Responses of Tobacco Growth and Development, Nitrogen Use Efficiency, Crop Yield and Economic Benefits to Smash Ridge Tillage and Nitrogen Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Variety Choice
2.2. Experimental Machine
2.3. Experimental Design
2.4. Test Items and Methods
2.5. Statistical Analysis
3. Results
3.1. Agronomic Characteristics and Dry Matter Quality
3.2. Root Growth
3.3. Nitrogen Absorption
3.4. Economic Traits
3.5. Net Economic Benefit
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Arvidsson, J. Nutrient uptake and growth of barley as affected by soil compaction. Plant Soil 1999, 208, 9–19. [Google Scholar] [CrossRef]
- Delpin Malvezi, K.E.; Zanao Junior, L.A.; Guimaraes, E.C.; Vieira, S.R.; Pereira, N. Soil chemical attributes variability under tillage and no-tillage in a long-term experiment in southern brazil. Biosci. J. 2019, 35, 467–476. [Google Scholar] [CrossRef]
- Grzesiak, S.; Grzesiak, M.T.; Filek, W.; Hura, T.; Stabryła, J. The impact of different soil moisture and soil compaction on the growth of triticale root system. Acta Physiol. Plant. 2002, 24, 331–342. [Google Scholar] [CrossRef]
- Kuncoro, P.H.; Koga, K.; Satta, N.; Muto, Y. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil Tillage Res. 2014, 143, 172–179. [Google Scholar] [CrossRef]
- Chassot, A.; Stamp, P.; Richner, W. Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement. Plant Soil 2001, 231, 123–135. [Google Scholar] [CrossRef]
- Chen, T.; Hu, R.; Zheng, Z.; Yang, J.; Fan, H.; Deng, X.; Yao, W.; Wang, Q.; Peng, S.; Li, J. Soil Bacterial Community in the Multiple Cropping System Increased Grain Yield Within 40 Cultivation Years. Front. Plant Sci. 2021, 12, 2966. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, B.; Li, Y.; Liu, G.; Xiao, H.; Liao, Y.; Li, Y.; Zhang, Y. Effects of tobacco-rice rotation on rice planthoppers Sogatella furcifera (Horvath) and Nilaparvata lugens (Stal) (Homoptera: Delphacidae) in China. Plant Soil 2015, 392, 333–344. [Google Scholar] [CrossRef]
- He, L.; Zhang, A.; Wang, X.; Li, J.; Hussain, Q. Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. J. Clean. Prod. 2019, 234, 297–305. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Mu, X.; Liu, K.; Li, C. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant Soil Environ. 2013, 59, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Li, Y.Z.; Hu, Y.C.; Song, D.P.; Liang, S.H.; Qin, X.L.; Siddique, K.H.M. The effects of straw incorporation with plastic film mulch on soil properties and bacterial community structure on the loess plateau. Eur. J. Soil Sci. 2021, 72, 979–994. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Dai, K.; Zhang, D.; Feng, Z.; Zhao, Q.; Wu, X.; Jin, K.; Cai, D.; Oenema, O.; et al. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res. 2012, 132, 106–116. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, H.; Yin, Y.; Wang, H.; Cui, Z. Benefits and Trade-Offs of Tillage Management in China: A Meta-Analysis. Agronomy 2021, 11, 1495. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Liao, P.; Khan, A.; Hussain, I.; Iqbal, A.; Ali, I.; Wei, B.; Jiang, L. Smash ridge tillage strongly influence soil functionality, physiology and rice yield. Saudi J. Biol. Sci. 2021, 28, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Don, A. Root-restricting layers in German agricultural soils. Part II: Adaptation and melioration strategies. Plant Soil 2019, 442, 419–432. [Google Scholar] [CrossRef]
- Kahlon, M.S.; Khurana, K. Effect of land management practices on physical properties of soil and water productivity in wheat-maize system of northwest india. Appl. Ecol. Environ. Res. 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Fatumah, N.; Tilahun, S.A.; Mohammed, S. Water use efficiency, grain yield, and economic benefits of common beans (Phaseolus vulgaris L.) under four soil tillage systems in Mukono District, Uganda. Heliyon 2021, 7. [Google Scholar] [CrossRef]
- Eun, J.S.; Han, S.K.; Kang, N.H.; Kim, H.C.; Bae, J.H. Effects of Deep Tillage before Planting on Physicochemical Properties of Soil, Growth and Fruit Characteristics in Cultivation of Watermelon under Plastic Film House. Prot. Hortic. Plant Fact. 2010, 19, 130–134. [Google Scholar]
- Dhaliwal, J.; Kahlon, M.S.; Kukal, S.S. Deep tillage and irrigation impacts on soil water balance and water productivity of direct-seeded rice-wheat cropping system in north-west India. Soil Res. 2020, 58, 498–508. [Google Scholar] [CrossRef]
- Su, Y.-j.; Wang, Y.-j.; Zhang, Y.-l.; Ding, Y.; Luo, Y.; Song, L.; Liao, W.-y. Effects of different tillage methods on tea garden soil physical characteristics and tea yield. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2015, 26, 3723–3729. [Google Scholar]
- Liu, T.; Huang, J.; Chai, K.; Cao, C.; Li, C. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China. Front. Plant Sci. 2018, 9, 385. [Google Scholar] [CrossRef]
- Sun, Y.D.; Hu, R.F.; Zhang, C. Does the adoption of complex fertilizers contribute to fertilizer overuse? Evidence from rice production in China. J. Clean. Prod. 2019, 219, 677–685. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Z.Z.; Zhao, J.Y.; Wang, Y.F.; Yu, Z.W. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 681–692. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Hu, A.Y.; Tang, T.T.; Liu, Q. Nitrogen use efficiency in different rice-based rotations in southern China. Nutr. Cycl. Agroecosystems 2018, 112, 75–86. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Chen, T.; Zheng, Z.; Peng, G.; Zou, Y.; Tang, C.; Shan, X.; Zhou, Q.; Li, J. Responses of soil aggregates, organic carbon, and crop yield to short-term intermittent deep tillage in Southern China. J. Clean. Prod. 2021, 298, 126767. [Google Scholar] [CrossRef]
- Ren, T.B.; Wang, H.H.; Yuan, Y.; Feng, H.L.; Wang, B.; Kuang, G.; Wei, Y.W.; Gao, W.K.; Shi, H.Z.; Liu, G.S. Biochar increases tobacco yield by promoting root growth based on a three-year field application. Sci. Rep. 2021, 11, 21991. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhou, J.F.; Ren, K.; Zou, C.M.; Liu, J.J.; Yao, G.M.; He, J.S.; Zhao, G.K.; Huang, W.; Hu, B.B.; et al. Effects of enzymatic browning reaction on the usability of tobacco leaves and identification of components of reaction products. Sci. Rep. 2019, 9, 17850. [Google Scholar] [CrossRef]
- Peralta, G.; Alvarez, C.R.; Taboada, M.A. Soil compaction alleviation by deep non-inversion tillage and crop yield responses in no tilled soils of the Pampas region of Argentina. A meta-analysis. Soil Tillage Res. 2021, 211, 105022. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, B.M.; de Oliveira, G.C.; Moreira, S.G.; da Silva, F.; Curi, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil Tillage Res. 2019, 194, 104307. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Mastroberti, A.A.; Levien, R.; Leitner, D.; Schnepf, A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Henderson, C.W.L. Sensitivity of eight cereal and legume species to the compaction status of deep, sandy soils. Aust. J. Exp. Agric. 1991, 31, 347–355. [Google Scholar] [CrossRef]
- Shen, P.; Wu, Z.F.; Wang, C.X.; Luo, S.; Zheng, Y.M.; Yu, T.Y.; Sun, X.W.; Sun, X.S.; Wang, C.B.; He, X.H. Contributions of rational soil tillage to compaction stress in main peanut producing areas of China. Sci. Rep. 2016, 6, 38629. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.-X.; Gao, Z.-Q.; Wang, P.-R.; Mo, F.; Xue, L.-Z.; Lei, M.-M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Jin, K.; Cornelis, W.M.; Schiettecatte, W.; Lu, J.; Yao, Y.; Wu, H.; Gabriels, D.; De Neve, S.; Cai, D.; Jin, J.; et al. Effects of different management practices on the soil–water balance and crop yield for improved dryland farming in the Chinese Loess Plateau. Soil Tillage Res. 2007, 96, 131–144. [Google Scholar] [CrossRef]
- Zhai, L.C.; Xu, P.; Zhang, Z.B.; Li, S.K.; Xie, R.Z.; Zhai, L.F.; Wei, B.H. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2017, 170, 167–174. [Google Scholar] [CrossRef]
- Shukla, S.K.; Yadav, R.L.; Gupta, R.; Singh, A.K.; Awasthi, S.K.; Gaur, A. Deep Tillage, Soil Moisture Regime, and Optimizing N Nutrition for Sustaining Soil Health and Sugarcane Yield in Subtropical India. Commun. Soil Sci. Plant Anal. 2018, 49, 444–462. [Google Scholar] [CrossRef]
- Rubio, V.; Quincke, A.; Ernst, O. Deep tillage and nitrogen do not remediate cumulative soil deterioration effects of continuous cropping. Agron. J. 2021, 113, 5584–5596. [Google Scholar] [CrossRef]
- Colombi, T.; Keller, T. Developing strategies to recover crop productivity after soil compaction-A plant eco-physiological perspective. Soil Tillage Res. 2019, 191, 156–161. [Google Scholar] [CrossRef]
- Alcántara, V.; Don, A.; Well, R.; Nieder, R. Deep ploughing increases agricultural soil organic matter stocks. Glob. Chang. Biol. 2016, 22, 2939–2956. [Google Scholar] [CrossRef] [PubMed]
- Karlen, D.L.; Kovar, J.L.; Cambardella, C.A.; Colvin, T.S. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil Tillage Res. 2013, 130, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Kisic, I.; Bogunovic, I.; Zgorelec, Z.; Bilandzija, D. Effects of Soil Erosion by Water under Different Tillage Treatments on Distribution of Soil Chemical Parameters. Soil Water Res. 2018, 13, 36–43. [Google Scholar] [CrossRef]
- Beatriz Restovich, S.; Enrique Andriulo, A.; Maria Armas-Herrera, C.; Jose Beribe, M.; Isabel Portela, S. Combining cover crops and low nitrogen fertilization improves soil supporting functions. Plant Soil 2019, 442, 401–417. [Google Scholar] [CrossRef]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn Response to Nitrogen is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef]
- Mao, R.; Zeng, D.H.; Li, L.J. Fresh root decomposition pattern of two contrasting tree species from temperate agroforestry systems: Effects of root diameter and nitrogen enrichment of soil. Plant Soil 2011, 347, 115–123. [Google Scholar] [CrossRef]
- Gong, J.; Zheng, Z.Y.; Liu, Y.J.; Peng, S.G.; Jing, Y.F.; Chen, T.; Zhou, Q.; Li, J. Effect of deep ploughing of powdered monopoly combined with trenching and drainage on soil nutrients and growth and development of roasted tobacco. J. Northwest A&F Univ 2022, 9, 1–8. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.Q.; Liu, P.; Dong, S.T.; Zhang, J.W.; Zhao, B.; Ren, B.Z. Nitrogen placement at sowing affects root growth, grain yield formation, N use efficiency in maize. Plant Soil 2020, 457, 355–373. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Yu, Z.W.; Shi, Y.; Cui, S.M.; Wang, D.; Zhang, Y.L.; Zhao, J.Y. Effects of Tillage Practices on Water Consumption, Water Use Efficiency and Grain Yield in Wheat Field. J. Integr. Agric. 2014, 13, 2378–2388. [Google Scholar] [CrossRef]
- Chen, J.Z.; He, Y.B.; Li, P. Effects of tillage alteration on soil water content, maize crop water potential and grain yield under subtropical humid climate conditions. Int. Agrophysics 2021, 35, 1–9. [Google Scholar] [CrossRef]
- Zhai, L.C.; Xu, P.; Zhang, Z.B.; Wei, B.H.; Jia, X.L.; Zhang, L.H. Improvements in Grain Yield and Nitrogen Use Efficiency of Summer Maize by Optimizing Tillage Practice and Nitrogen Application Rate. Agron. J. 2019, 111, 666–676. [Google Scholar] [CrossRef]
- Kaur, R.; Arora, V.K. Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India. Agric. Water Manag. 2019, 213, 724–731. [Google Scholar] [CrossRef]
- Sang, X.G.; Wang, D.; Lin, X. Effects of tillage practices on water consumption characteristics and grain yield of winter wheat under different soil moisture conditions. Soil Tillage Res. 2016, 163, 185–194. [Google Scholar] [CrossRef]
Average Maximum Temperature/°C | Average Minimum Temperature/°C | Average Rainfall/mm | |
---|---|---|---|
March | 24 | 17 | 195.0 |
April | 28 | 21 | 232.5 |
May | 30 | 24 | 270.0 |
June | 32 | 26 | 204.6 |
July | 32 | 26 | 229.4 |
Year | Soil Depth (cm) | pH | Soil Organic Carbon (g kg−1) | Total N (g kg−1) | Total P (g kg−1) | Total K (g kg−1) | Alkaline N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
2018 | 0~10 | 6.9 | 55.51 | 2.39 | 1.00 | 16.33 | 197.12 | 31.75 | 113.23 |
10~20 | 6.8 | 52.37 | 2.30 | 0.90 | 15.58 | 193.29 | 25.24 | 67.45 | |
20~30 | 7.3 | 50.79 | 2.22 | 0.69 | 14.48 | 172.24 | 10.13 | 57.26 | |
2019 | 0~10 | 6.8 | 49.00 | 3.34 | 0.85 | 20.60 | 172.12 | 23.00 | 255.25 |
10~20 | 7.0 | 47.30 | 4.01 | 0.89 | 21.20 | 191.24 | 22.00 | 300.03 | |
20~30 | 6.8 | 44.40 | 2.32 | 0.80 | 21.00 | 159.56 | 4.00 | 245.03 |
Year | Treatment/Fertilizer Type | Base Fertilizer (kg ha−1) | Calcium Superphosphate (kg ha−1) | Potassium Sulfate (kg ha−1) | N (kg ha−1) |
---|---|---|---|---|---|
2018 | N100 | 2250 | 0 | 0 | 180 |
N85 | 1912.5 | 309.4 | 74.3 | 153 | |
N70 | 1575 | 511.4 | 122.7 | 126 | |
CK | 2250 | 0 | 0 | 180 | |
2019 | N100 | 2250 | 0 | 0 | 180 |
N90 | 2025 | 206.3 | 49.5 | 162 | |
N80 | 1800 | 412.5 | 99.0 | 144 | |
N70 | 1575 | 511.4 | 122.7 | 126 | |
N60 | 1350 | 815 | 198 | 108 | |
CK | 2250 | 0 | 0 | 180 |
Year | Sampling Time (after Transplanting) | Treatment | Blade Area (max)/cm2 | Leaf Number/Plant | Dry Matter Weight | ||
---|---|---|---|---|---|---|---|
Root/g | Stem/g | Leaf/g | |||||
2018 | 60 d | N100 | 1334.18 ± 28.93 a | 18.0 ± 0.0 b | 75.44 ± 2.27 b | 67.57 ± 1.60 b | 123.97 ± 1.46 b |
N85 | 1297.53 ± 78.80 a | 17.3 ± 0.6 c | 75.44 ± 2.27 b | 65.39 ± 0.44 c | 118.53 ± 0.68 d | ||
N70 | 1321.70 ± 38.91 a | 19.0 ± 0.0 a | 79.53 ± 0.52 a | 66.56 ± 0.87 bc | 120.92 ± 1.07 c | ||
CK | 1283.28 ± 32.35 a | 19.0 ± 0.0 a | 78.80 ± 1.85 ab | 70.78 ± 0.53 a | 126.88 ± 0.80 a | ||
80 d | N100 | 1332.61 ± 81.51 a | 18.0 ± 1.0 a | 81.95 ± 0.92 b | 88.37 ± 0.81 a | 130.38 ± 0.67 a | |
N85 | 1317.79 ± 33.72 a | 18.7 ± 1.5 a | 82.95 ± 1.13 b | 88.65 ± 0.31 a | 128.30 ± 0.56 bc | ||
N70 | 1329.38 ± 18.24 a | 18.7 ± 1.2 a | 86.99 ± 1.60 a | 87.97 ± 0.74 a | 128.82 ± 0.30 b | ||
CK | 1250.47 ± 48.48 a | 17.3 ± 2.1 a | 80.90 ± 0.54 b | 83.86 ± 0.22 b | 127.22 ± 1.05 c | ||
2019 | 60 d | N100 | 1346.84 ± 96.89 a | 18.2 ± 0.5 a | 75.06 ± 0.33 b | 77.26 ± 0.25 a | 122.23 ± 0.41 a |
N90 | 1312.47 ± 21.91 a | 17.3 ± 0.6 ab | 75.50 ± 0.64 b | 74.36 ± 0.94 bc | 117.23 ± 0.91 c | ||
N80 | 1338.06 ± 77.52 a | 18.2 ± 1.1 a | 77.48 ± 1.09 a | 74.36 ± 1.86 bc | 120.33 ± 0.90 b | ||
N70 | 1343.68 ± 110.09 a | 17.0 ± 0.0 b | 76.20 ± 0.80 ab | 76.60 ± 1.37 ab | 120.10 ± 1.35 b | ||
N60 | 722.40 ± 30.75 b | 15.4 ± 0.5 c | 56.03 ± 1.48 d | 51.93 ± 1.39 d | 60.63 ± 1.33 d | ||
CK | 1199.21 ± 90.31 a | 17.7 ± 0.6 ab | 67.26 ± 0.85 c | 72.48 ± 1.03 c | 119.05 ± 0.97 bc | ||
80 d | N100 | 1315.31 ± 58.37 a | 18.0 ± 0.0 a | 84.96 ± 0.59 a | 79.33 ± 0.30 a | 154.76 ± 1.01 a | |
N90 | 1309.41 ± 43.61 a | 18.8 ± 0.2 a | 83.63 ± 0.60 a | 75.03 ± 1.19 b | 150.93 ± 1.67 b | ||
N80 | 1314.46 ± 65.14 a | 18.3 ± 1.2 a | 85.76 ± 1.72 a | 80.16 ± 1.12 a | 155.96 ± 1.42 a | ||
N70 | 1347.98 ± 42.24 a | 18.7 ± 0.6 a | 84.66 ± 2.19 a | 80.03 ± 1.56 a | 153.33 ± 1.48 ab | ||
N60 | 829.28 ± 27.97 b | 16.0 ± 0.0 b | 63.73 ± 1.03 c | 54.00 ± 1.14 d | 66.70 ± 1.02 d | ||
CK | 1266.79 ± 68.62 a | 17.7 ± 0.6 a | 80.31 ± 1.11 b | 72.51 ± 1.81 c | 144.62 ± 1.84 c |
Year | Sampling Time (after Transplanting) | Treatment | Root Depth/cm | Number of Lateral Roots | Volume/cm2 |
---|---|---|---|---|---|
2018 | 60 d | N100 | 24.20 ± 0.95 b | 16.67 ± 1.15 b | — |
N85 | 23.57 ± 1.10 b | 20.00 ± 3.00 ab | |||
N70 | 26.27 ± 0.78 a | 18.33 ± 2.08 b | |||
CK | 20.07 ± 0.25 c | 22.67 ± 2.08 a | |||
80 d | N100 | 25.93 ± 0.76 b | 21.67 ± 1.15 a | ||
N85 | 25.53 ± 1.16 b | 22.00 ± 3.46 a | |||
N70 | 28.17 ± 1.10 a | 22.67 ± 2.31 a | |||
CK | 22.50 ± 1.25 c | 25.67 ± 0.58 a | |||
2019 | 60 d | N100 | 20.73 ± 0.60 c | 20.00 ± 4.00 ab | 86.67 ± 2.44 d |
N90 | 25.73 ± 1.20 a | 21.33 ± 0.58 ab | 93.33 ± 0.97 c | ||
N80 | 22.73 ± 0.22 b | 22.33 ± 0.58 a | 148.33 ± 0.67 a | ||
N70 | 20.73 ± 0.25 c | 22.00 ± 0.00 a | 130.07 ± 7.90 b | ||
N60 | 16.33 ± 0.47 e | 15.67 ± 0.58 b | 65.07 ± 0.49 e | ||
CK | 18.07 ± 1.72 d | 18.00 ± 2.00 bc | 84.00 ± 1.45 d | ||
80 d | N100 | 22.67 ± 0.67 a | 23.67 ± 0.58 c | 115.03 ± 2.76 d | |
N90 | 23.97 ± 0.78 a | 29.33 ± 0.58 b | 142.03 ± 1.69 c | ||
N80 | 24.33 ± 1.86 a | 30.00 ± 0.00 b | 161.73 ± 1.86 a | ||
N70 | 24.33 ± 1.64 a | 32.67 ± 0.58 a | 151.70 ± 1.91 b | ||
N60 | 17.33 ± 0.32 c | 21.00 ± 0.00 d | 110.00 ± 1.73 e | ||
CK | 20.00 ± 0.56 b | 20.67 ± 0.58 d | 104.03 ± 3.43 f |
Year | Sampling Time (after Transplanting) | Treatment | N Accumulation (g Plant−1) | N Accumulation (g Leaf−1) | N Production Efficiency | N Harvest Index (%) |
---|---|---|---|---|---|---|
2018 | 60 d | N100 | 3.54 ± 0.34 c | 1.46 ± 0.26 b | 48.19 ± 7.08 a | 82.49 ± 3.84 a |
N85 | 3.49 ± 0.19 c | 1.40 ± 0.17 b | 47.24 ± 3.55 a | 77.65 ± 3.63 ab | ||
N70 | 4.90 ± 0.13 b | 1.80 ± 0.05 b | 45.26 ± 1.24 a | 64.90 ± 2.45 b | ||
CK | 6.41 ± 0.42 a | 3.52 ± 0.39 a | 43.13 ± 2.88 b | 56.94 ± 3.16 c | ||
80 d | N100 | 8.35 ± 0.17 b | 2.72 ± 0.08 b | 40.91 ± 0.60 a | 45.31 ± 1.55 a | |
N85 | 8.46 ± 0.21 b | 2.85 ± 0.21 b | 40.13 ± 0.80 a | 46.28 ± 2.71 a | ||
N70 | 9.12 ± 0.19 a | 3.08 ± 0.04 a | 37.41 ± 0.47 b | 36.73 ± 1.48 b | ||
CK | 7.14 ± 0.26 c | 2.69 ± 0.05 b | 40.89 ± 1.30 a | 33.42 ± 2.82 b | ||
2019 | 60 d | N100 | 5.71 ± 0.42 a | 2.97 ± 0.49 a | 48.08 ± 5.15 a | 71.24 ± 3.60 a |
N90 | 6.15 ± 0.29 a | 3.15 ± 0.19 a | 48.43 ± 0.68 a | 66.87 ± 2.17 a | ||
N80 | 5.51 ± 0.44 a | 2.65 ± 0.27 a | 49.62 ± 1.19 a | 68.61 ± 3.56 a | ||
N70 | 5.63 ± 0.16 a | 2.78 ± 0.10 a | 48.47 ± 0.58 a | 67.96 ± 1.04 a | ||
N60 | 3.94 ± 0.35 b | 1.80 ± 0.18 b | 42.79 ± 8.08 b | 47.11 ± 3.56 b | ||
CK | 5.81 ± 0.65 a | 3.00 ± 0.41 a | 51.52 ± 2.45 a | 44.90 ± 5.16 b | ||
80 d | N100 | 7.83 ± 0.35 b | 3.23 ± 0.18 a | 40.75 ± 1.97 a | 34.73 ± 0.83 a | |
N90 | 8.93 ± 0.26 a | 3.28 ± 0.06 a | 39.67 ± 1.05 a | 37.17 ± 1.28 a | ||
N80 | 7.90 ± 0.30 b | 3.34 ± 0.17 a | 40.74 ± 1.78 a | 37.84 ± 0.49 a | ||
N70 | 7.62 ± 0.50 b | 3.18 ± 0.20 a | 41.73 ± 2.95 a | 37.79 ± 1.72 a | ||
N60 | 6.86 ± 0.31 c | 2.73 ± 0.23 b | 26.88 ± 0.86 b | 21.54 ± 1.60 b | ||
CK | 6.96 ± 0.24 c | 2.58 ± 0.08 b | 42.75 ± 1.57 a | 37.10 ± 2.30 a |
Year | Sampling Time (after Transplanting) | Yield (kg ha−1) | Product Value (CNY ha−1) | Mean Price (CNY ha−1) | Ratio of Mid–High-Grade Leaves (%) |
---|---|---|---|---|---|
2018 | N100 | 2326.33 ± 69.69 a | 51,070.37 ± 80.68 b | 21.97 ± 0.62 a | 90.7 ± 0.42 c |
N85 | 2299.07 ± 12.81 a | 51,080.60 ± 84.12 b | 22.22 ± 0.11 a | 92.0 ± 1.26 ab | |
N70 | 2265.50 ± 28.78 a | 51,780.40 ± 369.97 a | 22.86 ± 0.15 a | 95.4 ± 0.52 a | |
CK | 2304.17 ± 89.09 a | 50,925.17 ± 428.13 b | 22.12 ± 0.67 a | 93.8 ± 2.04 a | |
2019 | N100 | 2335.17 ± 66.95 b | 51,132.60 ± 62.66 d | 21.90 ± 0.65 bc | 90.8 ± 1.07 b |
N90 | 2365.47 ± 31.98 b | 52,859.83 ± 242.95 b | 22.30 ± 0.21 ab | 90.4 ± 0.64 b | |
N80 | 2475.27 ± 40.32 a | 52,496.73 ± 165.77 c | 21.20 ± 0.38 c | 90.0 ± 0.81 b | |
N70 | 2320.57 ± 48.04 bc | 53,227.17 ± 169.25 a | 22.90 ± 0.40 a | 93.4 ± 0.51 a | |
N60 | 1375.57 ± 33.39 d | 29,383.63 ± 317.81 e | 21.30 ± 0.29 c | 88.0 ± 3.23 c | |
CK | 2248.33 ± 43.47 c | 50,905.70 ± 109.25 d | 22.60 ± 0.79 a | 91.4 ± 2.48 ab |
Year | Treatment | Fertilizer Cost | Mechanical Costs | Total Cost | Net Income | Output Ratio |
---|---|---|---|---|---|---|
(CNY ha−1) | (CNY ha−1) | (CNY ha−1) | (CNY ha−1) | (%) | ||
2018 | N100 | 5467.5 | 3350.0 | 8817.5 | 42,252.87 ± 80.68 b | 20.87 ± 0.04 a |
N70 | 4343.4 | 3350.0 | 7693.4 | 44,087.00 ± 369.97 a | 17.45 ± 0.14 c | |
CK | 5467.5 | 3200.0 | 8667.5 | 42,257.67 ± 428.13 b | 20.51 ± 0.21 b | |
2019 | N100 | 5467.5 | 3350.0 | 8817.5 | 42,315.10 ± 62.66 b | 20.84 ± 0.03 a |
N70 | 4343.4 | 3350.0 | 7693.4 | 45,533.77 ± 169.24 a | 16.89 ± 0.06 c | |
CK | 5467.5 | 3200.0 | 8667.5 | 42,238.20 ± 109.25 b | 20.52 ± 0.05 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Jing, Y.; Zou, Y.; Hu, R.; Liu, Y.; Xiao, Z.; He, F.; Zhou, Q.; Tian, X.; Gong, J.; et al. Responses of Tobacco Growth and Development, Nitrogen Use Efficiency, Crop Yield and Economic Benefits to Smash Ridge Tillage and Nitrogen Reduction. Agronomy 2022, 12, 2097. https://doi.org/10.3390/agronomy12092097
Zheng B, Jing Y, Zou Y, Hu R, Liu Y, Xiao Z, He F, Zhou Q, Tian X, Gong J, et al. Responses of Tobacco Growth and Development, Nitrogen Use Efficiency, Crop Yield and Economic Benefits to Smash Ridge Tillage and Nitrogen Reduction. Agronomy. 2022; 12(9):2097. https://doi.org/10.3390/agronomy12092097
Chicago/Turabian StyleZheng, Bufan, Yongfeng Jing, Yidong Zou, Ruiwen Hu, Yongjun Liu, Zhipeng Xiao, Fei He, Qiyun Zhou, Xiangshen Tian, Jia Gong, and et al. 2022. "Responses of Tobacco Growth and Development, Nitrogen Use Efficiency, Crop Yield and Economic Benefits to Smash Ridge Tillage and Nitrogen Reduction" Agronomy 12, no. 9: 2097. https://doi.org/10.3390/agronomy12092097
APA StyleZheng, B., Jing, Y., Zou, Y., Hu, R., Liu, Y., Xiao, Z., He, F., Zhou, Q., Tian, X., Gong, J., Li, J., & Rang, Z. (2022). Responses of Tobacco Growth and Development, Nitrogen Use Efficiency, Crop Yield and Economic Benefits to Smash Ridge Tillage and Nitrogen Reduction. Agronomy, 12(9), 2097. https://doi.org/10.3390/agronomy12092097