Development of a Disease and Pest Management Program to Reduce the Use of Pesticides in Sweet-Cherry Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial Orchards
2.2. Developing a New IPM for Sweet Cherry Diseases and Pests
2.3. Disease and Pest Monitoring/Assessment
2.4. Effect of IPM on Microorganism and Arthropod Biodiversity
2.4.1. Estimation of Microorganism Biodiversity
Quantification of Total Genomic DNA Concentration
Quantification of Colony-Forming Units (CFUs)
2.4.2. Arthropod Abundance and Diversity Evaluation
2.5. Analysis of Chemical Pesticide Residues
2.5.1. Chemicals and Reagents
2.5.2. Sample Preparation
2.5.3. Apparatus and Conditions
2.6. Data Analysis
3. Results
3.1. Forecasting Disease Development and the Use of Decision Support Systems (DSS)
3.2. Control Options Applied in Standard IPM and New IPM
3.3. Disease and Pest Monitoring
3.4. Effect of IPM on Biodiversity
3.5. Analysis of Chemical Pesticide Residues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT.2020. Available online: https://www.fao.org/faostat/en/#home (accessed on 20 April 2022).
- MAPA. Anuario Estadística Agraria. 2019. Available online: http://www.mapa.gob.es/es/ (accessed on 20 April 2022).
- Fichas del Servicio de Sanidad Vegetal del Gobierno de Extremadura. Available online: www.juntaex.es/con03/sanidad-vegetal-fichas-tecnicas-de-sanidad-vegetal-fichas-segun-cultivo (accessed on 20 April 2022).
- Boletin Fitosanitario de Avisos e Informaciones de Aragón. Available online: https://bibliotecavirtual.aragon.es/repos/es/publicaciones/numeros_por_mes.do?idPublicacion=17365 (accessed on 20 April 2022).
- Xu, X.; Bertone, C.; Berrie, A. Effects of wounding, fruit age and wetness duration on the development of cherry brown rot in the UK. Plant Pathol. 2007, 56, 114–119. [Google Scholar] [CrossRef]
- Jones, A.L. Cherry leaf spot. In Compendium of Stone Fruit Diseases; Ogawa, J.M., Zehr, E.I., Bird, G.W., Ritchie, D.F., Uriu, K., Uyemoto, J.K., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1995; pp. 21–22. [Google Scholar]
- De Wolf, E.D.; Isard, S.A. Disease cycle approach to plant disease prediction. Annu. Rev. Phytopathol. 2007, 45, 91–918. [Google Scholar] [CrossRef] [PubMed]
- Woodward, J.L.W. Effect of fungicide treatment to control shot-hole disease of cherry laurel. Cent. Appl. Nurs. Res. 1998. Available online: http://www.canr.org/98013.pdf (accessed on 20 April 2022).
- Bannon, F.; Gort, G.; van Leeuwen, G.; Holb, I.; Jeger, M. Diurnal patterns in dispersal of Monilinia fructigena conidia in an apple orchard in relation to weather factors. Agric. For. Meteorol. 2009, 149, 518–525. [Google Scholar] [CrossRef]
- Corbin, J.B.; Ogawa, J.M.; Schultz, H.B. Fluctuations in numbers of Monilinia laxa conidia in an apricot orchard during the 1966 season. Phytopathology 1968, 58, 1387–1394. [Google Scholar]
- Larena, I.; Villarino, M.; Melgarejo, P.; De Cal, A. Epidemiological studies of brown rot in Spanish cherry orchards in the Jerte Valley. J. Fungi 2021, 7, 203. [Google Scholar] [CrossRef]
- Eisensmith, S.P.; Jones, A.L. Infection model for timing fungicide applications to control cherry leaf spot. Plant Dis. 1981, 65, 955–958. [Google Scholar] [CrossRef]
- Shaw, D.A.; Adaskaveg, J.E.; Ogawa, J.M. Influence of wetness period and temperature on infection and development of shot-hole disease of almond caused by Wilsonomyces carpophilus. Phytopathology 1990, 80, 749–756. [Google Scholar] [CrossRef]
- Boller, E.; Prokopy, R.J. Bionomics and management of Rhagoletis. Annu. Rev. Entomol. 1976, 21, 223–246. [Google Scholar] [CrossRef]
- Daniel, C.; Grunder, J. Integrated management of European cherry fruit fly Rhagoletis cerasi (L.): Situation in Switzerland and Europe. Insects 2012, 3, 956–988. [Google Scholar] [CrossRef]
- Lee, J.C.; Bruck, D.J.; Dreves, A.J.; Ioriatti, C.; Vogt, H.; Baufeld, P. In focus: Spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag. Sci. 2011, 67, 1349–1351. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.B.; Bolda, M.P.; Goodhue, R.E.; Dreves, A.J.; Lee, J.; Bruck, D.J.; Walton, V.M.; O’Neal, S.D.; Zalom, F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest. Manag. 2011, 2, 1–7. [Google Scholar] [CrossRef]
- McLaren, G.F.; Fraser, J.A. Autumn and spring control of black cherry aphid on sweet cherry in Central Otago. New Zealand Plant Prot. 2002, 55, 347–353. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plants and Animal Origin and amending Council Directive 91/414/EEC. Eur. Off. J. Union 2005, 70, 1–16. [Google Scholar]
- Sandín-España, P.; Mateo-Miranda, M.; López-Goti, C.; Seris-Barrallo, E.; Alonso-Prados, J.L. Analysis of pesticide residues by QuEChERS Method and LC-MS/MS for a new extrapolation of maximum residue levels in persimmon minor crop. Molecules 2022, 27, 1517–1531. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.F. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Anastassiades, M.; Majors, R.E. The QuEChERS Revolution. LC GC Europe 2010, 23, 418–439. [Google Scholar]
- European Commission. Farm to Fork Strategy. For a Fair, Healthy and Environmentally Friendly Food System. 2020. Available online: https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 20 April 2022).
- Campbell, C.L.; Madden, L.V. Introduction to Plant Disease Epidemiology; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Garcia-Benitez, C.; Melgarejo, P.; De Cal, A. Detection of Latent Monilinia infections in nectarine flowers and fruit by qPCR. Plant Dis. 2017, 101, 1002–1008. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Koricha, A.D.; Han, D.Y.; Bacha, K.; Bai, F.Y. Occurrence and molecular identification of wild yeasts from Jimma zone, south west Ethiopia. Microorganisms 2019, 7, 633. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Wiley: Chichester, UK, 1991; pp. 205–248. [Google Scholar]
- Muyzer, G.; Hottentrager, S.; Teske, A.; Wawer, C. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. A new molecular approach to analyse the genetic diversity of mixed microbial communities. In Molecular Microbial Ecology Manual; Akkermans, A.D.L., van Elsas, J.D., de Bruijn, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 1–23. [Google Scholar]
- Marcotegui, A.; Sánchez-Ramos, I.; Pascual, S.; Fernández, C.E.; Cobos, G.; Armendáriz, I.; Cobo, A.; González-Núñez, M. Kaolin and potassium soap with thyme essential oil to control Monosteira unicostata and other phytophagous arthropods of almond trees in organic orchards. J. Pest. Sci. 2015, 88, 753–765. [Google Scholar] [CrossRef]
- García-Ruiz, E.; Pascual, S.; González-Núñez, M.; Cobos, G.; Loureiro, Í.; Santín-Montanyá, I.; Escorial, M.C.; Chueca, M.C.; Sánchez-Ramos, I. Dynamics of ground-dwelling phytophagous and predatory arthropods under different weed management strategies in conventional and genetically modified insect resistant maize. Entomol. Gen. 2022, 42, 57–73. [Google Scholar] [CrossRef]
- European Commission. 7029/VI/95 Rev.5 22 July 1997 Appendix B General Recommendations for the design, Preparation and Realization of Residue Trials; European Commission: Brussels, Belgium, 1997; pp. 1–72.
- European Commission; SANCO. Guidance Document SANCO/825/00 Rev. 8.1 on Pesticide Residue Analytical Methods; European Commission: Brussels, Belgium, 2000; pp. 1–28.
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Goonewardene, L.A. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci. 2004, 84, 1–11. [Google Scholar] [CrossRef]
- Lepš, J.; Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Van den Brink, P.J.; Ter Braak, C.J.F. Principal response curves: Analysis of time-dependent multivariate responses of a biological community to stress. Environ. Toxicol. Chem. 1999, 18, 138–148. [Google Scholar] [CrossRef]
- Borovinova, M.; Sredkov, I. Comparison of integrated and conventional plant protection of cherry orchards. Not. Bot. Hort. Agrobot. Cluj. 2006, 34, 1842–4309. [Google Scholar] [CrossRef]
- Jamar, L.; Lefrancq, B.; Fassotte, C.; Lateur, M. A ‘during-infection’ spray strategy using sulphur compounds, copper, silicon and a new formulation of potassium bicarbonate for primary scab control in organic apple production. Eur. J. Plant Pathol. 2008, 122, 481–492. [Google Scholar] [CrossRef]
- Jamar, L.; Cavelier, M.; Lateur, M. Primary scab control using a ‘during infection’ spray timing and the effect on fruit quality and yield in organic apple production. Biotechnol. Agron. Soc. Environ. 2010, 14, 423–439. [Google Scholar]
- MacHardy, W.E. Apple Scab: Biology, Epidemiology and Management; APS Press: St. Paul, MN, USA, 1996; p. 570. ISBN 1-600-328-7560. [Google Scholar]
- Rossi, V.; Giosuè, S.; Bugiani, R. A-scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections. EPPO Bull. 2007, 37, 300–308. [Google Scholar] [CrossRef]
- Rossi, V.; Giosuè, S.; Caffi, T. Modelling plant diseases for decision-making in crop protection. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Oerke, E.-C., Gerhards, R., Menz, G., Sikora, R.A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 241–258. [Google Scholar]
- Borovinova, M. Control of cherry leaf spot (Blumeriella jaapii) with postinfection treatment. Plant Sci. 1998, 35, 63–65. [Google Scholar] [CrossRef]
- Eisensmith, S.P.; Jones, A.L. A mode for detecting infection periods of Coccomyces hiemalis on sour cherry. Phytopathology 1981, 71, 728–732. [Google Scholar] [CrossRef]
- Borovinova, M. Yield loss caused by fungi rot on sweet cherry in Kyustendil region, Bulgaria. Int. J. Hortic. Sci. 2004, 10, 49–52. [Google Scholar] [CrossRef]
- Holb, I.J. The brown rot fungi of fruit crops (Monilinia spp.): II. Important features of their epidemiology. Int. J. Hortic. Sci. 2004, 10, 17–33. [Google Scholar] [CrossRef]
- van Leeuwen, G.C.M.; Stein, A.; Holb, I.; Jeger, M.J. Yield loss in apple caused by Monilinia fructigena (Aderh. & Ruhl.) Honey and spatio-temporal dynamics of disease development. Eur. J. Plant Pathol. 2000, 106, 519–528. [Google Scholar] [CrossRef]
- van Leeuwen, G.C.M.; Holb, I.; Jeger, J.M. Factors affecting mummification and sporulation of pome fruit infected by Monilinia fructigena in Dutch orchards. Plant Pathol. 2002, 51, 787–793. [Google Scholar] [CrossRef]
- Boller, E.F.; Avilla, J.; Joerg, E.; Malavolta, C.; Wijnands, F.G.; Esbjerg, P. Integrated Production. Principles and Technical Guidelines. Bull. OILB/SROP 2004, 27, 1–12. [Google Scholar]
- Santoiemma, G.; Trivellato, F.; Caloi, V.; Mori, N.; Marini, L. Habitat preference of Drosophila suzukii across heterogeneous landscapes. J. Pest. Sci. 2019, 92, 485–494. [Google Scholar] [CrossRef]
- Beers, E.H.; Van Steenwyk, R.A.; Shearer, P.W.; Coates, W.W.; Grant, J.A. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest. Manag. Sci. 2011, 67, 1386–1395. [Google Scholar] [CrossRef]
- Clymans, R.; Van Kerckvoorde, V.; Thys, T.; De Clercq, P.; Bylemans, D.; Beliën, T. Mass Trapping Drosophila suzukii, what would it take? A two-year field study on trap interference. Insects 2022, 13, 240. [Google Scholar] [CrossRef]
- Andreazza, F.; Vacacela Ajila, H.E.; Haddi, K.; Colares, F.; Pallini, A.; Oliveira, E.E. Toxicity to and egg-laying avoidance of Drosophila suzukii (Diptera: Drosophilidae) caused by an old alternative inorganic insecticide preparation. Pest. Manag. Sci. 2018, 74, 861–867. [Google Scholar] [CrossRef]
- Venzon, M.; Oliveira, R.M.; Perez, A.L.; Rodríguez-Cruz, F.A.; Martins Filho, S. Lime sulfur toxicity to broad mite, to its host plants and to natural enemies. Pest. Manag. Sci. 2013, 69, 738–743. [Google Scholar] [CrossRef]
- Pogăcean, M.; Gavrilescu, M. Plant protection products and their sustainable and environmentally friendly use. Environ. Eng. Manag. J. 2009, 8, 607–627. [Google Scholar] [CrossRef]
- Fenella, M.W.N.; Joshi, S.R. Distribution pattern analysis of epiphytic of bacteria on ethno medicinal plant surfaces: A micrographical and molecular approach. J. Microsc. Ultrastruct. 2014, 2, 34–40. [Google Scholar] [CrossRef]
- Böckmann, E.; Köppler, K.; Hummel, E.; Vogt, H. Bait spray for control of European cherry fruit fly: An appraisal based on semi-field and field studies. Pest. Manag. Sci. 2014, 70, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Lazic, S.; Sunjkai, D.; Jovanov, P.; Vukovic, S.; Guzsvany, V. LC-MS/MS determination of acetamiprid residues in sweet cherries. Rom. Biotechnol. Lett. 2018, 23, 13317–13326. [Google Scholar]
- Stachniuk, A.; Szmagara, A.; Czeczko, R.; Fornal, E. LC-MS/MS determination of pesticide residues in fruits and vegetables. J. Environ. Sci. Health Part B 2017, 52, 446–457. [Google Scholar] [CrossRef]
- Le Grand, R.; Saint-Marcoux, F.; Dulaurent, S.; Sauvage, F.L. Determination of dodine in fruit samples by Liquid Chromatography Electrospray Ionization-Tandem Mass Spectrometry. J. AOAC Int. 2011, 94, 300–306. [Google Scholar] [CrossRef]
Area | Orchard | Management | Location (x, y) | Cultivar |
---|---|---|---|---|
Aragon | La Loma S | Standard IPM | 41.5097, −1.2924 | Sonata/Satin |
La Loma N | New IPM | Sonata/Satin | ||
La Cuesta S | Standard IPM | 41.4820, −1.3492 | Satin/Frisco | |
La Cuesta N | New IPM | Satin/Frisco | ||
El Saso S | Standard IPM | 41.4952, −1.2817 | Early Bigi/Nimba | |
El Saso N | New IPM | Early Bigi/Nimba | ||
Barrachina S | Standard IPM | 41.4516, −1.3997 | 3–13/Prime Giant | |
Barrachina N | New IPM | 3–13/Prime Giant | ||
Extremadura | Collado | Standard IPM | 40.1391, −5.9295 | Van/Lapins |
Albarizas | New IPM | 40.1477, −5.9230 | Van/Lapins | |
Cañadilla S | Standard IPM | 40.1208, −5.9410 | Celeste/Lapins/Early Lory | |
Cañadilla N | New IPM | 40.1207, −5.9385 | Early Lory/Lapins | |
Cerro S | Standard IPM | 40.1412, −5.8869 | Early Billy/Lapins/3–13 | |
Cerro N | New IPM | 40.1408, −5.8850 | Burlat/Early Lory | |
Porras S | Standard IPM | 40.1965, −5.7752 | Lapins/Van/4–84 | |
Porras N | New IPM | 40.1968, −5.7755 | Lapins/Van/4–84 |
Available IPM Tools | |
---|---|
Monitoring | Monilinia spp.: Numbers of mummies, damaged buds, necrotic flowers and rotten fruit Myzus cerasi: Hatched eggs (%) in buds swelling stage and shoots occupied (%) postharvest Rhagoletis cerasi and Drosophila suzikii: Adults/trap and % damaged fruit Tetranychus urticae: leaves occupied (%) by T. urticae and Phytoseiidae |
Cultural practices | Removal of Monilinia mummies and branches affected by fungi Proper pruning and disinfection of pruning tools Balanced fertilization and irrigation Remove and destroy unharvested fruit Avoid water stress and dust on the leaves |
Physical methods | Sticky barrier on trunks to prevent ants from protecting and transporting aphids on trees |
Biological control | Bacillus subtilis (against Monilinia spp.) Bacillus thuringiensis (against Lepidoptera) Beauveria bassiana (against R. cerasi) Phytoseiidae (against T. urticae) Conservation and enhancement of specific and generalist natural enemies |
Other nonchemical methods | Mass trapping (against R. cerasi and D. suzukii) |
Chemical control | Abamectin, acetamiprid, acrinathrin, azadirachtin, cyantraniliprole, cypermethrin, deltamethrin, esfenvalerate, flonicamid, formetanate, hydrolyzed protein, λ-cyhalothrin, spinetoram, spinosad, spirotetramat, sulfoxaflor, tau-fluvalinate Boscalid, calcium polysulfide, captan, copper hidroxide, copper oxide, cuprocalcic sulfate, difenoconazole, dodine, fenbuconazole, fenhexamid, fenpyrazamine, fluopyram, pyraclostrobin, tebuconazole, tribasic copper sulfate, trifloxystrobin |
Management | Leaf Fall | Bud Swelling (BC) | Petal Visible (D) | Full Flowering (F) | Petals Fallen (G) | Ovary Growing (H) | Green Fruit (I-J-0) | Beginning of Fruit Coloring (1–3) | Maturity (4–6) |
---|---|---|---|---|---|---|---|---|---|
Aragon | |||||||||
Standard IPM | copper | copper | difenoconazole/fenbuconazole | tebuconazole dodine fluopyram spirotetramat/sulfoxaflor/deltamethrin | difenoconazole dodine tebuconazole fluopyram spirotetramat/sulfoxaflor/deltamethrin | captan pyraclostrobin boscalid λ-cihalothrin/acetamiprid/deltamethrin | fenbuconazole pyraclostrobin λ-cyhalothrin | pyraclostrobin boscalid | |
New IPM | copper | calcium polysulfide | Bacillus subtilis (strain QST713) | Bacillus subtilis (strain QST713) sulfoxaflor | difenoconazole | mass trapping fenpyrazamine | mass trapping difenoconazole | mass trapping fenpyrazamine/fenhexamid | |
Extremadura | |||||||||
Standard IPM | copper | copper deltamethrin | difenoconazole/fenbuconazole tebuconazole + fluopyram | dodine acetamiprid | difenoconazole dodine spinosad + hydrolyzed protein sulfoxaflor/deltamethrin | dodine acetamiprid/spinosad + hydrolyzed protein | dodine tebuconazole λ-cyhalothrin + hydrolyzed protein acetamiprid/ spinosad + hydrolyzed protein | tebuconazole spinosad/acetamiprid + hydrolysed protein | |
New IPM | copper | calcium polysulfide | Bacillus subtilis (strain QST 714) | Bacillus subtilis (strain QST713) sulfoxaflor/deltamethrin a | difenoconazole | mass trapping | mass trapping fenpyrazamine | mass trapping difenoconazole spinosad b |
Area | Orchard | Management | CLS | CSH | BR |
---|---|---|---|---|---|
Aragon | La Loma S | Standard IPM | 0.00 | 3.78 | 0.28 |
La Loma N | New IPM | 0.07 | 4.20 | 0.00 | |
La Cuesta S | Standard IPM | 0.14 | 42.30 * | 0.00 | |
La Cuesta N | New IPM | 0.00 | 2.99 | 0.00 | |
El Saso S | Standard IPM | 212.70 * | 899.50 * | 0.00 | |
El Saso N | New IPM | 25.60 | 542.11 | 0.00 | |
Barrachina S | Standard IPM | 0.01 | 1.97 | 0.00 | |
Barrachina N | New IPM | 0.00 | 0.35 | 0.00 | |
Extremadura | Collado S | Standard IPM | 3.38 | 3.49 | 2.64 |
Albarizas N | New IPM | 3.17 | 37.56 | 72.36 * | |
Cañadilla S | Standard IPM | 18.06 | 2.57 | 0.00 | |
Cañadilla N | New IPM | 5.56 | 0.66 | 91.99 * | |
Cerro S | Standard IPM | 145.65 * | 3.39 | 1.89 | |
Cerro N | New IPM | 0.53 | 0.65 | 2.16 | |
Porras S | Standard IPM | 0.51 | 0.98 | 0.00 | |
Porras N | New IPM | 67.10 | 0.65 | 0.00 | |
SME | 2176.12 | 6052.11 | 1277.63 |
Area | Management | NoFruit | R. cerasi (%) a,b (X ± e) |
---|---|---|---|
Aragon | Standard IPM | 1655 | 0.19 ± 0.13 a |
New IPM | 1630 | 0.12 ± 0.07 a | |
Extremadura | Standard IPM | 1526 | 0.59 ± 0.41 a |
New IPM | 1435 | 0.74 ± 0.45 a |
Management | ARAGON | EXTREMADURA | ||||||
---|---|---|---|---|---|---|---|---|
Total Abundance | Natural Enemies | Nontarget Arthropods | Nontarget Families | Total Abundance | Natural Enemies | Nontarget Arthropods | Nontarget Families | |
Canopy-Dwelling Arthropods | ||||||||
Standard IPM | 24.8 ± 6.1 | 8.8 ± 2.5 | 18.5 ± 4.9 | 7.8 ± 0.6 | 42.3 ± 11.8 | 13.0 ± 2.2 | 33.8 ± 8.2 | 12.3 ± 1.3 |
New IPM | 24.3 ± 8.4 | 6.0 ± 1.7 | 20.0 ± 8.3 | 6.5 ± 0.7 | 39.0 ± 3.8 | 14.3 ± 2.7 | 29.8 ± 5.4 | 15.3 ± 2.0 |
F | 0.060 | 1.235 | 0.003 | 1.299 | 0.058 | 0.133 | 0.340 | 0.250 |
d.f. | 1, 5.4 | 1, 13.5 | 1, 3.7 | 1, 13.3 | 1, 3.7 | 1, 6.0 | 1, 4.5 | 1, 4.5 |
P | 0.816 | 0.286 | 0.956 | 0.275 | 0.822 | 0.728 | 0.588 | 0.880 |
Arthropods In Pitfall Traps | ||||||||
Standard IPM | 651.8 ± 50.6 | 349.0 ± 30.4 | 629.5 ± 45.0 | 71.8 ± 1.3 | 549.3 ± 97.0 | 302.3 ± 79.7 | 458.8 ± 98.4 | 54.3 ± 5.3 |
New IPM | 793.5 ± 89.4 | 443.0 ± 28.7 * | 724.8 ± 113.9 | 69.0 ± 1.7 | 477.0 ± 48.8 | 248.8 ± 36.0 | 390.3 ± 44.0 | 58.8 ± 2.0 |
F | 1.705 | 33.643 | 0.223 | 1.556 | 0.443 | 0.374 | 0.168 | 0.709 |
d.f. | 1, 5.9 | 1, 6.5 | 1, 6.0 | 1, 6.2 | 1, 6.0 | 1, 6.0 | 1, 6.0 | 1, 6.0 |
P | 0.240 | 0.001 | 0.654 | 0.257 | 0.531 | 0.563 | 0.696 | 0.432 |
Pesticide Active Substance (Class) a | MRL b (mg kg−1) | Residue Concentration (mg kg−1) (RSD% c) | |||||||
---|---|---|---|---|---|---|---|---|---|
Aragon | |||||||||
La Loma S d | La Loma N d | La Cuesta S | La Cuesta N | El Saso S | El Saso N | Barrachina S | Barrachina N | ||
Acetamiprid (I) | 1.5 | - e | - | - | - | 0.0404 (2.85) | 0.0215 (3.79) | - | - |
Deltametrin (I) | 0.1 | - | - | - | - | - | - | 0.0026 (3.07) | - |
λ-cyhalotrin (I) | 0.3 | 0.0044 (1.89) | 0.0028 (4.05) | - | - | - | - | 0.0246 (1.81) | - |
Spirotetramat (I) | 3 | 0.0016 (4.15) | - | - | - | - | - | - | - |
Sulfoxaflor (I) | 1.5 | - | - | 0.0054 (1.95) | 0.0066 (2.32) | 0.0354 (5.24) | 0.0065 (1.04) | 0.0022 (1.15) | 0.0149 (0.90) |
Boscalid (F) | 4 | - | - | 0.0127 (3.42) | - | - | - | - | - |
Difenoconazole (F) | 0.3 | - | 0.0014 (3.38) | - | 0.0086 (2.48) | - | - | 0.0139 (3.06) | 0.0129 (3.98) |
Dodine (F) | 3 | 0.0070 (1.23) | 0.0037 (2.05) | 0.0223 (2.19) | 0.0283 (3.07) | 0.0288 (2.13) | 0.0135 (0.50) | 0.0269 (4.87) | - |
Fenbuconazole (F) | 1 | - | - | 0.0020 (2.68) | - | - | - | - | - |
Fenpirazamide (F) | 4 | - | - | - | - | - | - | 0.0209 (1.20) | 0.0157 (2.56) |
Fluopyram (F) | 2 | 0.2484 (2.31) | 0.2376 (3.54) | - | - | - | - | - | - |
Pyraclostrobin (F) | 3 | - | - | 0.0109 (1.13) | - | - | - | - | - |
Extremadura | |||||||||
Collado S | Albarizas N | Cañadilla S | Cañadilla N | Cerro S | Cerro N | Porras S | Porras N | ||
Acetamiprid (I) | 1.5 | 0.0104 (3.42) | - | 0.0054 (1.98) | - | 0.0086 (1.31) | - | 0.0088 (1.47) | - |
Deltametrin (I) | 0.1 | 0.0053 (2.56) | 0.0014 (2.87) | 0.0040 (2.17) | 0.0040 (0.67) | 0.0020 (0.98) | 0.0028 (2.54) | 0.0020 (0.85) | 0.0031 (3.04) |
λ-cyhalotrin (I) | 0.3 | 0.0290 (1.69) | - | 0.0590 (4.04) | - | - | 0.0520 (2.01) | 0.0020 (4.35) | - |
Spinosad (I) | 0.2 | 0.0123 (1.12) | - | 0.0035 (2.41) | 0.0031 (2.05) | 0.0022 (1.74) | - | 0.0016 (3.69) | - |
Sulfoxaflor (I) | 1.5 | - | 0.0396 (4.81) | - | 0.0020 (3.22) | - | - | - | - |
Difenoconazole (F) | 0.3 | - | 0.0573 (3.37) | 0.0030 (5.21) | 0.0142 (2.95) | 0.0030 (3.25) | 0.0651 (1.65) | 0.0314 (2.16) | 0.0057 (0.68) |
Dodine (F) | 3 | 0.0046 (3.21) | - | 0.0036 (1.8) | - | - | - | 0.0307 (3.08) | - |
Fenpyrazamide (F) | 4 | - | 0.0429 (3.28) | - | 0.0030 (2.78) | - | 0.0172 (0.94) | - | - |
Fluopyram (F) | 2 | 0.0025 (1.49) | - | 0.0020 (4.18) | - | 0.0030 (0.70) | - | 0.0125 (4.25) | - |
Tebuconazole (F) | 1 | 0.0033 (0.10) | - | 0.0040 (0.78) | - | 0.0042 (3.16) | - | 0.0037 (1.02) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Núñez, M.; Sandín-España, P.; Mateos-Miranda, M.; Cobos, G.; De Cal, A.; Sánchez-Ramos, I.; Alonso-Prados, J.-L.; Larena, I. Development of a Disease and Pest Management Program to Reduce the Use of Pesticides in Sweet-Cherry Orchards. Agronomy 2022, 12, 1986. https://doi.org/10.3390/agronomy12091986
González-Núñez M, Sandín-España P, Mateos-Miranda M, Cobos G, De Cal A, Sánchez-Ramos I, Alonso-Prados J-L, Larena I. Development of a Disease and Pest Management Program to Reduce the Use of Pesticides in Sweet-Cherry Orchards. Agronomy. 2022; 12(9):1986. https://doi.org/10.3390/agronomy12091986
Chicago/Turabian StyleGonzález-Núñez, Manuel, Pilar Sandín-España, Miguelina Mateos-Miranda, Guillermo Cobos, Antonieta De Cal, Ismael Sánchez-Ramos, Jose-Luis Alonso-Prados, and Inmaculada Larena. 2022. "Development of a Disease and Pest Management Program to Reduce the Use of Pesticides in Sweet-Cherry Orchards" Agronomy 12, no. 9: 1986. https://doi.org/10.3390/agronomy12091986
APA StyleGonzález-Núñez, M., Sandín-España, P., Mateos-Miranda, M., Cobos, G., De Cal, A., Sánchez-Ramos, I., Alonso-Prados, J.-L., & Larena, I. (2022). Development of a Disease and Pest Management Program to Reduce the Use of Pesticides in Sweet-Cherry Orchards. Agronomy, 12(9), 1986. https://doi.org/10.3390/agronomy12091986