abundance in Haplic Luvisol. Sci. Total Environ. 2022, 806, 151259. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yu, M.; Lu, X.; Tang, C.; Liu, X.; Brookes, P.C.; Xu, J. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Sci. Total Environ. 2017, 187, 640–641. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, L.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon through biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2013, 60, 393–404. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and quantification of biochar alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Berek, A.K.; Hue, N.V. Characterization of biochars and their use as an amendment to acid soils. Soil Sci. 2016, 181, 412–426. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Sun, H.; Wang, C.; Zhou, S. Carbon sequestration and nutrients improvement meditated by biochar in a 3-year vegetable rotation system. J. Soils Sediments 2022, 22, 1385–1396. [Google Scholar] [CrossRef]
- Iqbal, H.; Garcia–Perez, M.; Flury, M. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Sci. Total Environ. 2015, 522, 37–45. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Kang, Y.; Han, C.; Zhu, T.; Zhong, W. Biochar amendment in reductive soil disinfestation process improved remediation effect and reduced N2O emission in a nitrate–riched degraded soil. Arch. Agron. Soil Sci. 2019, 66, 983–991. [Google Scholar] [CrossRef]
- Prendergast–Miller, M.T.; Duvall, M.; Sohi, S.P. Localization of nitrate in the rhizosphere of biochar–amended soils. Soil Biol. Biochem. 2011, 43, 2243–2246. [Google Scholar] [CrossRef]
- Bizimana, F.; Timilsina, A.; Dong, W.; Uwamungu, J.Y.; Li, X.; Wang, Y.; Pandey, B.; Qin, S. Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem. J. Soils Sediments 2021, 21, 1659–1671. [Google Scholar] [CrossRef]
- Sial, T.A.; Khan, M.N.; Lan, Z.; Kumbhar, F.; Ying, Z.; Zhangm, J.; Lim, X. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process. Saf. Environ. Protect. 2019, 122, 366–377. [Google Scholar] [CrossRef]
- Horák, J.; Šimanský, V. Effect of biochar and biochar combined with N-fertiliser on soil organic carbon content. Agriculture 2016, 62, 155. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Igaz, D.; Horák, J.; Šurda, P.; Kolenčík, M.; Buchkina, N.P.; Uzarowicz, L.; Juriga, M.; Šrank, D.; Pauková, Ž. Response of soil organic carbon and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech. 2018, 66, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.; Zwart, K.; Shackley, S.; Ruysschaert, G. The role of biochar in agricultural soils. In Biochar in European Soils and Agriculture; Shackley, S., Ruysschaert, G., Zewart, K., Glaser, B., Eds.; Routledge: London, UK; Taylor and Francis Group: New York, NY, USA, 2016; pp. 73–98. [Google Scholar]
- Nguyen, B.; Lehmann, J.; Kinyangi, J.; Smernik, R.; Riha, S.J.; Engelhard, M.H. Long–term black carbon dynamics in cultivated soil. Biogeochemistry 2008, 89, 295–308. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomom, D.; Sohi, S.; Thies, J.; Skjemstad, J.; Luizão, F.; Engelhard, M.; Neves, E.; Wirick, S. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Yang, W.; Feng, G.; Miles, D.; Gao, L.; Jia, Y.; Li, C.; Qu, Z. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Sci. Total Environ. 2020, 729, 138752. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, X.; Qu, Z.; Jia, Y.; Hu, M.; Li, C. Effects of Biochar Application and Irrigation Methods on Soil Temperature in Farmland. Water 2019, 11, 499. [Google Scholar] [CrossRef] [Green Version]
- Crutzen, P.J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Clim. Chang. 2006, 77, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Thomas, S. Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Syst. 2019, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy 2020, 10, 1005. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Blanco–Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Horák, J.; Bordoloi, S. Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using biochar substrates: Case study in Slovakia. Geoderma Reg. 2022, 28, e00443. [Google Scholar] [CrossRef]
- Lee, J.; Hopmans, J.W.; van Kessel, C.; King, A.P.; Evatt, K.J.; Louie, D.; Rolston, D.E.; Six, J. Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agric. Ecosyst. Environ. 2009, 129, 378–390. [Google Scholar] [CrossRef]
- Nan, W.; Yue, S.; Li, S.; Huang, H.; Shen, Y. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China. Sci. Total Environ. 2016, 542, 864–875. [Google Scholar] [CrossRef]
- Tullberg, J.; Antille, D.L.; Bluetta, C.; Eberhard, J.; Scheer, C. Controlled traffic farming effects on soil emissions of nitrous oxide and methane. Soil Tillage Res. 2018, 176, 18–25. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahbaz, M.; Farooq, H.T.; Sahar, N.E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 2021, 750, 142299. [Google Scholar] [CrossRef]
- Lopez-Capel, E.; Zwart, K.; Shackley, S.; Postma, R.; Stenstrom, J.; Rasse, D.P.; Budai, A.; Glaser, B. Biochar properties. In Biochar in European Soils and Agriculture; Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., Eds.; Routledge: London, UK; Taylor and Francis Group: New York, NY, USA, 2016; pp. 41–72. [Google Scholar]
- Aydin, E.; Šimanský, V.; Horák, J.; Igaz, D. Potential of biochar to alternate soil properties and crop yield 3 and 4 years after the application. Agronomy 2020, 10, 889. [Google Scholar] [CrossRef]
- STATdat. Branch Statistics > Agriculture, Forestry, Fisheries > Yields of Selected Agricultural Crops > Select Data > Hectare Yields (Tons). Available online: http://statdat.statistics.sk (accessed on 12 April 2022).
Air Temperature | Precipitation | |||||
---|---|---|---|---|---|---|
Month | Mean (°C) | Deviation from the Normal (°C) | Description | Total (mm) | % of Normal | Description |
January | −3.5 | −3.0 | cold | 54.8 | 166.1 | very wet |
February | +0.9 | −0.4 | normal | 27.4 | 94.5 | normal |
March | +5.0 | −0.5 | normal | 22.4 | 67.9 | dry |
April | +9.4 | −2.0 | cold | 21.4 | 59.4 | dry |
May | +9.3 | −6.7 | extremely cold | 134.8 | 228.5 | extremely wet |
June | +18.7 | −0.9 | normal | 29.0 | 49.2 | very dry |
July | +18.0 | −3.7 | extremely cold | 52.2 | 80.3 | normal |
August | +18.4 | −2.7 | very cold | 64.0 | 116.4 | normal |
September | +12.6 | −3.3 | normal | 52.8 | 91.0 | normal |
October | +8.7 | −1.7 | cold | 17.8 | 38.7 | very dry |
November | +5.0 | −0.6 | normal | 95.4 | 212.0 | extremely wet |
December | −0.1 | −0.8 | normal | 53.4 | 127.1 | wet |
Parameter | Average Value | Methods of Determination | Unit |
---|---|---|---|
Range of particle size | 1–5 | Laser diffraction | mm |
Bulk density | 0.21 | calculated | g cm−3 |
Specific surface area | 21.7 | DIN 66132/ISO 9277 | m2 g−1 |
pH value (KCl) | 8.8 | DIN ISO 10390 | – |
Ash content | 38.3 | Analog DIN 51719 | % |
Carbon (C) content | 53.1 | DIN 51732 | % |
Nitrogen (N) content | 1.4 | DIN 51732 | % |
C:N ratio | 37.9 | calculated | – |
H/C | <0.6 | calculated | – |
H/Corg | <0.7 | calculated | – |
O/C | <0.4 | calculated | – |
Treatments | pH (KCl) | NH4+ (mg kg−1) | NO3− (mg kg−1) | Corg (Spring)(g kg−1) | Corg (Autumn) (g kg−1) |
---|---|---|---|---|---|
n = 3 | n = 3 | n = 3 | n = 3 | n = 3 | |
Not fertilized group—N0 level (0 kg N ha−1) | |||||
B0N0 | 5.21 ± 0.2 a | 15.39 ± 10.1 a | 18.78 ± 7.5 a | 12.00 ± 0.3 a | 14.29 ± 2.5 ab |
B10N0 | 5.21 ± 0.2 a | 5.55 ± 0.5 a | 14.49 ± 1.5 a | 12.26 ± 2.1 a | 10.67 ± 2.4 a |
B20N0 | 5.51 ± 0.2 b | 6.05 ± 1.0 a | 12.09 ± 1.9 a | 14.22 ± 1.5 a | 11.63 ± 1.6 ab |
B10reapN0 | 5.44 ± 0.1 ab | 5.43 ± 0.8 a | 12.25 ± 2.0 a | 16.57 ± 2.6 a | 12.43 ± 2.2 ab |
B20reapN0 | 5.59 ± 0.1 b | 5.71 ± 1.2 a | 11.46 ± 2.8 a | 17.02 ± 2.9 a | 20.83 ± 1.2 b |
Fertilized group—N1 level (108 kg N ha−1) | |||||
B0N1 | 4.81 ± 0.2 a | 42.05 ± 18.2 a | 28.20 ± 7.1 a | 9.51 ± 0.8 a | 10.10 ± 0.7 a |
B10N1 | 5.35 ± 0.5 ab | 24.94 ± 8.2 a | 25.85 ± 6.6 a | 13.98 ± 2.2 a | 14.90 ± 2.7 ab |
B20N1 | 5.13 ± 0.2 ab | 28.87 ± 9.1 a | 26.91 ± 6.7 a | 15.68 ± 1.4 a | 14.93 ± 1.5 ab |
B10reapN1 | 5.44 ± 0.6 ab | 41.87 ± 11.2 a | 27.41 ± 7.5 a | 13.39 ± 1.8 a | 13.23 ± 0.7 ab |
B20reapN1 | 5.25 ± 0.1 b | 35.81 ± 7.3 a | 32.15 ± 5.1 a | 17.22 ± 2.8 a | 18.80 ± 2.2 b |
Fertilized group—N2 level (162 kg N ha−1) | |||||
B0N2 | 4.40 ± 0.1 a | 80.19 ± 14.6 b | 28.53 ± 8.1 a | 9.94 ± 0.8 a | 10.31 ± 2.1 a |
B10N2 | 4.90 ± 0.3 b | 25.11 ± 11.0 a | 30.20 ± 7.5 a | 14.98 ± 1.6 ab | 9.43 ± 2.6 a |
B20N2 | 4.97 ± 0.3 b | 41.68 ± 14.4 a | 33.97 ± 8.1 a | 15.96 ± 0.8 ab | 13.80 ± 2.7 a |
B10reapN2 | 5.09 ± 0.4 b | 34.49 ± 20.7 a | 34.82 ± 9.0 a | 17.07 ± 1.3 ab | 13.77 ± 1.2 a |
B20reapN2 | 5.12 ± 0.2 b | 30.05 ± 8.2 a | 35.62 ± 3.6 a | 21.11 ± 2.7 b | 17.30 ± 3.8 a |
Treatments | Soil T (°C) | BD (Spring) (g cm–3) | BD (Autumn) (g cm–3) | SWC (% Mass) |
---|---|---|---|---|
n = 3 | n = 3 | n= 3 | n = 3 | |
Not fertilized group—N0 level (0 kg N ha−1) | ||||
B0N0 | 18.60 ± 0.4 a | 1.38 ± 0.01 a | 1.48 ± 0.02 a | 14.63 ± 0.8 a |
B10N0 | 18.87 ± 0.3 a | 1.37 ± 0.06 a | 1.50 ± 0.04 a | 14.04 ± 0.7 a |
B20N0 | 18.71 ± 0.3 a | 1.27 ± 0.01 a | 1.49 ± 0.03 a | 15.23 ± 0.9 a |
B10reapN0 | 19.02 ± 0.3 a | 1.38 ± 0.04 a | 1.52 ± 0.03 a | 14.23 ± 0.6 a |
B20reapN0 | 18.97 ± 0.3 a | 1.28 ± 0.04 a | 1.48 ± 0.04 a | 15.20 ± 1.0 a |
Fertilized group—N1 level (108 kg N ha−1) | ||||
B0N1 | 18.74 ± 0.3 a | 1.40 ± 0.03 a | 1.49 ± 0.03 a | 12.85 ± 0.7 a |
B10N1 | 18.60 ± 0.5 a | 1.32 ± 0.03 a | 1.53 ± 0.04 a | 14.04 ± 1.0 a |
B20N1 | 18.42 ± 0.3 a | 1.35 ± 0.05 a | 1.48 ± 0.07 a | 14.52 ± 0.9 a |
B10reapN1 | 18.57 ± 0.4 a | 1.30 ± 0.02 a | 1.51 ± 0.04 a | 14.09 ± 0.7 a |
B20reapN1 | 18.51 ± 0.3 a | 1.32 ± 0.03 a | 1.48 ± 0.03 a | 15.07 ± 1.1 a |
Fertilized group—N2 level (162 kg N ha−1) | ||||
B0N2 | 18.38± 0.3 a | 1.40 ± 0.03 a | 1.52 ± 0.04 a | 14.15 ± 1.3 a |
B10N2 | 18.84 ± 0.4 a | 1.35 ± 0.03 a | 1.49 ± 0.04 a | 13.99 ± 1.3 a |
B20N2 | 18.66 ± 0.2 a | 1.33 ± 0.03 a | 1.38 ± 0.07 a | 14.77 ± 0.8 a |
B10reapN2 | 18.81 ± 0.4 a | 1.30 ± 0.04 a | 1.44 ± 0.01 a | 14.37 ± 1.0 a |
B20reapN2 | 18.99 ± 0.3 a | 1.34 ± 0.03 a | 1.41 ± 0.03 a | 15.44 ± 0.9 a |
Variable | Coefficient ai | Coefficient Value | p-Value |
---|---|---|---|
Regression constant | a0 | 1.0294 | <0.001 |
N-fertilization (kg ha−1) | a1 | 0.0005 | <0.001 |
Biochar (t ha−1) + reapplied | a2 | −0.0016 | <0.001 |
SWC (%) | a3 | 0.0088 | <0.001 |
Soil temperature (°C) | a4 | 0.0115 | <0.001 |
Day (counted from the first measurement) | a5 | −0.0003 | <0.001 |
N2O | pH | NO3 | NH4 | SWC | Temp | |
---|---|---|---|---|---|---|
N2O (g ha−1) | 1.00 | –0.25 | 0.13 | 0.39 | 0.37 | 0.06 |
Soil pH | –0.25 | 1.00 | −0.27 | 0.05 | 0.12 | −0.12 |
NO3− (mg kg−1) | 0.13 | −0.27 | 1.00 | 0.23 | −0.21 | 0.28 |
NH4+(mg kg−1) | 0.39 | 0.05 | 0.23 | 1.00 | 0.31 | −0.15 |
SWC (%) | 0.37 | 0.12 | −0.21 | 0.31 | 1.00 | −0.41 |
Temp (°C) | 0.06 | −0.12 | 0.28 | −0.15 | −0.41 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotuš, T.; Šimanský, V.; Drgoňová, K.; Illéš, M.; Wójcik-Gront, E.; Balashov, E.; Buchkina, N.; Aydın, E.; Horák, J. Combination of Biochar with N–Fertilizer Affects Properties of Soil and N2O emissions in Maize Crop. Agronomy 2022, 12, 1314. https://doi.org/10.3390/agronomy12061314
Kotuš T, Šimanský V, Drgoňová K, Illéš M, Wójcik-Gront E, Balashov E, Buchkina N, Aydın E, Horák J. Combination of Biochar with N–Fertilizer Affects Properties of Soil and N2O emissions in Maize Crop. Agronomy. 2022; 12(6):1314. https://doi.org/10.3390/agronomy12061314
Chicago/Turabian StyleKotuš, Tatijana, Vladimír Šimanský, Katarína Drgoňová, Marek Illéš, Elżbieta Wójcik-Gront, Eugene Balashov, Natalya Buchkina, Elena Aydın, and Ján Horák. 2022. "Combination of Biochar with N–Fertilizer Affects Properties of Soil and N2O emissions in Maize Crop" Agronomy 12, no. 6: 1314. https://doi.org/10.3390/agronomy12061314