Effects of Agri-Environment Schemes in Terms of the Results for Soil, Water and Soil Organic Matter in Central and Eastern Europe
Abstract
:1. Introduction
2. Methods and Data
3. Literature Reviews
3.1. Soil Water Aggregate
3.2. Identifying the Soils Relevant to the Agri-Environment
3.3. Agri-Environment
3.3.1. Agri-Environment Schemes for Conserving Soil Water
3.3.2. Effects of the Agri-Environment in Developing Carbon Schemes
3.3.3. Agri-Environment Dependency on Basic Standards
3.4. Soil Water Targets
4. Empirical Data Survey with Regard to Soil Water Measures Implemented under the Agri-Environment
4.1. AES Formula
4.2. AES Implementation with Regard to Soil Water Measures
4.3. AES Costs and Benefits
4.4. Remaining Questions with Regard to AES Costs and Benefits
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batjes, N. Carbon and nitrogen stocks in the soils of Central and Eastern Europe. Soil Use Manag. 2002, 18, 324–329. [Google Scholar] [CrossRef]
- Dwyer, J.; Short, C.; Prazan, J. Fostering resilient agro-food futures through a social-ecological systems framework: Public–private partnerships for delivering ecosystem services in Europe. Ecosyst. Serv. 2020, 45, 101180. [Google Scholar] [CrossRef]
- Prager, K.; Reed, M.; Scott, A. Encouraging collaboration for the provision of ecosystem services at a landscape scale—Rethought agri-environmental payments. Land Use Policy 2012, 29, 244–249. [Google Scholar] [CrossRef]
- Prager, K.; Schuler, J.; Helming, K.; Zander, P.; Ratinger, T.; Hagedorn, K. Soil degradation, farming practices, institutions and policy responses: An analytical framework. Land Degrad. Dev. 2020, 22, 32–46. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.; Holman, J.; Creech, C.; Obour, A. Can cover crops improve soil ecosystem services in water-limited environments? A review. Soil Sci. Soc. Am. J. 2021, 86, 1–18. [Google Scholar] [CrossRef]
- Beehler, J.; Fry, J.; Negassa, W.; Kravchenko, A. Impact of cover crop on soil carbon accrual in topographically diverse terrain. J. Soil Water 2017, 72, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Štěpánek, P.; Zahradníček, P.; Možný, M.; Eitzinger, J.; Žalud, Z.; Formayer, H.; Turňa, M.; Nejedlík, P.; et al. Drought trends over part of Central Europe between 1961 and 2014. Clim. Res. 2016, 70, 143–160. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament and the Council: Sustainable Carbon Cycles; COM(2021) 800 final; European Commission: Brussels, Belgium, 2021.
- Csákvári, E.; Fabók, V.; Bartha, S.; Barta, Z.; Batáry, P.; Borics, G.; Botta-Dukát, Z.; Erős, T.; Gáspár, J.; Hideg, É.; et al. Conservation biology research priorities for 2050: A Central-Eastern European perspective. Biol. Conserv. 2021, 264, 109396. [Google Scholar] [CrossRef]
- Kieft, H. Agricultural Sustainability. In Central And Eastern Europe: Rural Production And Environment; ETC Netherlands: Leusden, The Netherlands, 1999. [Google Scholar]
- Nowicki, P.; Goba, V.; Knierim, A.; van Meijl, H.; Banse, M.; Delbaere, B.; Helming, J.; Hunke, P.; Jansson, K.; Terluin, I. Scenar 2020-II—Update of Analysis of Prospects in the Scenar 2020 Study; European Commission, Directorate-General Agriculture and Rural Development: Brussels, Belgium, 2009.
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Phil. Trans. R. Soc. B. 2008, 363, 685–701. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Paustian, K.; Panagos, P.; Jones, A.; Schütt, B.; Lugato, E. Effect of Good Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A case study. Land Use Policy 2016, 50, 408–421. [Google Scholar] [CrossRef]
- De Nocker, L.; Gobin, A.; Aertsens, J. Valuing the carbon sequestration potential for European agriculture. Land Use Policy 2013, 31, 584–594. [Google Scholar]
- EEA. Water Exploitation Index; European Environment Agency: Copenhagen, Denmark, 2014. Available online: http://www.eea.europa.eu/data-and-maps/figures/water-exploitation-index-2014- (accessed on 21 September 2019).
- EEA. Annual European Union Greenhouse Gas Inventory 1990–2011 and Inventory Report 2013; Submission to the UNFCCC Secretariat; EEA Technical Report 8/2013; EEA: Copenhagen, Denmark, 2013.
- Flessa, H.; Müller, D.; Plassmann, K.; Osterburg, B.; Techen, A.-K.; Nitsch, H.; Nieberg, H.; Sanders, J.; Hartlage, O.M.z.; Beckmann, E.; et al. Studie zur Vorbereitung einer effizienten und gut abgestimmten Klimaschutzpolitik für den Agrarsektor; Sonderheft 36. Special Issue vTI Agriculture and Forestry Research; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2012. [Google Scholar]
- Franzluebbers, A. Farming strategies to fuel bioenergy demands and facilitate essential soil services. Geoderma 2015, 259–260, 251–258. [Google Scholar] [CrossRef]
- Kasimir-Klemedtsson, Å.; Klemedtsson, L.; Berglund, K.; Martikainen, P.; Silvola, J.; Oenema, O. Greenhouse gas emissions from farmed organic soils: A review. Soil Use Manag. 1997, 13, 245–250. [Google Scholar] [CrossRef]
- Molina, J.; Crocker, G.; Grace, P.; Klír, J.; Körschens, M.; Poulton, P.; Richter, D. Simulating trends in soil organic carbon in long-term experiments using the NCSOIL and NCSWAP models. Geoderma 1997, 81, 91–107. [Google Scholar] [CrossRef]
- Rabotayagov, S. Ecosystem services under benefit and cost uncertainty: An application to soil carbon sequestration. Land Econ. 2010, 86, 668–686. [Google Scholar] [CrossRef]
- Rounsevell, M.; Freibauer, A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar]
- EEA. The European Environment State and Outlook 2010: Soil Thematic Assessment; European Environment Agency: Copenhagen, Denmark, 2010.
- Jaagus, J.; Aasa, A.; Aniskevich, S.; Boincean, B.; Bojariu, R.; Briede, A.; Danilovich, I.; Castro, F.; Dumitrescu, A.; Labuda, M.; et al. Long-term changes in drought indices in eastern and central Europe. Int. J. Climatol. 2022, 42, 225–249. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Zeleňáková, M.; Pilarska, A. Influence of climate change on low flow conditions. Case study: Laborec River, eastern Slovakia. Ecohydrol. Hydrobiol. 2021, 21, 570–583. [Google Scholar] [CrossRef]
- Kovář, S.; Kovařiček, P.; Novák, P.; Kroulík, M. The effect of soil tillage technologies on the surface of the infiltration speed of water into the soil. Agron. Res. 2016, 14, 434–441. [Google Scholar]
- Lokoč, R. Motivations of Czech farmers with Regard to Reversion of Arable Land-Systems to Grassland. Veronica 5: 5-7. 2007. Available online: http://www.casopisveronica.cz/clanek.php?id=1267 (accessed on 21 September 2019).
- Konečná, J.; Pražan, J.; Podhrázská, J.; Kučera, J.; Koutná, K.; Fiala, R. Addressing Economic Aspects of Erosion Measures Regarding Agricultural Soils. Certified Methodology; Research Instirute of Melioration and Soil Conservation: Prague, Czech Republic, 2014. [Google Scholar]
- Manchester, S.; McNally, S.; Treween, J.; Sparks, T.; Mountford, J. The cost and practicality of techniques for the reversion of arable land to lowland wet grassland—An experimental study and review. J. Environ. Manag. 1999, 55, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture of the Czech Republic. Rural Development Programme of the Czech Republic 2014–2020; Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2014.
- Ministry of Agriculture of the Czech Republic. Reversion of Arable Land-Systems to grassland. Agri-Environment-Climate Measures of the Rural Development Programme 2014–2020. Information Material for Farmers, 2nd ed.; Ministry of Agriculture: Prague, Czech Republic, 2020.
- Brtnicky, M.; Pecina, V.; Dokulilova, T.; Vopravil, J.; Khel, T.; Zloch, J.; Vlček, V. Assessment of retention potential and soil organic carbon density of agriculturally used chernozems, cambisols and Fluvisols. Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Stańczuk-Gałwiaczek, M. The implementation of Small Water Retention Programmes in Poland—Comparison of the current state with the state intended to obtain till year 2015. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM2018, Albena, Bulgaria, 2–8 July 2018; Volume 18, pp. 725–731. [Google Scholar]
- Kowalczyk, A.; Łabędzki, L.; Kuźniar, A.; Kostuch, M. An assessment of crop water deficits of the plants growing on the Małopolska Upland (Poland). J. Water Land Dev. 2016, 29, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Black, H.; Hart, K.; Poláková, J. EU’s Common Agricultural Policy and Climate Change Mitigation Actions: Literature Review; Report Prepared for DG Climate Action, Contract No. 071303/2011/614488/SER/CLIMA.A2; Institute for European Environmental Policy: Brussels, Belgium; London, UK, 2012. [Google Scholar]
- Janků, J.; Kosánová, M.; Kozák, J.; Herza, T.; Jehlička, J.; Maitah, M.; Vopravil, J.; Němeček, K.; Toth, D.; Jacko, K.; et al. Using of soil quality indicators to assess their production and ecological functions. Soil Water Res. 2022, 17, 45–58. [Google Scholar] [CrossRef]
- Cooper, T.; Hart, K.; Baldock, D. The Provision of Public Goods through Agriculture in the European Union; Directorate-General Agriculture: Brussels, Belgium, 2009. [Google Scholar]
- Prokopy, L.; Floress, K.; Klotthor-Weinkauf, D.; Baumgart-Get, A. Determinants of agricultural best management practice adoption: Evidence from the literature. J. Soil Water Conserv. 2008, 63, 300–311. [Google Scholar] [CrossRef]
- Pullin, A.; Báldi, A.; Emrecan, O.; Dieterich, M.; Kati, V.; Mihók, B.; Sousa-Pinto, N. Conservation focus on Europe: Major conservation policy issues that need to be informed by conservation science. Conserv. Biol. 2009, 23, 818–824. [Google Scholar] [CrossRef]
- Zellei, A.; Gorton, M.; Lowe, P. Agri-environmental policy systems in transition: Problems and perspectives. In Sustainable Agriculture in Central and Eastern European Countries: The Environmental Effects of Transition and Needs for Change; Gatzweiler, F., Hagedorn, K., Judis, R., Eds.; Shaker Verlag: Aachen, Germany, 2002. [Google Scholar]
- Frelih-Larsen, A.; Leprand, A.; Naumann, S.; Beucher, O. Deliverable D11 Climate Mitigation through Agricultural Techniques; Piccmat Report. FP6 Framework Project; European Commission: Brussels, Belgium, 2008.
- Prager, K.; Nagel, U. Participatory decision mak ing on agri-environmental programmes: A case study from Sachsen. Land Use Policy 2008, 25, 106–115. [Google Scholar] [CrossRef]
- Visser, M.; Morana, J.; Regana, E.; Gormally, M.; Sheehy Skeffington, M. The Irish agri-environment: How turlough users and non-users view converging EU agendas of Natura 2000 and CAP. Land Use Policy 2007, 24, 362–373. [Google Scholar] [CrossRef]
- Thorsøe, M.H.; Andersen, M.S.; Brady, M.V.; Graversgaard, M.; Kilis, E.; Pedersen, A.B.; Pitzén, S.; Valve, H. Promise and performance of agricultural nutrient management policy: Lessons from the Baltic Sea. Ambio 2021, 51, 36–50. [Google Scholar] [CrossRef]
- Kessler, A.; De Graaff, J.; Olsen, P. Farm-level adoption of soil and water conservation measures and policy implications in Europe. Land Use Policy 2010, 27, 1–3. [Google Scholar]
- European Commission. Rural Development Programmes: Country Files; European Commission: Prague, Czech Republic, 2015.
- Trnka, M.; Kyselý, J.; Možný, M.; Dubrovský, M. Changes in central-European soil-moisture availability and circulation patterns in 1881–2005. Int. J. Climatol. 2009, 29, 655–672. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.; Kersebaum, K.; Skjelvag, A.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rotter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Change Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Van-Camp, L.; Bujarrabal, B.; Gentile, A.; Jones, R.; Montanarella, L.; Olazabal, C.; Selvaradjou, S. Volume III Organic matter and Biodiversity; Reports of the technical work groups established under the Thematic Strategy for Soil Protection. E21319; European Soil Data Centre (ESDAC): Ispra, Italy, 2004. [Google Scholar]
- Cooper, T.; Baldock, D.; Rayment, M.; Kuhmonen, T.; Terluin, I.; Swales, V.; Poux, X.; Zakeossian, D.; Farmer, M. An Evaluation of the Less Favoured Area Measure in the 25 Member States of the European Union; Report for Directorate-General Agriculture; European Commission: Brussels, Belgium, 2006.
- Jezierska-Thöle, A.; Gwiaździńska-Goraj, M.; Biczkowski, M.; Rudnicki, R.; Wiśniewski, L. The agri-environment-climate measure as an element of the bioeconomy in Poland—A spatial study. Agronomy 2020, 11, 110. [Google Scholar] [CrossRef]
- Bartlová, J.; Badalíková, B.; Pospíšilová, L.; Pokorný, E.; Šarapatka, B. Water stability of soil aggregates according to systems of tillage. Soil Water Res. 2015, 10, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Žížala, D.; Minařík, R.; Beitlerová, H.; Juřicová, A.; Skála, J.; Rojas, J.; Penížek, V.; Zádorová, T. High-Resolution Soil Property Maps from Digital Soil Mapping Methods, Czech Republic. Available online: https://ssrn.com/abstract=3928321 (accessed on 21 February 2022).
- Kavka, M. Farm Management Pocketbook, 28th ed.; Kapos Consultants Ltd.: Prague, Czech Republic, 2018. [Google Scholar]
- van der Ploeg, J.D.; Barjolle, D.; Brunori, G.; Brunori, G.; Madureira, L.M.C.; Dessein, J.; Drąg, Z.; Fink-Kessler, A.; Gasselin, P.; de Molina, M.G.; et al. The economic potential of agroecology: Empirical evidence from Europe. J. Rural. Stud. 2020, 71, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Poláková, J.; Berman, S.; Naumann, S.; Frelih-Larsen, A.; von Toggenburg, J.; Farmer, A.; in collaboration with BIO Intelligence Service and Ecologic Institute. The Sustainable Management of Natural Resources with a Focus on Water Management and Agriculture; Report to the STOA Committee of the European Parliament; Institute for European Environmental Policy (IEEP): London, UK; Brussels, Belgium, 2012. [Google Scholar]
- Pelucha, M.; Kveton, V.; Safr, K. Theory and reality of the EU’s rural development policy application in the context of territorial cohesion perspective—The case of the Czech Republic in the long-term period of 2004–2013. Land Use Policy 2017, 62, 13–28. [Google Scholar] [CrossRef]
- Loriz-Hoffmann, J. Vorschlaege der Kommission fur die Laendliche Entwicklungspolitik nach 2013; Directorate-General Agriculture: Lambach, Austria, 2011. [Google Scholar]
- Kastner, T.; Chaudhary, A.; Gingrich, S.; Marques, A.; Persson, M.; Bidoglio, G.; Le Provost, G.; Schwarzmüller, F. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 2021, 4, 1425–1443. [Google Scholar] [CrossRef]
- Vávra, J.; Duží, B.; Lapka, M.; Cudlínová, E.; Sanford Rikoon, J. Socio-economic context of soil erosion: A comparative local stakeholders’ case study from traditional agricultural region in the Czech Republic. Land Use Policy 2019, 84, 127–137. [Google Scholar] [CrossRef]
- Janků, J.; Jehlička, J.; Heřmanová, K.; Toth, D.; Maitah, M.; Kozák, J.; Vopravil, J.; Vácha, R.; Jacko, K.; Herza, T. An overview of a land evaluation in the context of ecosystem services. Soil Water Res. 2022, 17, 1–14. [Google Scholar] [CrossRef]
- OECD. Design and Implementation of Agri-Environmental Policies: Are Guidelines Feasible? In Evaluation of Agri-Environmental Policies: Selected Methodological Issues and Case Studies; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Biney, J.; Vašát, R.; Bell, S.; Kebonye, N.; Klement, A.; John, K.; Borůvka, L. Prediction of topsoil organic carbon content with Sentinel-2 imagery and spectroscopic measurements under different conditions using an ensemble model approach with multiple pre-treatment combinations. Soil Tillage Res. 2022, 220, 105379. [Google Scholar] [CrossRef]
- Wiltshire, J. Assessment of the Effectiveness, Impact and Cost of Measures to Protect Soils; Ricardo-AEA Ltd.: Didcot, UK, 2013. [Google Scholar]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlman, T.; Reinhard, S.; Gaaff, A. Estimating the costs and benefits of soil conservation in Europe. Land Use Policy 2010, 27, 22–32. [Google Scholar] [CrossRef]
- Frelih-Larsen, A.; Bowyer, C.; Albrecht, S.; Keenleyside, C.; Kemper, M.; Nanni, S.; Naumann, S.; Mottershead, R.; Landgrebe, R.; Sarapatka, B.; et al. Soil Inventory. ‘Updated Inventory and Assessment of Soil Protection Policy Instruments in EU Member States’; Report to the European Commission; Ecologic Institute: Berlin, Germany, 2017. [Google Scholar]
- Debicki, R.; Lipiec, B.; Krasowicz, S. Poland. J. Soil Water Conserv. 2004, 59, 38–39. [Google Scholar]
- Souza Krupek, F.; Redfearn, D.; Eskridge, K.; Basche, A. Ecological intensification with soil health practices demonstrates positive impacts on multiple soil properties: A large-scale farmer-led experiment. Geoderma 2022, 409, 115594. [Google Scholar] [CrossRef]
- Wauters, E.; Bielders, C.; Poesen, J.; Govers, G.; Mathijs, E. Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy 2010, 27, 86–94. [Google Scholar] [CrossRef]
- Kadlec, V.; Žížala, D.; Novotný, I.; Heřmanovská, D.; Kapička, J.; Tippl, M. Land consolidations as an effective instrument in soil conservation. Ekológia 2014, 33, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Dabkiene, V.; Balezentis, T.; Streimikiene, D. Development of agri-environmental footprint indicator: Tracking development of sustainable agricultural development in Eastern Europe. Sustain. Prod. Consum. 2021, 27, 2121–2133. [Google Scholar] [CrossRef]
- European Parliament. How the CAP can improve rural jobs. In Policy Department Structural and Cohesion Policies; European Parliament: Brussels, Belgium, 2016. [Google Scholar]
- Ostle, N.J.; Levy, P.E.; Evans, C.D.; Smith, P. UK land use and soil carbon sequestration. Land Use Policy 2009, 26, 274–283. [Google Scholar] [CrossRef]
- Burrell, A. Chapter 2—Evaluating policies for delivering agri-environmental public goods. In Evaluation of Agri-Environmental Policies: Selected Methodological Issues and Case Studies; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Gross, M. The paradoxical evolution of agriculture. Curr. Biol. 2013, 23, R667–R670. [Google Scholar] [CrossRef] [Green Version]
- Novak, P.; Vopravil, J.; Lagova, J. Assessment of the soil quality as a complex of productive and environmental soil function potentials. Soil Water Res. 2010, 5, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Larramendy, M.; Soloneski, S.; Menšík, L.; Hlisnikovsky, L.; Kunzová, E. The state of the soil organic matter and nutrients in the long-term field experiments with application of organic and mineral fertilizers in different soil-climate conditions in the view of expecting climate change. In Organic Fertilizers: History, Production and Applications; Larramendy, M., Soloneski, S., Eds.; IntechOpen: London, UK, 2019; pp. 1–29. [Google Scholar]
- Underwood, E.; Baldock, D.; Aiking, H.; Buckwell, A.; Dooley, E.; Frelih-Larsen, A.; Naumann, S.; O’Connor, C.; Poláková, J.; Tucker, G. Technology Options for Feeding 10 Billion People. Climate Change and Agriculture; Biodiversity and Agriculture; Report prepared to the STOA Panel of the European Parliament; Institute for European Environmental Policy: London, UK; Brussels, Belgium, 2013. [Google Scholar]
- Chabé-Ferret, S.; Subervie, J. Chapter 10—Econometric methods for estimating the additional effects of agri-environmental schemes on farmers’ practices. In Evaluation of Agri-Environmental Policies: Selected Methodological Issues and Case Studies; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Poppe, K.; van Doorn, A. Options to Redesign the European Agricultural Policy after 2020; LEI-Report 2016-009; LEI: Wageningen, The Netherlands, 2016. [Google Scholar]
- Pajewski, T.; Malak-Rawlikowska, A.; Gołębiewska, B. Measuring regional diversification of environmental externalities in agriculture and the effectiveness of their reduction by EU agri-environmental programs in Poland. J. Clean. Prod. 2020, 276, 123013. [Google Scholar] [CrossRef]
Conversion | Area (ha) |
---|---|
Pasture to arable land | 657,916 |
Forest to arable land | 17,540 |
Forest to permanent crop | 5936 |
Wetland to arable land | 3225 |
Pasture to permanent crop | 2378 |
Wetland to permanent crop | 34 |
Member State | Soil Organic Matter Levels | |
---|---|---|
Mean Value (g/kg) | Total Contents in Arable Soils (Mtonnes) | |
Austria | 28.9 | 262.1 |
Czech Republic | 19.6 | 220.2 |
Germany | 29.4 | 1335.8 |
Hungary | 20.3 | 288.1 |
Poland | 22.6 | 961.1 |
Slovakia | 22.1 | 109.2 |
Soil Conservation Topic Based on Standards /Number of Associated Agri-Environment Measures | |||||
---|---|---|---|---|---|
Soil Vegetation Cover | Standards for Crop Rotation and Carbon Content | Permanent Grassland | Establishing Buffer Strips | Retention of Landscape Features | |
Number | 12 | 13 | 24 | 6 | 3 |
Czech Republic | Sustainable land management: Cover crop undersowing; reversion of arable to grassland; reversion of bare field waterways to grassland D/4 | Sustainable land management: Cover crop undersowing; reversion of arable to grassland; reversion of bare field waterways to grassland. Environmental practice: integrated production; organic farming D/4; R/1 | Extensive grassland management: Meadow conservation Pasture conservation R/9 | Sustainable land management: Reversion of arable to grassland alongside the water course D/2 | 0 |
Poland | Soil and Water protection: cover crop undersoing; winter cover crop; spring cover crop. Sustainable farming: cover crop requirement in nitrate vulnerable zones D/4 | Soil and Water protection: cover crop undersowing; winter cover crop; spring cover crop. Sustainable farming: limits on the use of nitrate fertilizer in nitrate vulnerable zones and alongside watercourses; organic farming D/3; R/1 | Extensive farming, especially in Natura 2000 R/7 | Sustainable farming: Buffer strips—2 m alongside water courses, 5 m alongside watercourse; 2 m in-field, 5 m edge-of-field W/4 | Soil and water protection: maintenance of landscape feature requirement W/1 |
Hungary | Arable schemes: Erosion measures—water Erosion measures -wind Agrotechnical technologies D/3 | Arable schemes: Soil conservation and crop rotation within integrated farming Soil conservation and crop rotation within organic farming D/2; R/2 | Grassland schemes: Extensive grassland management Establishment of grassland on arable soils R/1 | 0 | Wetland schemes: Reversion of arable soils into wetlands W/1 |
Slovakia | Sustainable farming: Reversion of arable to grasslands D/1 | Sustainable farming: Integrated production Organic farming Protection from erosion—arable Protection from erosion—vineyards Protection from erosion—orchards D/4; R/1 | Grassland schemes: Extensive farming, especially in Natura 2000—7 variants R/7 | 0 | Landscape schemes: Maintenance of landscape feature requirement W/1 |
Overall Budget (Mio Euro) | Agricultural Area (ha) | Unit Budget (Euro ha−1) | |
---|---|---|---|
CZ | 841.0 | 3,491,470 | 240.97 |
HU | 873.9 | 4,656,520 | 187.53 |
PL | 1853.0 | 14,409,870 | 128.59 |
SK | 248.0 | 1,901,610 | 130.52 |
Cost EUR/Farm | Average Area per Farm | Baseline Cost EUR/ha | Farm Subsidy (a) Eur/ha | Baseline Share of Farm Subsidy (%) | AES Cost EUR/ha | AES Multiple of Farm Subsidy | |
---|---|---|---|---|---|---|---|
CZ Buffers | 2660–5320 | 133 | 20–40 | 198 | 10–20 | 337 | 1.7 |
CZ Reversion of arable to grassland | 5600–8960 | 280 | 20–32 | 198 | 10–16 | 413 | 2.1 |
PL Buffers | 220–440 | 11 | 20–40 | 179 | 8–15 | 337 | 1.9 |
PL Cover crops | 320–464 | 8 | 40–58 | 179 | 8–15 | 104 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poláková, J.; Holec, J.; Janků, J.; Maitah, M.; Soukup, J. Effects of Agri-Environment Schemes in Terms of the Results for Soil, Water and Soil Organic Matter in Central and Eastern Europe. Agronomy 2022, 12, 1585. https://doi.org/10.3390/agronomy12071585
Poláková J, Holec J, Janků J, Maitah M, Soukup J. Effects of Agri-Environment Schemes in Terms of the Results for Soil, Water and Soil Organic Matter in Central and Eastern Europe. Agronomy. 2022; 12(7):1585. https://doi.org/10.3390/agronomy12071585
Chicago/Turabian StylePoláková, Jana, Josef Holec, Jaroslava Janků, Mansoor Maitah, and Josef Soukup. 2022. "Effects of Agri-Environment Schemes in Terms of the Results for Soil, Water and Soil Organic Matter in Central and Eastern Europe" Agronomy 12, no. 7: 1585. https://doi.org/10.3390/agronomy12071585
APA StylePoláková, J., Holec, J., Janků, J., Maitah, M., & Soukup, J. (2022). Effects of Agri-Environment Schemes in Terms of the Results for Soil, Water and Soil Organic Matter in Central and Eastern Europe. Agronomy, 12(7), 1585. https://doi.org/10.3390/agronomy12071585