Effect of Image Segmentation Thresholding on Droplet Size Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Image Acquisition System
2.2. The Image Analysis Procedure
2.3. The Experimental Activity
- Segmentation of all 36 images by using an “optimal” or “reference” threshold value () based on the operator’s experience. More in detail, the operator adjusted the threshold value in such a way the droplet diameters in segmented images were as close as possible to real diameters, visually established by comparing the segmented images to the original ones, both carefully inspected at a suitable zoom factor. Results coming from this step were assumed as a reference for successive comparisons.
- Study of the correlation between the “reference” threshold value () and the average gray level () of the corresponding images so as to explore the possibility of using a threshold value based on the objective characteristics of the images rather than on the operator’s subjectivity. This allowed to obtain a linear model (Equation (10) in the Results section) whose predicted value was significantly correlated to the average gray level of the image.
- Reprocessing of each of the 36 images with 11 threshold values so to assess how much the choice of the threshold affects the calculation of the spray parameters. In detail, each image was segmented with the threshold value predicted by the linear model (step 2) based upon its average gray level, with five thresholds greater than and five thresholds lower than , with a step of one. A total of 396 segmented images were analyzed. Figure 3 shows the flow chart of the whole procedure.
2.4. Spray Parameters Calculation
3. Results
3.1. Reference Values
3.2. Relationship between Threshold Values and Gray Levels
3.3. Effect of Threshold Value
4. Discussion
5. Conclusions
- Volumetric diameters , , and varied linearly according to the variations in threshold values, and in the majority of cases trends were statistically significant. However, from the practical point of view, variations ranged from about 99.5% to about 101.0% of reference values (maximum variation of 14 µm), and then absolute errors, with respect to variations of about ±5% in the threshold value, were lower than 1.0%.
- Error was affected by droplet size modified by spray liquid pressure: as a general trend, the max-min difference among the 11 threshold values increased when the fraction α of the total volume in increased and decreased when the pressure increased.
- Considering the results obtained when images were binarized using the threshold values , deviations from reference values ranged in absolute terms from −2.8 µm ( at 1.5 MPa) to 2.3 µm ( at 1.5 MPa), corresponding to variations in relative terms from −0.43% to 0.55%. The practical effect on the three volumetric diameters ,, and may therefore be neglected.
- The effects of threshold value on mean diameters, Sauter mean diameter, and number median diameter were similar to those observed for volumetric diameters, i.e., variations well described by linear trends, in six out of 16 statistically significant, but ranging from −0.21% to 0.68% for mean diameters and and from −0.64% to 1.35% for .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
area of particle i detected by ImageJ (pixel) | |
diameter of particle i detected by ImageJ (pixel) | |
calibration factor (µm pixel−1) | |
diameter of particle i detected by ImageJ (µm) | |
arithmetic mean diameter (µm) | |
surface mean diameter (µm) | |
volume mean diameter (µm) | |
Sauter mean diameter (µm) | |
, , | volumetric diameters (µm) |
Average gray level | |
HIS | High-speed imaging |
LD | Laser diffraction |
Number median diameter | |
PDPA | Phase Doppler particle analyzer |
PPP | Plant protection product |
Relative span factor | |
Sauter mean diameter | |
Threshold value | |
WSP | Water sensitive paper |
Superscript “n” | Normalized values |
Superscript “r” | Reference values |
Superscript “*” | Values predicted by the linear model (Page: 16 Equation (10)) |
References
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Pérez-Ruiz, M.; Gonzalez-de-Santos, P.; Ribeiro, A.; Fernandez-Quintanilla, C.; Peruzzi, A.; Vieri, M.; Tomic, S.; Agüera, J. Highlights and preliminary results for autonomous crop protection. Comput. Electron. Agric. 2015, 110, 150–161. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Minaei, S.; Ghobadian, B.; Masoudi, H. Ultrasonic sensing of pistachio canopy for low-volume precision spraying. Comput. Electron. Agric. 2015, 112, 149–160. [Google Scholar] [CrossRef]
- Pertot, I.; Caff, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Miranda-Fuentes, A.; Rodríguez-Lizana, A.; Cuenca, A.; Gonzalez-Sanchez, E.J.; Blanco-Roldan, G.L.; Gil-Ribes, J.A. Improving plant protection product applications in traditional and intensive olive orchards through the development of new prototype air-assisted sprayers. Crop Prot. 2017, 94, 44–58. [Google Scholar] [CrossRef]
- Caffi, T.; Helsen, H.H.M.; Rossi, V.; Holb, I.J.; Strassemeyer, J.; Buurma, J.S.; Capowiez, Y.; Simon, S.; Alaphilippe, A. Multicriteria evaluation of innovative IPM systems in pome fruit in Europe. Crop Prot. 2017, 97, 101–108. [Google Scholar] [CrossRef]
- Blandini, G.; Emma, G.; Failla, S.; Manetto, G. A prototype for mechanical distribution of beneficials. Acta Hortic. 2008, 801, 1515–1522. [Google Scholar] [CrossRef]
- Papa, R.; Manetto, G.; Cerruto, E.; Failla, S. Mechanical distribution of beneficial arthropods in greenhouse and open field: A review. J. Agric. Eng. 2018, 49, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Salcedo, R.; Zhu, H.; Ozkan, E.; Falchieri, D.; Zhang, Z.; Wei, Z. Reducing ground and airborne drift losses in young apple orchards with PWM-controlled spray systems. Comput. Electron. Agric. 2021, 189, 106389. [Google Scholar] [CrossRef]
- Grella, M.; Gioelli, F.; Marucco, P.; Zwertvaegher, I.; Mozzanini, E.; Mylonas, N.; Nuyttens, D.; Balsari, P. Field assessment of a pulse width modulation (PWM) spray system applying different spray volumes: Duty cycle and forward speed effects on vines spray coverage. Precis. Agric. 2022, 23, 219–252. [Google Scholar] [CrossRef]
- European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off. J. L 2009, 309, 71–86. [Google Scholar]
- van der Werf, H.M.G. Assessing the impact of pesticides on the environment. Agric. Ecosyst. Environ. 1996, 60, 81–96. [Google Scholar] [CrossRef]
- Roussel, O.; Cavelier, A.; van der Werf, H.M.G. Adaptation and use of a fuzzy expert system to assess the environmental effect of pesticides applied to field crops. Agric. Ecosyst. Environ. 2000, 80, 143–158. [Google Scholar] [CrossRef]
- Levitan, L. “How to” and “why”: Assessing the enviro-social impacts of pesticides. Crop Prot. 2000, 19, 629–636. [Google Scholar] [CrossRef]
- Gil, Y.; Sinfort, C. Emission of pesticides to the air during sprayer application: A bibliographic review. Atmos. Environ. 2005, 39, 5183–5193. [Google Scholar] [CrossRef]
- Nuyttens, D.; Braekman, P.; Windey, S.; Sonck, B. Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag. Sci. 2009, 65, 781–790. [Google Scholar] [CrossRef]
- Cunha, J.P.; Chueca, P.; Garcerá, C.; Moltó, E. Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain. Crop Prot. 2012, 42, 116–123. [Google Scholar] [CrossRef]
- Hilz, E.; Vermeer, A.W.P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Prot. 2013, 44, 75–83. [Google Scholar] [CrossRef]
- Tsakirakis, A.N.; Kasiotis, K.M.; Charistou, A.N.; Arapaki, N.; Tsatsakis, A.; Tsakalof, A.; Machera, K. Dermal & inhalation exposure of operators during fungicide application in vineyards. Eval. Cover. Perform. Sci. Total Environ. 2014, 470, 282–289. [Google Scholar] [CrossRef]
- Cerruto, E.; Manetto, G.; Santoro, F.; Pascuzzi, S. Operator dermal exposure to pesticides in tomato and strawberry greenhouses from hand-held sprayers. Sustainability 2018, 10, 2273. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.L.; Garthwaite, D.G.; Ramwell, C.T.; Brown, C.D. Assessment of exposure of professional agricultural operators to pesticides. Sci. Total Environ. 2018, 619, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, G.A. How was the pesticide applied? Crop Prot. 2004, 23, 651–653. [Google Scholar] [CrossRef]
- Lodwik, D.; Pietrzyk, J.; Malesa, W. Analysis of volume distribution and evaluation of the spraying spectrum in terms of spraying quality. Appl. Sci. 2020, 10, 2395. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.C.; Chechetto, R.G.; Hewitt, A.J.; Chauhan, B.S.; Adkins, S.W.; Kruger, G.R.; O’Donnell, C.C. Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Prot. 2016, 81, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Zwertvaegher, I.K.; Verhaeghe, M.; Brusselman, E.; Verboven, P.; Lebeau, F.; Massinon, M.; Nicolaï, B.M.; Nuyttens, D. The impact and retention of spray droplets on a horizontal hydrophobic surface. Biosyst. Eng. 2014, 126, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Liao, J.; Luo, X.; Wang, P.; Zhou, Z.; O’Donnell, C.C.; Zang, Y.; Hewitt, A.J. Analysis of the influence of different parameters on droplet characteristics and droplet size classification categories for air induction nozzle. Agronomy 2020, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Minov, S.V.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Spray droplet characterization from a single nozzle by high speed image analysis using an in-focus droplet criterion. Sensors 2016, 16, 218. [Google Scholar] [CrossRef] [Green Version]
- Bouse, L.F. Effect of nozzle type and operation on spray droplet size. Trans. ASAE 1994, 37, 1389–1400. [Google Scholar] [CrossRef]
- El46lis, M.C.B.; Tuck, C.R.; Miller, P.C.H. The effect of some adjuvants on sprays produced by agricultural flat fan nozzles. Crop Prot. 1997, 16, 41–50. [Google Scholar] [CrossRef]
- Ellis, M.C.B.; Tuck, C.R. How adjuvants influence spray formation with different hydraulic nozzles. Crop Prot. 1999, 18, 101–109. [Google Scholar] [CrossRef]
- Ellis, M.C.B.; Tuck, C.R.; Miller, P.C.H. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 180, 267–276. [Google Scholar] [CrossRef]
- Prokop, M.; Kejklíček, R. Effect of adjuvants on spray droplet size of water. Res. Agric. Eng. 2002, 48, 144–148. [Google Scholar]
- Vallet, A.; Tinet, C. Characteristics of droplets from single and twin jet air induction nozzles: A preliminary investigation. Crop Prot. 2013, 48, 63–68. [Google Scholar] [CrossRef]
- Parafiniuka, S.; Milanowskia, M.; Subra, A.K. The influence of the water quality on the droplet spectrum produced by agricultural nozzles. Agric. Agric. Sci. Procedia 2015, 7, 203–208. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, H.; Xu, L.; Zhu, H.; Huang, H. Effect of surfactant concentration on the spreading properties of pesticide droplets on Eucalyptus leaves. Biosyst. Eng. 2016, 143, 42–49. [Google Scholar] [CrossRef]
- Kooij, S.; Sijs, R.; Denn, M.M.; Villermaux, E.; Bonn, D. What determines the drop size in sprays? Phys. Rev. X 2018, 8, 031019. [Google Scholar] [CrossRef] [Green Version]
- Dafsari, R.A.; Yu, S.; Choi, Y.; Lee, J. Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour. Biosyst. Eng. 2021, 209, 14–29. [Google Scholar] [CrossRef]
- ISO 25358:2018; Crop Protection Equipment—Droplet-Size Spectra from Atomizers—Measurement and Classification. ISO (International Organization for Standardization): Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/66412.html (accessed on 5 May 2022).
- Sijs, R.; Kooij, S.; Holterman, H.J.; van de Zande, J.; Bonn, D. Drop size measurement techniques for sprays: Comparison of image analysis, phase Doppler particle analysis, and laser diffraction. AIP Adv. 2021, 11, 015315. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Manetto, G.; Santoro, F.; Cerruto, E. A brief review of nozzle spray drop size measurement techniques. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. PDPA laser based characterisation of agricultural sprays. Agric. Eng. Int. CIGR J. 2006, 8, Manuscript PM 06 024. [Google Scholar]
- Fritz, B.K.; Hoffmann, W.C. Measuring spray droplet size from agricultural nozzles using laser diffraction. J. Vis. Exp. 2016, 115, e54533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapulla, R.; Trautmann, M.; Güntay, S.; Dehbi, A.; Suckow, D. Comparison between Phase-Doppler Anemometry and Shadowgraphy Systems with Respect to Solid-Particle Size Distribution Measurements; Dopheide, D., Müller, H., Strunck, V., Ruck, B., Leder, A., Eds.; GALA e.V. Deutsche Gesellschaft für Laser-Anemometrie: Braunschweig, Germany, 2006; Lasermethoden in der Strömungsmesstechnik, 13. [Google Scholar]
- Lad, N.; Aroussi, E.A.; Muhamad Said, M.F. Droplet size measurement for liquid spray using digital image analysis technique. J. Appl. Sci. 2011, 11, 1966–1972. [Google Scholar] [CrossRef] [Green Version]
- Massinon, M.; Lebeau, F. Experimental method for the assessment of agricultural spray retention based on high-speed imaging of drop impact on a synthetic superhydrophobic surface. Biosyst. Eng. 2012, 112, 56–64. [Google Scholar] [CrossRef]
- De Cock, N.; Massinon, M.; Salah, S.O.T.; Mercatoris, B.C.N.; Lebeau, F. Droplet size distribution measurements of ISO nozzles by shadowgraphy method. Commun. Agric. Appl. Biol. Sci. 2015, 80, 295–301. [Google Scholar] [PubMed]
- De Cock, N.; Massinon, M.; Nuyttens, D.; Dekeyser, D.; Lebeau, F. Measurements of reference ISO nozzles by high-speed imaging. Crop Prot. 2016, 89, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Mangado, J.; Arazuri, S.; Arnal, P.; Jarén, C.; López, A. Measuring the accuracy of a pesticide treatment by an image analyzer. Procedia Technol. 2013, 8, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Syngenta. Water-Sensitive Paper for Monitoring Spray Distribution. Technical Data Sheet. Available online: https://www.agroconsultasonline.com.ar//ticket.html/Water%20Sensitive%20Paper%20Syngenta%20Agro.pdf?op=d&ticket_id=2388&evento_id=4891 (accessed on 5 May 2022).
- Sánchez-Hermosilla, J.; Medina, R. Adaptive threshold for droplet spot analysis using water-sensitive paper. Appl. Eng. Agric. 2011, 20, 547–551. [Google Scholar] [CrossRef]
- Cunha, M.; Carvalho, C.; Marcal, A.R.S. Assessing the ability of image processing software to analyse spray quality on water-sensitive papers used as artificial targets. Biosyst. Eng. 2012, 111, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Salyani, M.; Zhu, H.; Sweeb, R.D.; Pai, N. Assessment of spray distribution with water-sensitive paper. Agric. Eng. Int. CIGR J. 2013, 15, 101–111. [Google Scholar]
- Cerruto, E.; Aglieco, C.; Failla, S.; Manetto, G. Parameters influencing deposit estimation when using water sensitive papers. J. Agric. Eng. 2013, 44, 62–70. [Google Scholar] [CrossRef]
- Cerruto, E.; Manetto, G.; Longo, D.; Failla, S.; Papa, R. A model to estimate the spray deposit by simulated water sensitive papers. Crop Prot. 2019, 124, 104861. [Google Scholar] [CrossRef]
- Fujimatsu, T.; Kito, M.; Kondo, K. Droplet Size Measurement of Liquid Atomization by the Immersion Liquid Method (Droplet Coalescence and Solution into the Immersion Liquid); WIT Transactions on Engineering Sciences; WIT Press: Southampton, UK, 2014; Volume 82. [Google Scholar]
- Kathiravelu, G.; Lucke, T.; Nichols, P. Rain drop measurement techniques: A review. Water 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Manetto, G.; Cerruto, E.; Longo, D.; Papa, R. Error on drop size measurement due to image analysis digitisation. LNCE 2022, 252, 365–1374. [Google Scholar] [CrossRef]
- Kashdan, J.T.; Shrimpton, J.S.; Whybrew, A. A digital image analysis technique for quantitative characterisation of high-speed sprays. Opt. Lasers Eng. 2007, 45, 106–115. [Google Scholar] [CrossRef]
- Kumar, S.S.; Li, C.; Christen, C.E.; Hogan, C.J., Jr.; Fredericks, S.A.; Hong, J. Automated droplet size distribution measurements using digital inline holography. J. Aerosol Sci. 2019, 137, 105442. [Google Scholar] [CrossRef] [Green Version]
- Saleh Al-amri, S.; Kalyankar, N.; Khamitkar, S. Image segmentation by using threshold techniques. J. Comput. 2010, 2, 83–86. [Google Scholar] [CrossRef]
- Ozen, M.; Guler, M. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections. Opt. Lasers Eng. 2014, 53, 122–132. [Google Scholar] [CrossRef]
- Surový, P.; Dinis, C.; Marušák, R.; de Almeida Ribeiro, N. Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants. Lesn. Cas. For. J. 2014, 60, 244–249. [Google Scholar]
- Huang, L.-K.; Wuang, M.-J.J. Image thresholding by minimizing the measure of fuzziness. Pattern Recognit. 1995, 28, 41–51. [Google Scholar] [CrossRef]
- Ridler, T.V.; Calvard, S. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar] [CrossRef]
- Glasbey, C.A. An analysis of histogram-based thresholding algorithms. CVGIP Graph. Models Image Process. 1993, 55, 532–537. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Cerruto, E.; Manetto, G.; Longo, D.; Failla, S.; Schillaci, G. A laboratory system for nozzle spray analysis. Chem. Eng. Trans. 2017, 58, 751–756. [Google Scholar] [CrossRef]
- Longo, D.; Manetto, G.; Papa, R.; Cerruto, E. Design and construction of a low-cost test bench for testing agricultural spray nozzles. Appl. Sci. 2020, 10, 5221. [Google Scholar] [CrossRef]
- ISO 5682-1; Equipment for Crop Protection—Spraying Equipment—Part 1: Test Methods for Sprayer Nozzles. ISO (International Organization for Standardization): Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/60053.html (accessed on 14 March 2022).
- Abramoff, M.D.; Magelhaes, P.J.; Ram, S.J. Image processing with Image. J. Biophot. Int. 2004, 11, 36–42. [Google Scholar]
- Li, H.; Cheng, S.; Zhang, Z.; Zhang, K.; Ali, T.S. Droplets image segmentation method based on machine learning and watershed. Converter 2021, 2021, 219–227. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 11 April 2022).
- Salyani, M.; Fox, R.D. Evaluation of spray quality by oil- and water-sensitive papers. Trans. ASAE 1999, 42, 37–43. [Google Scholar] [CrossRef]
- Panneton, B. Image analysis of water-sensitive cards for spray coverage experiments. Appl. Eng. Agric. 2002, 18, 179–182. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, R.; Chen, L.; Tang, Q.; Xu, M.; Zhang, W. Assessing the ability of image processing methods of droplets sprayed on water sensitive papers for aerial application. In Proceedings of the 10th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Dongying, China, 19–21 October 2016; pp. 10–19. [Google Scholar]
Pressure (MPa) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.3 | 195 | 293 | 391 | 694 | 109 | 441 | 864 | 1314 | 1.01 |
0.5 | 175 | 236 | 301 | 490 | 126 | 284 | 624 | 990 | 1.13 |
1.0 | 151 | 196 | 242 | 368 | 118 | 213 | 456 | 745 | 1.17 |
1.5 | 133 | 175 | 217 | 335 | 99 | 194 | 415 | 669 | 1.15 |
Diameter | Pressure (MPa) | a | b | R2 | Significance (1) |
---|---|---|---|---|---|
0.3 | 0.0741 | 0.9252 | 0.7595 | *** | |
0.5 | −0.0808 | 1.0811 | 0.7226 | *** | |
1.0 | 0.0519 | 0.9485 | 0.9697 | *** | |
1.5 | −0.0084 | 1.0089 | 0.0426 | ns | |
0.3 | 0.0908 | 0.9098 | 0.6603 | ** | |
0.5 | −0.0781 | 1.0832 | 0.4242 | * | |
1.0 | 0.0722 | 0.9308 | 0.6228 | ** | |
1.5 | 0.0373 | 0.9649 | 0.2844 | ns | |
0.3 | 0.1032 | 0.8941 | 0.7006 | ** | |
0.5 | 0.0779 | 0.9281 | 0.3590 | ns | |
1.0 | 0.1534 | 0.8488 | 0.9483 | *** | |
1.5 | 0.0440 | 0.9514 | 0.2385 | ns |
Pressure (MPa) | |||
---|---|---|---|
0.3 | 439–442 | 861–869 | 1303–1317 |
0.5 | 286–283 | 629–624 | 992–999 |
1.0 | 212–213 | 456–459 | 741–752 |
1.5 | 194–194 | 415–417 | 665–668 |
Diameter | Pressure (MPa) | a | b | R2 | Significance (1) |
---|---|---|---|---|---|
0.3 | −0.0758 | 1.0788 | 0.1462 | ns | |
0.5 | −0.0029 | 1.0050 | 0.0039 | ns | |
1.0 | −0.0354 | 1.0373 | 0.3888 | * | |
1.5 | −0.0578 | 1.0586 | 0.7960 | *** | |
0.3 | −0.0415 | 1.0432 | 0.1580 | ns | |
0.5 | −0.0188 | 1.0208 | 0.2121 | ns | |
1.0 | 0.0092 | 0.9931 | 0.0611 | ns | |
1.5 | −0.0361 | 1.0369 | 0.5890 | ** | |
0.3 | −0.0079 | 1.0089 | 0.0169 | ns | |
0.5 | −0.0206 | 1.0227 | 0.2164 | ns | |
1.0 | 0.0286 | 0.9737 | 0.4375 | * | |
1.5 | −0.0230 | 1.0236 | 0.3509 | ns | |
0.3 | 0.0592 | 0.9401 | 0.8535 | *** | |
0.5 | −0.0212 | 1.0237 | 0.1242 | ns | |
1.0 | 0.0690 | 0.9334 | 0.8092 | *** | |
1.5 | 0.0040 | 0.9967 | 0.0130 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerruto, E.; Manetto, G.; Privitera, S.; Papa, R.; Longo, D. Effect of Image Segmentation Thresholding on Droplet Size Measurement. Agronomy 2022, 12, 1677. https://doi.org/10.3390/agronomy12071677
Cerruto E, Manetto G, Privitera S, Papa R, Longo D. Effect of Image Segmentation Thresholding on Droplet Size Measurement. Agronomy. 2022; 12(7):1677. https://doi.org/10.3390/agronomy12071677
Chicago/Turabian StyleCerruto, Emanuele, Giuseppe Manetto, Salvatore Privitera, Rita Papa, and Domenico Longo. 2022. "Effect of Image Segmentation Thresholding on Droplet Size Measurement" Agronomy 12, no. 7: 1677. https://doi.org/10.3390/agronomy12071677
APA StyleCerruto, E., Manetto, G., Privitera, S., Papa, R., & Longo, D. (2022). Effect of Image Segmentation Thresholding on Droplet Size Measurement. Agronomy, 12(7), 1677. https://doi.org/10.3390/agronomy12071677