Short- and Medium-Term Effects of On-Farm Compost Addition on the Physical and Hydraulic Properties of a Clay Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Experimental Devices
2.2. Soil Measurements
2.3. Soil Physical Quality Determination
2.4. Data Analysis
3. Results
3.1. Impact on Water Content, Water Retention, and Bulk Density of the Soil
3.2. Impact on Infiltration Rate and Saturated Hydraulic Conductivity of the Soil
3.3. Impact on Soil Physical Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Change Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef] [PubMed]
- Prout, J.M.; Shepherd, K.D.; McGrath, S.P.; Kirk, G.J.D.; Hassall, K.L.; Haefele, S.M. Changes in organic carbon to clay ratios in different soils and land uses in England and Wales over time. Sci. Rep. 2022, 12, 5162. [Google Scholar] [CrossRef] [PubMed]
- Virto, I.; Imaz, M.J.; Fernández-Ugalde, O.; Gartzia-Bengoetxea, N.; Enrique, A.; Bescansa, P. Soil degradation and soil quality in Western Europe: Current situation and future perspectives. Sustainability 2014, 7, 313–365. [Google Scholar] [CrossRef] [Green Version]
- Iovino, M.; Castellini, M.; Bagarello, V.; Giordano, G. Using static and dynamic indicators to evaluate soil physical quality in a Sicilian area. Land Degrad. Dev. 2016, 27, 200–210. [Google Scholar] [CrossRef]
- Pane, C.; Celano, G.; Piccolo, A.; Villecco, D.; Spaccini, R.; Palese, M.A.; Zaccardelli, M. Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chem. Biol. Technol. Agric. 2015, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F.; Ciaccia, C. Recycling agricultural wastes and by-products in organic farming: Biofertilizers production, yield performance and carbon footprint analysis. Sustainability 2019, 11, 3824. [Google Scholar] [CrossRef] [Green Version]
- Persiani, A.; Montemurro, F.; Diacono, M. Agronomic and Environmental Performances of On-Farm Compost Production and Application in an Organic Vegetable Rotation. Agronomy 2021, 11, 2073. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Castellini, M.; Giglio, L.; Montemurro, F. Intercropping and rotation with leguminous plants in organic vegetables: Crop performance, soil properties and sustainability assessment. Biol. Agric. Hortic. 2021, 37, 141–167. [Google Scholar] [CrossRef]
- Arthur, E.; Cornelis, W.M.; Vermang, J.; de Rocker, E. Amending a loamy sand with three compost types: Impact on soil quality. Soil Use Manag. 2011, 27, 116–123. [Google Scholar] [CrossRef]
- Bondì, C.; Castellini, M.; Iovino, M. Compost Amendment Impact on Soil Physical Quality Estimated from Hysteretic Water Retention Curve. Water 2022, 14, 1002. [Google Scholar] [CrossRef]
- Rivier, P.-A.; Jamniczky, D.; Nemes, A.; Makó, A.; Barna, G.; Uzinger, N.; Rékási, M.; Farkas, C. Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime. J. Hydrol. Hydromech. 2022, 70, 74–88. [Google Scholar] [CrossRef]
- Glab, T.; Zabinski, A.; Sadowska, U.; Gondek, K.; Kopec, M.; Mierzwa-Hersztek, M.; Tabor, S. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 2018, 315, 27–35. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Börjesson, G.; Kätterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 2018, 112, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Yüksel, O.; Kavdir, Y. Improvement of soil quality parameters by municipal solid waste compost application in clay-loam soil. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Curci, M.; Lavecchia, A.; Cucci, G.; Lacolla, G.; De Corato, U.; Crecchio, C. Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil. Soil Syst. 2020, 4, 48. [Google Scholar] [CrossRef]
- Whelan, A.; Kechavarzi, C.; Coulon, F.; Sakrabani, R.; Lord, R. Influence of compost amendments on the hydraulic functioning of brownfield soils. Soil Use Manag. 2013, 29, 260–270. [Google Scholar] [CrossRef] [Green Version]
- De Benedetto, D.; Montemurro, F.; Diacono, M. Impacts of agro-ecological practices on soil losses and cash crop yield. Agriculture 2017, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Ventrella, D.; Losavio, N.; Vonella, A.V.; Leij, F.J. Estimating hydraulic conductivity of a fine-textured soil using tension infiltrometry. Geoderma 2005, 124, 267–277. [Google Scholar] [CrossRef]
- Dane, J.H.; Hopmans, J.W. 3.3.2.2 Hanging water column. In Methods of Soil Analysis, Part 4, Physical Methods, Number 5 in the Soil Science Society of America Book Series; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 680–683. [Google Scholar]
- Dane, J.H.; Hopmans, J.W. 3.3.2.4 Pressure plate extractor. In Methods of Soil Analysis, Part 4, Physical Methods, Number 5 in the Soil Science Society of America Book Series; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 688–690. [Google Scholar]
- Castellini, M.; Iovino, M. Pedotransfer functions for estimating soil water retention curve of Sicilian soils. Arch. Agron. Soil Sci. 2019, 65, 1401–1416. [Google Scholar] [CrossRef]
- Seki, K. SWRC fit—A nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrol. Earth Syst. Sci. 2007, 4, 407–437. [Google Scholar] [CrossRef] [Green Version]
- Bagarello, V.; Di Prima, S.; Iovino, M. Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma 2017, 303, 70–77. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Castellini, M.; Di Prima, S.; Moret-Fernández, D.; Lassabatere, L. Rapid and accurate measurement methods for determining soil hydraulic properties: A review. J. Hydrol. Hydromech. 2021, 69, 121–139. [Google Scholar] [CrossRef]
- Vitti, C.; Stellacci, A.M.; Leogrande, R.; Mastrangelo, M.; Cazzato, E.; Ventrella, D. Assessment of organic carbon in soils: A comparison between the Springer–Klee wet digestion and the dry combustion methods in Mediterranean soils (Southern Italy). Catena 2016, 137, 113–119. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Han, H.; Giménez, D.; Lilly, A. Textural averages of saturated soil hydraulic conductivity predicted from water retention data. Geoderma 2008, 146, 121–128. [Google Scholar] [CrossRef]
- Stellacci, A.M.; Castellini, M.; Diacono, M.; Rossi, R.; Gattullo, C.E. Assessment of soil quality under different soil management strategies: Combined use of statistical approaches to select the most informative soil physico-chemical indicators. Appl. Sci. 2021, 11, 5099. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Tomaiuolo, M.; Barca, E. Spatial variability of soil physical and hydraulic properties in a durum wheat field: An assessment by the BEST-Procedure. Water 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Manici, L.M.; Castellini, M.; Caputo, F. Soil-inhabiting fungi can integrate soil physical indicators in multivariate analysis of Mediterranean agroecosystem dominated by old olive groves. Ecol. Indic. 2019, 106, 105490. [Google Scholar] [CrossRef]
- Castellini, M.; Iovino, M.; Pirastru, M.; Niedda, M.; Bagarello, V. Use of BEST procedure to assess soil physical quality in the Baratz Lake catchment (Sardinia, Italy). Soil Sci. Soc. Am. J. 2016, 80, 742–755. [Google Scholar] [CrossRef]
- Lee, D.M.; Elrick, D.E.; Reynolds, W.D.; Clothier, B.E. A comparison of three field methods for measuring saturated hydraulic conductivity. Can. J. Soil Sci. 1985, 65, 563–573. [Google Scholar] [CrossRef]
- Bagarello, V.; Sgroi, A. Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity at the surface of a sandy loam soil. Soil Till. Res. 2007, 94, 283–294. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Bagarello, V.; Iovino, M.; Lassabatere, L. Saturated Soil Hydraulic Conductivity. In Infiltration Measurements for Soil Hydraulic Characterization; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 43–180. ISBN 978-3-319-31786-1. [Google Scholar]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, F.; Persiani, A.; Diacono, M. Organic vegetable crops managed with agro-ecological practices: Environmental sustainability assessment by DEXi-met decision support system. Appl. Sci. 2019, 9, 4148. [Google Scholar] [CrossRef] [Green Version]
- Pieri, C.J.M.G. Fertility of Soils: A Future for Farming in the West African Savannah; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Lozano-García, B.; Parras-Alcántara, L. Changes in soil properties and soil solution nutrients due to conservation versus conventional tillage in Vertisols. Arch. Agron. Soil Sci. 2014, 60, 1429–1444. [Google Scholar] [CrossRef]
- Castellini, M.; Vonella, A.V.; Ventrella, D.; Rinaldi, M.; Baiamonte, G. Determining soil hydraulic properties using infiltrometer techniques: An assessment of temporal variability in a long-term experiment under minimum- and no-tillage soil management. Sustainability 2020, 12, 5019. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Stellacci, A.M.; Di Prima, S.; Iovino, M.; Bagarello, V. Improved beerkan run methodology to assess water impact effects on infiltration and hydraulic properties of a loam soil under conventional- and no-tillage. Soil Sci. Soc. Am. J. 2021, 85, 235–248. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Sisto, D.; Iovino, M. The mechanical impact of water affected the soil physical quality of a loam soil under minimum tillage and no-tillage: An assessment using Beerkan multi-height runs and BEST-procedure. Land 2021, 10, 195. [Google Scholar] [CrossRef]
Composting Process (d) | Dry Matter (%) | pH | EC (Meq 100 g−1) | N (%) | C (%) | C/N |
---|---|---|---|---|---|---|
90 | 60.26 ± 1.90 | 7.98 ± 0.05 | 11.91 ± 0.07 | 2.79 ± 0.10 | 22.02 ± 0.45 | 7.90 |
SD1 | SD2 | SD3 | SD4 | SD5 | SD6 | ||
---|---|---|---|---|---|---|---|
T1 | ts (s) | 1895 | 266 | 264 | 617 | 588 | 483 |
I(ts) (mm) | 142 | 132 | 142 | 147 | 150 | 132 | |
ID (%) | 81 | 76 | 81 | 84 | 86 | 76 | |
T2 | ts (s) | 407 | 1211 | 409 | 449 | 402 | 627 |
I(ts) (mm) | 134 | 145 | 142 | 136 | 134 | 141 | |
ID (%) | 77 | 83 | 81 | 78 | 77 | 81 | |
T3 | ts (s) | 677 | 976 | 444 | 343 | 633 | 446 |
I(ts) (mm) | 141 | 144 | 150 | 145 | 152 | 124 | |
ID (%) | 81 | 82 | 86 | 83 | 87 | 71 | |
T4 | ts (s) | 1209 | 971 | 568 | 323 | 407 | 842 |
I(ts) (mm) | 144 | 141 | 144 | 152 | 132 | 134 | |
ID (%) | 82 | 81 | 82 | 87 | 76 | 77 |
T1 | T2 | T3 | T4 | |||||
---|---|---|---|---|---|---|---|---|
SD | p-Value | Inference | p-Value | Inference | p-Value | Inference | p-Value | Inference |
1 vs. 2 | 0.574 | n.s. | 0.030 | * | 0.900 | n.s. | 0.001 | ** |
1 vs. 3 | 0.002 | ** | 0.295 | n.s. | 0.186 | n.s. | 0.250 | n.s. |
1 vs. 4 | 0.900 | n.s. | 0.277 | n.s. | 0.900 | n.s. | 0.470 | n.s. |
1 vs. 5 | 0.900 | n.s. | 0.845 | n.s. | 0.900 | n.s. | 0.825 | n.s. |
1 vs. 6 | 0.900 | n.s. | 0.694 | n.s. | 0.900 | n.s. | 0.900 | n.s. |
2 vs. 3 | 0.127 | n.s. | 0.001 | ** | 0.134 | n.s. | 0.021 | * |
2 vs. 4 | 0.900 | n.s. | 0.876 | n.s. | 0.900 | n.s. | 0.007 | ** |
2 vs. 5 | 0.900 | n.s. | 0.303 | n.s. | 0.900 | n.s. | 0.001 | ** |
2 vs. 6 | 0.900 | n.s. | 0.453 | n.s. | 0.900 | n.s. | 0.001 | ** |
3 vs. 4 | 0.015 | * | 0.002 | ** | 0.421 | n.s. | 0.900 | n.s. |
3 vs. 5 | 0.013 | * | 0.029 | * | 0.167 | n.s. | 0.888 | n.s. |
3 vs. 6 | 0.023 | * | 0.015 | * | 0.179 | n.s. | 0.087 | n.s. |
4 vs. 5 | 0.900 | n.s. | 0.900 | n.s. | 0.900 | n.s. | 0.900 | n.s. |
4 vs. 6 | 0.900 | n.s. | 0.900 | n.s. | 0.900 | n.s. | 0.199 | n.s. |
5 vs. 6 | 0.900 | n.s. | 0.900 | n.s. | 0.900 | n.s. | 0.522 | n.s. |
BD | PMAC | AC | RFC | PAWC | hinf | θinf | Dinf | Sinf | PORinf | λinf | dmod | dmed | dm | SD | Sk | Ku | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Start | |||||||||||||||||
T1 | 0.831 | 0.184 | 0.245 | 0.477 | 0.024 | 4.5 | 0.170 | 656 | 0.133 | 0.299 | 0.786 | 656 | 565 | 527 | 2.8 | −0.22 | 1.13 |
T2 | 0.810 | 0.249 | 0.355 | 0.386 | 0.023 | 4.9 | 0.261 | 608 | 0.178 | 0.317 | 0.681 | 608 | 500 | 457 | 3.2 | −0.25 | 1.14 |
T3 | 0.826 | 0.255 | 0.367 | 0.400 | 0.045 | 4.4 | 0.278 | 680 | 0.156 | 0.333 | 0.559 | 680 | 514 | 451 | 4.1 | −0.30 | 1.14 |
T4 | 0.773 | 0.269 | 0.380 | 0.387 | 0.040 | 4.1 | 0.308 | 722 | 0.171 | 0.312 | 0.557 | 722 | 545 | 477 | 4.1 | −0.30 | 1.14 |
End | |||||||||||||||||
T1 | 1.088 | 0.101 | 0.225 | 0.571 | 0.100 | 10.6 | 0.151 | 280 | 0.070 | 0.374 | 0.462 | 280 | 189 | 157 | 5.4 | −0.35 | 1.15 |
T2 | 1.102 | 0.111 | 0.241 | 0.557 | 0.103 | 10.2 | 0.164 | 292 | 0.071 | 0.380 | 0.431 | 292 | 188 | 152 | 6.1 | −0.37 | 1.15 |
T3 | 1.111 | 0.115 | 0.247 | 0.566 | 0.123 | 10.9 | 0.199 | 275 | 0.064 | 0.371 | 0.321 | 275 | 132 | 92 | 11.2 | −0.46 | 1.16 |
T4 | 0.858 | 0.109 | 0.280 | 0.536 | 0.124 | 13.7 | 0.262 | 217 | 0.108 | 0.341 | 0.410 | 217 | 134 | 106 | 6.7 | −0.38 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellini, M.; Diacono, M.; Preite, A.; Montemurro, F. Short- and Medium-Term Effects of On-Farm Compost Addition on the Physical and Hydraulic Properties of a Clay Soil. Agronomy 2022, 12, 1446. https://doi.org/10.3390/agronomy12061446
Castellini M, Diacono M, Preite A, Montemurro F. Short- and Medium-Term Effects of On-Farm Compost Addition on the Physical and Hydraulic Properties of a Clay Soil. Agronomy. 2022; 12(6):1446. https://doi.org/10.3390/agronomy12061446
Chicago/Turabian StyleCastellini, Mirko, Mariangela Diacono, Antonio Preite, and Francesco Montemurro. 2022. "Short- and Medium-Term Effects of On-Farm Compost Addition on the Physical and Hydraulic Properties of a Clay Soil" Agronomy 12, no. 6: 1446. https://doi.org/10.3390/agronomy12061446
APA StyleCastellini, M., Diacono, M., Preite, A., & Montemurro, F. (2022). Short- and Medium-Term Effects of On-Farm Compost Addition on the Physical and Hydraulic Properties of a Clay Soil. Agronomy, 12(6), 1446. https://doi.org/10.3390/agronomy12061446