High Sink Capacity Improves Rice Grain Yield by Promoting Nitrogen and Dry Matter Accumulation
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Location and Materials
2.2. Experimental Design
2.3. Measurements and Analyses
2.3.1. Nitrogen and Dry Matter Accumulation
- Plant (organ) nitrogen accumulation (kg ha−1) = plant (organ) dry matter accumulation (kg ha−1) × plant (organ) nitrogen content (%) [28];
- Nitrogen harvest index (kg kg−1) = nitrogen accumulation in mature panicles (kg ha−1)/total nitrogen accumulation in mature plants (kg ha−1) [29];
- Nitrogen dry matter production efficiency (kg kg−1) = total dry matter accumulation of mature plants (kg ha−1)/total nitrogen accumulation of mature plants (kg ha−1) [30];
- Nitrogen production efficiency (%) = rice yield (kg ha−1)/total nitrogen accumulation of mature plants (kg ha−1) [31];
- Partial productivity of nitrogen fertilizer (kg kg−1) = rice yield (kg ha−1)/nitrogen application rate (kg ha−1) [29].
2.3.2. Harvest Index and Leaf Area Index
2.3.3. Growth and Grain Yield Attributes
2.3.4. Chemical Properties of Soil
2.4. Statistical Analysis
3. Results
3.1. Rice Yield and Sink Capacity
3.2. Leaf Area Index of Rice
3.3. Dry Matter Accumulation and Harvest Index
3.4. Nitrogen Uptake and Utilization Efficiency
3.5. Correlations among Indicators
4. Discussion
4.1. Effects of Nitrogen Application Rate and Planting Density on Nutrient Accumulation and Yield
4.2. Physiological Effect of High Sink Capacity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nada, R.M.; Abogadallah, G.M. Root-favoured biomass allocation improves growth and yield of field-gown rice (Oryza sativa L.) plants only when the shoot sink is expandable. Acta Physiol. Plant 2018, 40, 1–17. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; He, L.; Ullah, S.; Quan, Z.; Wei, S.; Igbal, A.; Munsif, F.; Shah, T.; Xuan, Y.; Luo, Y.; et al. Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double-cropping system. Food Energy Secur. 2020, 9, e208. [Google Scholar] [CrossRef]
- Hu, J.; Huang, L.; Chen, G.; Liu, H.; Zhang, Y.; Zhang, R.; Zhang, S.; Liu, J.; Hu, Q.; Hu, F.; et al. The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice. Rice 2021, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. China’s success in increasing per capita food production. J. Exp. Bot. 2011, 62, 3707–3711. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Wang, F.; Yan, A.; Liang, C.; Wang, S.; Wang, Y.; Xu, J. Pleiotropic effect of GNP1 underlying grain number per panicle on sink, source and flow in rice. Front. Plant Sci. 2020, 11, 933. [Google Scholar] [CrossRef]
- Laza, M.R.C.; Peng, S.B.; Akita, S.; Saka, H. Effect of panicle size on grain yield of IRRI-released indica rice cultivars in the wet season. Plant Prod. Sci. 2004, 7, 271–276. [Google Scholar] [CrossRef]
- Dong, G.; Li, J.; Dong, Y.; Zhou, J.; Tian, H.; Yu, X.; Zhang, C.; Zhang, Y.; Wang, Y. Effects of yield components and panicle traits on sink potential in conventional indica rice. Chin. J. Rice Sci. 2009, 23, 523–528. [Google Scholar]
- Yu, X.; Wang, Y.; Yuan, Q.; Zhong, J.; Chen, C.; Yang, B.; Hu, D.; Wang, Y.; Dong, G.; Huang, J. Study on the characteristics of source and sink in conventional japonica rice cultivars with high nitrogen uptake efficiency. J. Yangzhou Univ. 2012, 33, 54–60. [Google Scholar]
- Huang, L.; Yang, D.; Li, X.; Peng, S.; Wang, F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res. 2019, 233, 49–585. [Google Scholar] [CrossRef]
- Huang, M.; Fan, L.; Jiang, L.-G.; Yang, S.-Y.; Zou, Y.-B.; Uphoff, N. Continuous applications of biochar to rice: Effects on grain yield and yield attributes. J. Integr. Agric. 2019, 18, 563–570. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y.; Feng, Y.; Cheng, Z.; Mo, Y.; Ibrahim, M.; Xia, B.; Jiang, P. No-tillage and direct seeding for super hybrid rice production in rice-oilseed rape cropping system. Eur. J. Agron. 2011, 34, 278–286. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lieffering, M.; Kobayashi, K.; Okada, M.; Mitchell, M.W.; Gumpertz, M. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Res. 2003, 83, 261–270. [Google Scholar] [CrossRef]
- Yang, L.X.; Huang, J.Y.; Yang, H.J.; Zhu, J.G.; Liu, H.J.; Dong, G.C.; Liu, G.; Han, Y.; Wang, Y.L. The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Res. 2006, 98, 141–150. [Google Scholar] [CrossRef]
- Liu, H.J.; Yang, L.X.; Wang, Y.L.; Huang, J.Y.; Zhu, J.G.; Wang, Y.X.; Dong, G.C.; Liu, G. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Res. 2008, 108, 93–100. [Google Scholar] [CrossRef]
- Peng, S.B.; Khush, G.S.; Virk, P.; Tang, Q.Y.; Zou, Y.B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakai, H.; Tokida, T.; Nakamura, H.; Zhu, C.W.; Usui, Y.; Yoshimoto, M.; Fukuoka, M.; Wakatsuki, H.; Katayanagi, N.; et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Funct. Plant Biol. 2013, 40, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Usui, Y.; Sakai, H.; Tokida, T.; Nakamura, H.; Nakagawa, H.; Hasegawa, T. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Glob. Chang. Biol. 2016, 22, 1256–1270. [Google Scholar] [CrossRef]
- Yoshida, H.; Horie, T.; Nakazono, K.; Ohno, H.; Nakagawa, H. Simulation of the effects of genotype and N availability on rice growth and yield response to an elevated atmospheric CO2 concentration. Field Crops Res. 2011, 124, 433–440. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, G.; Guo, X. Reducing nitrogen rate and hill distance improves rice dry matter production in saline–alkali soils. Agron. J. 2021, 113, 5114–5125. [Google Scholar]
- Kim, H.Y.; Lieffering, M.; Miura, S.; Kobayashi, K.; Okada, M. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytol. 2001, 150, 223–229. [Google Scholar] [CrossRef]
- Huang, M.; Yang, C.L.; Ji, Q.M.; Jiang, L.G.; Tan, J.L.; Li, Y.Q. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Res. 2013, 149, 187–192. [Google Scholar] [CrossRef]
- Liu, Q.H.; Zhou, X.B.; Li, J.L.; Xin, C.Y. Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice. Sci. Rep. 2017, 7, 14072. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Nie, L.X.; Wang, F.; Huang, J.L.; Peng, S.B. Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Res. 2017, 210, 129–135. [Google Scholar] [CrossRef]
- Sui, B.A.; Feng, X.M.; Tian, G.L.; Hu, X.Y.; Shen, Q.R.; Guo, S.W. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Res. 2013, 150, 99–107. [Google Scholar] [CrossRef]
- Huang, M.; Chen, J.N.; Cao, F.B.; Zou, Y.B. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Res. 2018, 221, 333–338. [Google Scholar] [CrossRef]
- Gao, S.; Pan, Y.; Sun, M.; Guo, J.; Wang, C.; Ling, N.; Zhang, Y.; Guo, S. Effects of different nitrogen supply on yield and nitrogen utilization of conventional rice and hybrid rice. J. Nanjing Agric. Univ. 2018, 41, 1061–1069. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Peng, J.; Feng, Y.; Wang, X.; Li, J.; Xu, G.; Phonenasay, S.; Luo, Q.; Han, Z.; Lu, W. Effects of returning guide rod to field and N application rate on N use efficiency and yield of indica hybrid rice. Chin. Rice 2019, 25, 60–64. [Google Scholar]
- Peng, Z.; Lu, X.; Wuza, R.; Shu, C.; Chen, J.; Xiang, K.; Yang, Z.; Ma, J. Effects of straw returning to field and nitrogen fertilizer application on soil nitrogen supply and direct seeding rice yield under wheat (oil)-rice rotation. Agri. Life Sci. Ed. 2022, 46, 253–261. [Google Scholar]
- Xie, H.; Wu, K.; Iqbal, A.; Ali, I.; He, L.; Ullah, S.; Wei, S.; Zhao, Q.; Wu, X.; Huang, Q.; et al. Synthetic nitrogen coupled with seaweed extract and microbial inoculants improves rice (Oryza sativa L.) production under a dual cropping system. Ital. J. Agron. 2021, 16, 1800. [Google Scholar] [CrossRef]
- Amanullah, I.; Inamullah, X. Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci. 2016, 23, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Takeda, K. Associations among characters related to yield sink capacity in space-planted rice. Crop Sci. 1996, 36, 1135–1139. [Google Scholar] [CrossRef]
- Cambardella, C.E.; Gajda, A.M.; Doran, J.W.; Wienhold, B.J.; Kettler, T.A. Estimation of particulate and total organic matter by weight-loss-on ignition. In Assessment Methods for Soil Carbon; Lal, R., Kimble, J.F., Follet, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 349–359. [Google Scholar]
- Rich, C.I.; Black, W.R. Pottasium exchange as afected by cation size, pH, and mineral structure. Soil Sci. 1964, 97, 384–390. [Google Scholar] [CrossRef]
- Ohyama, T.; Ito, M.; Kobayashi, K.; Araki, S.; Yasuyoshi, S.; Sasaki, O.; Yamazaki, T.; Soyama, K.; Tanemura, R.; Mizuno, Y.; et al. Analytical procedures of N, P, K contents in plant and manure materials using H2SO4 -H2O2 Kjeldahl digestion method. Bull. Fac. Agric. Niigata Univ. 1991, 43, 110–120, (In Japanese with English summary). [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis—Advanced Course; University of Wisconsin: Madison, WI, USA, 1956; p. 991. [Google Scholar]
- Murphy, J.; Riley, J. A modifified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Curtin, D.; Wright, C.E.; Beare, M.; McCallum, F.M. Hot water-extractable nitrogen as an indicator of soil nitrogen availability. Soil Sci. Soc. Am. J. 2006, 70, 1512. [Google Scholar] [CrossRef]
- Ju, C.X.; Buresh, R.J.; Wang, Z.Q.; Zhang, H.; Liu, L.J.; Yang, J.C.; Zhang, J.H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.C.; Xie, J.; Deng, G.Q.; Tu, T.H.; Guan, X.J.; Yang, Z.; Huang, S.; Chen, X.M.; Qiu, C.F.; et al. Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system. Crop. J. 2021, 9, 805–815. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Lowland rice response to nitrogen fertilization. Commun. Soil Sci. Plant Anal. 2001, 32, 1405–1429. [Google Scholar] [CrossRef]
- Zhou, C.C.; Huang, Y.C.; Jia, B.Y.; Wang, S.; Dou, F.G.; Samonte, S.O.P.B.; Chen, K.; Wang, Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in northeast China. Agron. J. 2019, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Vishwakarma, A.; Singh, J.K.; Sen, A.; Bohra, J.S.; Singh, S. Effect of transplanting date and age of seedlings on growth, yield and quality of hybrids under system of rice (Oryza sativa) intensification and their effect on soil fertility. Indian J. Agric. Sci. 2016, 86, 679–685. [Google Scholar]
- Ghoneim, A.M.; Gewaily, E.E.; Osman, M.M.A. Effects of nitrogen levels on growth, yield and nitrogen use efficiency of some newly released Egyptian rice genotypes. Open Agric. 2018, 3, 310–318. [Google Scholar] [CrossRef]
- Bezbaruha, R.; Sharma, R.C.; Banik, P. Effect of nutrient management and planting geometry on productivity of hybrid rice (Oryza sativa L.) cultivars. Am. J. Plant Sci. 2011, 2, 297. [Google Scholar] [CrossRef] [Green Version]
- Gautam, A.K.; Kumar, D.; Shivay, Y.S.; Mishra, B.N. Influence of nitrogen levels and plant spacing on growth, productivity and quality of two inbred varieties and a hybrid of aromatic rice. Arch. Agron. Soil Sci. 2008, 54, 515–532. [Google Scholar] [CrossRef]
- Zhu, X.C.; Zhang, J.; Zhang, Z.P.; Deng, A.X.; Zhang, W.J. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur. J. Agron. 2016, 75, 50–59. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, Q.; Wang, Z.Q.; Zhang, H.; Gu, J.F.; Zhang, L.J.; Zhang, W.Y.; Yang, J.C. Characteristics of nitrogen absorption and utilization of an indica-japonica hybrid rice Yongyou 2640. Chin. J. Rice Sci. 2022, 36, 77. [Google Scholar]
- Zhao, Q.; Hao, X.; Ali, I.; Iqbal, A.; Jiang, L. Characterization and grouping of all primary branches at various positions on a rice panicle based on grain growth dynamics. Agron. J. 2020, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.F.; Jiang, H.Y.; Pan, X.Y.; Dai, T.B.; Cao, W.X. Effects of nitrogen rates on post-anthesis accumulation and transfer of dry matter and nitrogen in rice with differential nitrogen nutrition efficiency. Chin. Agric. Sci. Bull. 2010, 26, 150–156. [Google Scholar]
- Sihag, S.K.; Singh, M.K.; Meena, R.S.; Naga, S.R.; Yadav, S.R. Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 2015, 9, 517–519. [Google Scholar]
- Ronanki, S.; Rani, L.; Reddy, R. Dry matter accumulation, partitioning and nitrogen uptake of transplanted rice under varied plant densities and nitrogen levels. Chem Sci. Rev. Lett. 2017, 6, 1975–1979. [Google Scholar]
- Chen, Y.; Peng, J.; Wang, J.; Fu, P.; Hou, Y.; Zhang, C.; Fahad, S.; Peng, S.; Cui, K.; Nie, L.; et al. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crops Res. 2015, 184, 50–57. [Google Scholar] [CrossRef]
- Katsura, K.; Maeda, S.; Horie, T.; Shiraiwa, T. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Res. 2007, 103, 170–177. [Google Scholar] [CrossRef]
- Ying, J.; Peng, S.; He, Q.; Yang, H.; Yang, C.; Visperas, R.M.; Cassman, K.G. Comparison of high-yield rice in tropical and subtropical environments: I. Determinants of grain and dry matter yields. Field Crops Res. 2015, 184, 50–57. [Google Scholar]
- Zhang, H.; Yu, C.; Kong, X.; Hou, D.; Gu, J.; Liu, L.; Wang, Z.; Yang, J. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Res. 2018, 215, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.T.; Liu, L.J.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. Performance in grain yield and physiological traits of rice in the Yangtze river basin of China during the last 60 yr. J. Integr. Agric. 2013, 12, 57–66. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic Manure Coupled with Inorganic Fertilizer: An Approach for the Sustainable Production of Rice by Improving Soil Properties and Nitrogen Use Efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yu, X.; Gao, Y.; Xu, J.; Shu, X.; Tang, D.; Huang, J.; Wang, Y.; Yao, Y.; Dong, G. Differential nitrogen uptake and utilization in rice genetic populations with contrasting sink capacity. Southwest China J. Agric. Sci. 2020, 33, 2707–2713. [Google Scholar]
- Pan, L.; Chang, T.; Chang, S.; Ouyang, X.; Qu, M.; Song, Q.; Xiao, L.; Xia, S.; Deng, Q.; Zhu, X. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. J. Integr. Plant Biol. 2018, 60, 1154–1180. [Google Scholar]
- Cui, J.; Xu, K.; Shi, J.; Wu, Z.; Chen, Z.; Zhang, Z.; Wu, C. Changes in Sink-source Variation Characteristics of Different Rice Varieties. Chin. J. Bot. 2015, 50, 699–705. [Google Scholar]
- Shi, L.; Ji, X.; Zhu, X.; Li, H.; Peng, H.; Liu, Z. A preliminary study on optimizing nitrogen fertilization amount at different phases to enhance the storage capacity of super hybrid rice. Sci. Agric. Sin. 2010, 43, 1274–1281. [Google Scholar]
- Yang, J.; Zhang, J. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin. Sci. Bull. 2018, 63, 2932–2943. [Google Scholar] [CrossRef]
- Yu, K.K.; Song, X.E.; Guo, P.Y.; Yuan, X.Y.; Gao, H.; Huang, L.; Liu, Y.; Song, H.J.; Li, Y.X. Effects of exogenous spermine on photosynthetic characteristics and yield of foxtail millet. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2015, 35, 5. [Google Scholar]
- Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q.; Liu, L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res. 2003, 81, 69–81. [Google Scholar] [CrossRef]
- Yang, J. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol. 2004, 135, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Zou, Y. Effects of sink source ratio on roots and leaves senescence in hybrid rice. J. Hunan Agric. Univ. 2002, 28, 192–194. [Google Scholar]
- Tang, L.; Gao, H.; Yoshihiro, H.; Koki, H.; Tetsuya, N.; Liu, T.S.; Tatsuhiko, S.; Xu, Z.J. Erect panicle super rice varieties enhance yield by harvest index advantages in high nitrogen and density conditions. J. Integr. Agric. 2017, 16, 1467–1473. [Google Scholar] [CrossRef]
- Wei, H.; Meng, T.; Li, X.; Dai, Q.; Zhang, H.; Yin, X. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Res. 2018, 215, 23–38. [Google Scholar] [CrossRef]
- Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 2011, 155, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Ling, Q.; Zhang, H.; Guo, W.; Yang, J.; Chen, D.; Leng, S.; Lu, W.; Xing, Z. The quality of crop population and its key regulation technology. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 2018, 39, 9. [Google Scholar]
- Denis, F.; Yin, X.; Michael, D.; Anne, C.V.; Sandrine, R.; Lauriane, R.; Armelle, S.; Delphine, L. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation? J. Exp. Bot. 2019, 70, 5773–5785. [Google Scholar]
- Burnett, A.C.; Rogers, A.; Rees, M.; Osborne, C.P. Carbon source–sink limitations differ between two species with contrasting growth strategies. Plant Cell Environ. 2016, 39, 2460–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Vera, U.M.; De, S.A.P.; Long, S.P.; Ort, D.R. The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown nicotiana tabacum L. at elevated CO2 concentration. Front. Plant Sci. 2017, 8, 998. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Cui, K.; Xiang, J.; Wei, D.; Wang, K.; Huang, J.; Nie, L. Characteristics of non-structural carbohydrate accumulation and translocation in rice genotypes with various sink-capacity. J. Huazhong Agric. Univ. 2015, 34, 9–15. [Google Scholar]
- Lafitte, H.R.; Travis, R.L. Photosynthesis assimilate partitioning in closely related lines of rice exhibiting different sink: Source relationships. Crop Sci. 1984, 24, 447–452. [Google Scholar] [CrossRef]
Month | Max. Temp (°C) | Min. Temp (°C) | Precipitation (mm) |
---|---|---|---|
Late season | |||
August | 36 | 26 | 270 |
September | 33 | 24 | 70 |
October | 29 | 17 | 140 |
November | 26 | 16 | 55 |
December | 23 | 15 | 50 |
Early season | |||
March | 24 | 16 | 180 |
April | 29 | 21 | 80 |
May | 31 | 23 | 260 |
June | 35 | 25 | 125 |
July | 35 | 26 | 270 |
Nitrogen Application Rate | Planting Density | 2020 | 2021 |
---|---|---|---|
T1 | M1 | 5.88 ± 0.14 ab | 4.83 ± 0.24 b |
M2 | 6.05 ± 0.30 ab | 6.06 ± 0.28 b | |
M3 | 5.54 ± 0.22 b | 4.66 ± 0.28 b | |
T2 | M1 | 7.92 ± 0.61 a | 7.39 ± 0.34 a |
M2 | 6.93 ± 0.20 ab | 6.47 ± 0.23 ab | |
M3 | 5.90 ± 0.07 ab | 6.25 ± 0.23 ab | |
F (N) | 28.246 * | 25.77 * | |
F (PD) | 2.120 ns | 0.66 ns | |
F (N × PD) | 0.621 ns | 1.63 ns |
Nitrogen Application Rate | Planting Density | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
Heading (kg ha−1) | Maturity (kg ha−1) | Heading–Maturity (kg ha−1) | Harvest Index (%) | Heading (kg ha−1) | Maturity (kg ha−1) | Heading–Maturity (kg ha−1) | Harvest Index (%) | ||
T1 | M1 | 7290 ± 235.4 ab | 12,065 ± 291.2 ab | 4165 ± 299.2 a | 47.2 ± 0.4 a | 9671 ± 71.6 a | 13,842 ± 182.9 b | 4170 ± 253.32 a | 54.3 ± 0.4 ab |
M2 | 7052 ± 319.2 ab | 10,748 ± 127.6 b | 3696 ± 446.3 a | 46.5 ± 0.3 a | 9570 ± 322.7 a | 13,550 ± 206.3 b | 3979 ± 459.3 a | 57.6 ± 0.3 a | |
M3 | 6739 ± 29.8 b | 12,079 ± 270.4 ab | 5340 ± 254.1 a | 44.5 ± 0.8 ab | 9661 ± 150.8 a | 14,145 ± 176.7 b | 4483 ± 318.7 a | 52.6 ± 0.8 b | |
T2 | M1 | 8231 ± 291.7 a | 13,332 ± 149.55 a | 5100 ± 188.5 a | 44.7 ± 0.8 ab | 10,555 ± 284.6 a | 15,132 ± 236.0 ab | 4577 ± 88.64 a | 51.3 ± 0.8 b |
M2 | 7586 ± 166.5 ab | 13,246 ± 133.3 a | 5660 ± 292.1 a | 41.3 ± 0.4 b | 9760 ± 162.2 a | 16,032 ± 138.3 a | 6271 ± 283.9 a | 51.5 ± 0.4 b | |
M3 | 7007 ± 104.2 b | 11,113 ± 264.8 b | 4106 ± 358.3 a | 44.8 ± 1.0 ab | 9953 ± 205.3 a | 13,881 ± 350.4 b | 3927 ± 555.7 a | 55.7 ± 1.0 ab | |
F (N) | 10.346 ns | 4.446 ns | 1.581 ns | 26.483 * | 3.885 ns | 19.09 * | 2.052 ns | 9.107 ns | |
F (PD) | 4.197 ns | 2.651 ns | 0.007 ns | 0.805 ns | 0.416 ns | 1.032 ns | 0.668 ns | 0.779 ns | |
F (N × PD) | 0.056 ns | 6.565 * | 2.401 ns | 1.434 ns | 0.278 ns | 3.187 ns | 1.46 ns | 4.993 * |
Nitrogen Application Rate | Planting Density | 2020 | 2021 | ||||
---|---|---|---|---|---|---|---|
Nitrogen Accumulation at Maturity Stage (kg ha−1) | Nitrogen Harvest Index (%) | Nitrogen Content in Leaves at Heading Stage (kg ha−1) | Nitrogen Accumulation at Maturity Stage (kg ha−1) | Nitrogen Harvest Index (%) | Nitrogen Content in Leaves at Heading Stage (kg ha−1) | ||
T1 | M1 | 113.16 ± 1.72 cd | 60.08 ± 0.44 ab | 34.91 ± 0.43 c | 109.86 ± 0.11 c | 61.90 ± 0.11 ab | 43.17 ± 0.01 c |
M2 | 106.73 ± 0.86 d | 62.26 ± 0.45 a | 35.45 ± 0.12 c | 110.06 ± 0.61 c | 63.78 ± 0.27 a | 36.48 ± 0.01 c | |
M3 | 121.22 ± 1.20 c | 62.20 ± 0.22 a | 33.47 ± 0.02 c | 109.95 ± 0.98 c | 62.57 ± 0.67 a | 36.48 ± 0.01 c | |
T2 | M1 | 166.61 ± 2.14 a | 54.93 ± 0.64 d | 43.08 ± 0.39 b | 127.18 ± 0.39 b | 58.31 ± 0.36 c | 49.56 ± 1.56 b |
M2 | 176.89 ± 1.03 a | 55.30 ± 0.26 cd | 48.45 ± 0.39 a | 136.01 ± 1.30 a | 58.91 ± 0.09 bc | 60.42 ± 0.34 a | |
M3 | 133.05 ± 0.73 b | 58.05 ± 0.23 bc | 43.06 ± 0.39 b | 123.59 ± 0.52 b | 64.75 ± 0.19 a | 52.77 ± 0.23 b | |
F (N) | 428.5 ** | 126.12 ** | 484.74 ** | 1041.26 ** | 5.47 ns | 152.2 ** | |
F (PD) | 12.27 ** | 3.88 ns | 13.19 ** | 8.45 * | 16.39 ** | 1.26 ns | |
F (N × PD) | 43.50 ** | 1.14 ns | 5.34 * | 8.06 * | 17.73 ** | 21.65 ** |
Nitrogen Application Rate | Planting Density | Nitrogen Grain Production Efficiency (kg kg−1) | Partial Productivity of Nitrogen Fertilizer (kg kg−1) | Nitrogen Dry Matter Production Efficiency (kg kg−1) | |||
---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
T1 | M1 | 50.42 ± 2.15 a | 64.03 ± 0.36 a | 63.04 ± 1.7 a | 78.16 ± 0.50 a | 107.15 ± 4.15 a | 125.99 ± 1.56 a |
M2 | 46.87 ± 0.41 a | 67.47 ± 0.85 a | 55.59 ± 0.6 a | 82.55 ± 1.41 a | 100.71 ± 0.91 ab | 123.08 ± 1.47 ab | |
M3 | 44.29 ± 0.38 ab | 63.73 ± 0.64 a | 59.68 ± 0.9 a | 77.82 ± 0.76 a | 99.58 ± 1.53 abc | 128.62 ± 0.47 a | |
T2 | M1 | 35.74 ± 0.87 bc | 57.80 ± 0.28 b | 33.03 ± 0.6 b | 40.83 ± 0.07 b | 80.23 ± 1.86 cd | 119.04 ± 2.19 ab |
M2 | 30.92 ± 0.25 c | 58.53 ± 0.53 b | 30.37 ± 0.0 b | 44.19 ± 0.03 b | 74.90 ± 0.80 d | 117.92 ± 0.90 ab | |
M3 | 37.27 ± 0.18 bc | 58.24 ± 1.11 b | 27.55 ± 0.1 b | 40.01 ± 0.90 b | 83.45 ± 1.52 bcd | 112.32 ± 2.82 b | |
F (N) | 29.59 * | 345.98 ** | 197.16 ** | 3150.36 ** | 23.29 * | 34.56 * | |
F (PD) | 2.04 ns | 1.20 ns | 4.35 ns | 4.13 ns | 0.91 ns | 0.14 ns | |
F (N × PD) | 2.71 ns | 0.71 ns | 1.80 ns | 0.04 ns | 0.90 ns | 0.92 ns |
Index | 2021 | 2020 |
---|---|---|
Nitrogen accumulation | 0.63 ** | 0.36 ns |
Total dry matter accumulation | 0.71 ** | 0.76 ** |
Index | 2020 | 2021 |
---|---|---|
Nitrogen content in leaves at the heading stage | 0.197 ns | 0.707 ** |
Nitrogen accumulation | 0.28 ns | 0.708 ** |
Nitrogen harvest index | −0.242 ns | −0.543 * |
Partial productivity of nitrogen fertilizer | 0.241 ns | −0.503 * |
Nitrogen rice production efficiency | 0.061 ns | −0.255 ns |
Nitrogen dry matter production efficiency | 0.095 ns | −0.023 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, F.; Bin, S.; Iqbal, A.; He, L.; Wei, S.; Zheng, H.; Yuan, P.; Liang, H.; Ali, I.; Xie, D.; et al. High Sink Capacity Improves Rice Grain Yield by Promoting Nitrogen and Dry Matter Accumulation. Agronomy 2022, 12, 1688. https://doi.org/10.3390/agronomy12071688
Cheng F, Bin S, Iqbal A, He L, Wei S, Zheng H, Yuan P, Liang H, Ali I, Xie D, et al. High Sink Capacity Improves Rice Grain Yield by Promoting Nitrogen and Dry Matter Accumulation. Agronomy. 2022; 12(7):1688. https://doi.org/10.3390/agronomy12071688
Chicago/Turabian StyleCheng, Fangwei, Shiyou Bin, Anas Iqbal, Lijian He, Shanqing Wei, Hao Zheng, Pengli Yuan, He Liang, Izhar Ali, Dongjie Xie, and et al. 2022. "High Sink Capacity Improves Rice Grain Yield by Promoting Nitrogen and Dry Matter Accumulation" Agronomy 12, no. 7: 1688. https://doi.org/10.3390/agronomy12071688
APA StyleCheng, F., Bin, S., Iqbal, A., He, L., Wei, S., Zheng, H., Yuan, P., Liang, H., Ali, I., Xie, D., Yang, X., Xu, A., Ullah, S., & Jiang, L. (2022). High Sink Capacity Improves Rice Grain Yield by Promoting Nitrogen and Dry Matter Accumulation. Agronomy, 12(7), 1688. https://doi.org/10.3390/agronomy12071688