Management of Root-Knot Nematode with Non-Chemical Methods for Sustainable Production of Cucumber under Protected Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Identification of RKN Species in the Polyhouses
2.3. Field Trials
2.4. Analysis of Soil Properties
2.5. Statistical Analysis
3. Results
3.1. Pot Experiment
3.2. Identification of RKN Species in the Polyhouses
3.3. Field Trials
3.4. Analysis of Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jensen, M.H. Controlled environment agriculture in deserts tropics and temperate regions—A world review. Acta Hortic. 2002, 578, 19–25. [Google Scholar] [CrossRef]
- Kumar, P.; Khapte, P.S.; Saxena, A.; Kumar, P. Evaluation of gynoecious cucumber (Cucumis sativus) hybrids for early-summer greenhouse production in western Indian arid plains. Indian J. Agric. Sci. 2019, 89, 545–550. [Google Scholar] [CrossRef]
- Sharma, H.K.; Pankaj; Singh, B. Protected cultivation and nematode problem. J. Nematol. 2009, 39, 1–8. [Google Scholar]
- Anupam; Dhillon, N.K.; Kaur, S. Prevalence and distribution of root knot nematode in polyhouse cultivation in Punjab. Int. J. Farm Sci. 2018, 8, 70–73. [Google Scholar] [CrossRef]
- Phani, V.; Khan, M.R.; Dutta, T.K. Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop. Prot. 2021, 144, 105573. [Google Scholar] [CrossRef]
- Sabir, N.; Walia, R.K. Management of Nematodes in Protected Cultivation with Short Notes on Key Pests; Project Coordinating Cell All India Coordinated Research Project on Nematodes in Cropping Systems; LBS Building, ICAR-Indian Agricultural Research Institute: New Delhi, India, 2017. [Google Scholar]
- Desaeger, J.; Csinos, A. Root-knot nematode management in double crop plasticulture vegetables. J. Nematol. 2006, 38, 59–67. [Google Scholar]
- Kayani, M.Z.; Mukhtar, T.; Hussain, M.A. Evaluation of nematicidal effects of Cannabis sativa L. and Zanthoxylumalatum Roxb. against root-knot nematodes, Meloidogyne incognita. Crop. Prot. 2012, 39, 52–56. [Google Scholar] [CrossRef]
- Sabir, N.; Singh, B.; Hasan, M.; Sumitha, R.; Deka, S.; Tanwar, R.; Ahuja, D.B.; Tomar, B.S.; Bambawale, O.M.; Khan, E.M. Good Agricultural Practices (GAP) for IPM in protected cultivation. Tech. Bull. 2010, 23, 1–14. [Google Scholar]
- Renèo, M.; Sasanelli, N.; Maistrello, L. Plants as natural sources of nematicides. In Nematodes: Comparative Genomics, Disease Management and Ecological Importance; Davis, L.M., Ed.; NOVA Science Publisher: New York, NY, USA, 2014; pp. 115–141. [Google Scholar]
- Mukhtar, T.; Hussain, M.A.; Kayani, M.Z. Biocontrol potential of Pasteuria penetrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against Meloidogyne incognita in okra. Phytopathol. Mediterr. 2013, 52, 66–76. [Google Scholar] [CrossRef]
- Taniwiryono, W.D.; Van den Berg, H.; Riksen, J.A.G.; Rietjens, I.M.C.M.; Djiwanti, S.R.; Kammenga, J.E.; Murk, A.J. Nematicidal activity of plant extracts against the root-knot nematode, Meloidogyne incognita. Nat. Prod. J. 2009, 2, 77–85. [Google Scholar] [CrossRef]
- Ntalli, N.; Adamski, Z.; Doula, M.; Monokrousos, N. Review- Nematicidal amendments and soil remediation. Plants 2020, 9, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oka, Y. Mechanisms of nematode suppression by organic soil amendments—A review. Appl. Soil Ecol. 2010, 44, 101–115. [Google Scholar] [CrossRef]
- Thoden, T.C.; Korthals, G.W.; Termorshuizen, A.J. Organic amendments and their influences on plant-parasitic and free-living nematodes: A promising method for nematode management? Nematology 2011, 13, 133–153. [Google Scholar] [CrossRef]
- Wittstock, U.; Burow, M. Glucosinolate Breakdown in Arabidopsis: Mechanism, Regulation and Biological Significance. Arab. Book 2010, 8, e0134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxdorf, K.; Yaffe, H.; Barda, O.; Levy, M. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS ONE 2013, 8, e70771, PMCID:3733641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildalgo-Diaz, L.; Kerry, B.R. Integration of biological control with other methods of nematode management. In Integrated Management and Bio Control of Vegetables and Grain Crops Nematodes; Ciancio, A., Nukeri, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 29–44. [Google Scholar]
- Clemente, I.; Aznar, M.; Silva, F.; Nerin, C. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innov. Food Sci. Emerg. Technol. 2016, 36, 26–33. [Google Scholar] [CrossRef]
- Nadeem, H.; Malan, P.; Khan, A.; Asif, M.; Ahmad Siddiqui, M.; Tuhafeni Angombe, S.; Ahmad, F. New insights on the utilization of ultrasonicated mustard seed cake: Chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica. J. Zhejiang Univ. Sci. B 2021, 22, 563–574. [Google Scholar] [CrossRef]
- Syndia, L.A.M.; Prasad, P.N.; Annadurai, G.; Nair, R.R.; Thilaga, S.; Ganesh, D. Characterization of neem seed oil and de-oiled cake for its potentiality as a biofuel and bio-manure. Int. Res. J. Pharm. Biol. Sci. 2015, 2, 10–19. [Google Scholar]
- Tahkur, R.S.; Singh, S.B.; Goswami, B.K.; Article, E.I. Azadirachta indica A. Juss—A review. J. Appl. Res. Med. Aromat. Plants 1981, 3, 135–140. [Google Scholar]
- Abbasi, M.W.; Ahmed, N.; Zaki, M.J.; Shaukat, S.S. Soil amendment with halophytes induces physiological changes and reduces root-knot nematode infection in eggplant and okra. Phytopathol. Mediterr. 2010, 49, 352–360. [Google Scholar]
- Das, B.C.; Das, B.K.; Dutta, P.; Begum, K.H.; Talukdar, M.C. FYM: A source of growth and sporulation of Trichderma harzianum for field application. Pestology 2001, 25, 28–30. [Google Scholar]
- Suseela, B.R.; Sarma, Y.R. Effect of Organic Amendments on the Proliferation Stability of Trichoderma harzianum and Suppression of Phytophthorameadii in Cardamom Soils in Relation to Soil Microflora. J. Biol. Control 2009, 23, 163–167. [Google Scholar] [CrossRef]
- Sumbul, A.; Rizvi, R.; Mahmood, I.; Ansari, R.A. Oil-cake amendments: Useful tools for the management of phyto nematodes. Asian J. Plant Pathol. 2015, 9, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, A.G.; Hemming, J.R.A. Comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann. Appl. Biol. 1965, 55, 25–38. [Google Scholar] [CrossRef]
- Taylor, A.L.; Sasser, J.N. Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne Species); Department of Plant Pathology, North Carolina State University Graphics: Raleigh, NC, USA, 1978; p. 111. [Google Scholar]
- Hartman, K.; Sasser, J. Identification of Meloidogyne species on the basis of differential host test and perineal-pattern morphology. In An Advanced Treatise on Meloidogyne. Vol. ii: Methodology; Barker, K.R., Carter, C.C., Sasser, J.N., Eds.; North Carolina State University Graphics: Raleigh, NC, USA, 1985; pp. 69–77. [Google Scholar]
- Zijlstra, C.; Van Hoof, R.; Donkers-Venne, D.A. PCR test to detect the cereal root-knot nematode Meloidogyne naasi. Eur. J. Plant. Pathol. 2004, 110, 855–860. [Google Scholar] [CrossRef]
- Coyne, D.L.; Nicol, J.M.; Claudius-Cole, B. Practical Plant Nematology: A Field and Laboratory Guide, 2nd ed.; SP-IPM Secretariat, International Institute of Tropical Agriculture (IITA): Cotonou, Benin, 2014. [Google Scholar]
- Bridge, J.; Page, S.L.J. Estimation of root-knot nematode infestation levels on roots using a rating chart. Trop. Pest Manag. 1980, 26, 296–298. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate, USDA Circ. No. 939; US Govt. Print. Office: Washington, DC, USA, 1954. [Google Scholar]
- Merwin, H.D.; Peech, M. Exchangeability of soil potassium in the sand, silt and clay fractions as influenced by the nature of the complimentary exchangeable cations. Soil Sci. Soc. Am. J. 1950, 15, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Saeed, M.; Mukhtar, T.; ulHaqInam, M.; Khan, M.A. Assessment of nematicidal potential of Cannabis sativa and Azadirachta indica in the management of root-knot nematode (Meloidogyne javanica) on peach. Pak. J. Agric. Sci. 2021, 58, 1555–1561. [Google Scholar] [CrossRef]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, M.; Kirkegaard, J.A.; Wong, P.T.W.; Desmarchelier, J.M. Biofumigation potential of brassicas. Plant Soil 1998, 201, 103–112. [Google Scholar] [CrossRef]
- Matthiessen, J.N.; Kirkegaard, J.A. Biofumigation and enhanced biodegradation: Opportunity and challenge in soil born pest and disease management. Crit. Rev. Plant Sci. 2006, 22, 235–265. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Rehman, B.; Kavita, P.; Asi, M.; Siddiqui, M.A. Phytotherapeutic approach for the management of Meloidogyne incognita affecting Abelmoschus esculentus (L.) Moench. Arch. Phytopathol. Plant Prot. 2014, 47, 1797–1805. [Google Scholar] [CrossRef]
- Tiyagi, S.A.; Alam, M.M. Efficacy of oil-seed cakes against plant-parasitic nematodes and soil-inhabiting fungi on mungbean and chickpea. Bioresource Technol. 1995, 51, 233–239. [Google Scholar] [CrossRef]
- Ram, L.; Siddiqui, A.U.; Parihar, A. Management of root-knot nematode, Meloidogyne incognita infecting okra using oil cakes. Indian J. Nematol. 2009, 39, 125–127. [Google Scholar]
- Barani, P.; Anbarani, A. Influence of vermicompost on growth parameters of bhindi. South Indian Hortic. 2004, 52, 351–354. [Google Scholar]
- Srinivasarao, C.; Vittal, K.P.R.; Kundu, S.; Gajbhiye, P.N.; Vinasankar, B.M. Continuous cropping, fertilization and organic manure application effects on potassium in Alfisols under arid conditions. Commun. Soil Sci. Plant Anal. 2010, 41, 783–796. [Google Scholar] [CrossRef]
- Poudel, D.D.; Horwath, W.R.; Mitchell, J.P.; Temple, S.R. Impacts of cropping systems on soil nitrogen storage and loss. Agric. Syst. 2001, 68, 253–268. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Reddy, K.S. Effect of integrated use of fertilizer nitrogen and farmyard manure or green manure on transformation of N, K and S and productivity of rice-wheat system on a Vertisols. J. Indian Soc. Soil Sci. 2001, 49, 430–435. [Google Scholar]
- Zhao, X.; Hu, X.; Zhang, S.; Zhao, Q.; Wang, Q. Effect of potassium levels on suppressing root-knot nematode (Meloidogyne incognita) and resistance enzymes and compounds activities for tomato (Solanum lycopersicum L.). Acad. J. Agric. Res. 2016, 4, 306–314. [Google Scholar]
- Sharaf, A.E.; Kailla, A.M.; Attia, M.S.; Nofal, M.M. Induced resistance in tomato plants against root knot nematode using biotic and abiotic inducers. Int. J. Adv. Res. Biol. Sci. 2016, 3, 31–46. [Google Scholar] [CrossRef]
- Morra, M.J.; Kirkegaard, J.A. Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol. Biochem. 2002, 34, 1683–1690. [Google Scholar] [CrossRef]
Trial Location | Geographical Location | Year | Crop Season | Variety | Initial Nematode Population 250 g−1 Soil |
---|---|---|---|---|---|
Polyhouse-I Research Farm, Plant Pathology | N-27°20′38.0″ E-77°50′11.0″ | 2018 | February–April | Punjab Kheera No. 1 | 466.6 J2 |
Polyhouse-II Research Farm, Vegetable Crops | N-30°54′01.5″ E-75°47′33.9″ | 2018 | February–April | Punjab Kheera No. 1 | 350.3 J2 |
Polyhouse-III Commercial polyhouse of farmer | N-30°52′08.9″ E-76°23′30.0″ | 2019 | September–December | KUK-9 | 473.0 J2 |
Treatments | Soil Nematode Population | Egg Masses/Root System | Root Gall Index (RGI) | Nematode-Infested Soil | Non-Nematode-Infested Soil | ||||
---|---|---|---|---|---|---|---|---|---|
Nematode Population 250 g−1 Soil | Reduction over Control (%) | RGI (0–5) Scale | Reduction over Control (%) | Plant Height (cm) | Plant FW (g) | Plant Height (cm) | Plant FW (g) | ||
MC 0.5 t ha−1 | 282 + 6.6 (16.80) g | 6.2 | 23.9 ± 1.0 e | 3.5 ± 0.3 f | 10.3 | 73.3 ± 0.7 g | 28.3 ± 1.5 bdef | 80. 7 ± 0.7 cdef | 32.4 ± 0.71 bcd |
MC 1.0 t ha−1 | 130 + 7.0 (11.44) bcd | 56.7 | 11.3 ± 1.5 abc | 1.8 ± 0.4 abc | 53.8 | 80.6 ± 2.2 bcd | 31.7 ± 3.0 abc | 82.1 ± 2.8 bcd | 33.8 ± 0.9 abc |
MC 2.0 t ha−1 | 125± 5.0 (11.24) b | 58.3 | 10.7 ± 1.2 ab | 1.7 ± 1.1 ab | 55.6 | 81.6 ± 3.5 bc | 32.33± 1.1 ab | 83.8 ± 0.9 ab | 34.4 ± 1.2 ab |
NC 0.5 t ha−1 | 2845± 8.9 (16.89) g | 5.2 | 24.3 ± 1.5 e | 3.6 ± 0.3 f | 8.4 | 72.1 ± 0.8 gh | 27.3 ± 2.1 def | 79.2 ± 0.7 ef | 31.6 ± 1.4 d |
NC 1.0 t ha−1 | 134 ± 6.1 (11.61) bcde | 55.4 | 13.7 ± 1.2 cd | 2.2 ± 0.2 cde | 42.7 | 78.7 ± 3.3 def | 29.7 ± 1.5 bcd | 81.6 ± 0.6 bcde | 33.0 ± 0.71 abcd |
NC 2.0 t ha−1 | 128 ± 4.0 (11.37) bc | 57.3 | 13.0 ± 1.0 bcd | 2.0 ± 0.2 abcd | 49.6 | 82.7 ± 2.4 ab | 31.7 ± 1.3 abc | 83.4 ± 0.6 ac | 32.8 ± 2.3 bcd |
FYM 2.5 t ha−1 | 287 ± 5.5 (16.96) g | 4.4 | 25.3 ± 1.3 e | 3.9 ± 0.2 f | 1.0 | 72.7 ± 1.1 gh | 28.3 ± 2.1 bcdef | 81.8 ± 0.6 bcde | 32.3 ± 0.2 bcd |
MC 1 t ha−1 + NC 1 t ha−1 + FYM 2.5 t ha−1 | 107 ± 3.6 (10.39) a | 64.4 | 9.7 ± 1.2 a | 1.5 ± 0.2 a | 60.7 | 84.7 ± 1.3 a | 33.8 ± 1.2 a | 85.3 ± 0.8 a | 35.3 ± 2.0 a |
Carbofuran 3 G 2.0 kg (a.i.) ha−1 | 135 ± 8.1 (11.67) bcdef | 55.1 | 11.3 ± 0.6 abc | 1.9 ± 0.2 abcd | 52.1 | 79.7 ± 2.5 cde | 29.4 ± 2.2 bcde | 82.0 ± 1.4 bcde | 32.3 ± 1.2 bcd |
Untreated control | 300 ± 6.6 (17.35) g | 0.0 | 26.3 ± 1.5 e | 3.9 ± 0.2 f | - | 70.7 ± 1.7 h | 25.8 ± 2.2 f | 77.2 ± 1.8 g | 29.1 ± 2.0 d |
LSD (p ≤ 0.05) | 0.58 | 2.67 | 0.46 | 2.29 | 3.43 | 2.96 | 2.33 |
Treatments | Nematode Population 250 g−1 Soil | Reduction over Control (%) | RGI (0–10) Scale | Reduction over Control (%) | Rf = Pf/Pi | Yield (t ha−1) | Increase over Control (%) |
---|---|---|---|---|---|---|---|
MC 1.5 t ha−1 | 452 ± 27.5 (21.26) b | 33.2 | 4.5 ± 0.4 b | 37.8 | 1.0 | 41.9 ± 1.8 bc | 18.8 |
NC 1.5 t ha−1 | 481. 7 ± 35.5 (21.96) bc | 28.8 | 4.6 ± 0.1 bc | 36.8 | 1.1 | 40.7 ± 2.1 cd | 15.3 |
FYM 5.0 t ha−1 | 633 ± 28.8 (25.18) e | 6.4 | 6.8 ± 0.4 e | 7.0 | 1.4 | 39.8 ± 2.4 cd | 12.7 |
MC 1 t ha−1 + NC 1 t ha−1 + FYM 2.5 t ha−1 | 350 ± 25.0 (18.72) a | 48.3 | 3.1 ± 0.3 a | 58.1 | 0.8 | 47.5 ± 1.2 a | 34.7 |
Carbofuran 3 G 2.0 kg (a.i.) ha−1 | 495 ± 57.6 (22.24) bcd | 26.8 | 5.6 ± 0.2 d | 22.6 | 1.1 | 45.4 ± 2.2 ab | 28.7 |
Control | 677 ± 60.3 (26.01) e | 0.00 | 7.3 ± 0.5 e | 0.0 | 1.5 | 35.3 ± 0.8 e | - |
LSD (p ≤ 0.05) | 1.68 | 0.64 | 3.6 |
Treatments | Nematode Population 250 g−1 Soil | Reduction over Control (%) | RGI (0–10) Scale | Reduction over Control (%) | Rf = Pf/Pi | Yield (t ha−1) | Increase over Control (%) |
---|---|---|---|---|---|---|---|
MC 1.5 t ha−1 | 385 ± 13.2 (19.64) b | 29.5 | 4.2 ±+ 0.4 b | 32.2 | 1.1 | 64.8 ± 3.5 b | 21.8 |
NC 1.5 t ha−1 | 407 ± 18.9 (20.18) bcd | 25.5 | 4.6 ± 0.1 bc | 25.6 | 1.2 | 58.6 ± 4.1 cd | 10.0 |
FYM 5.0 t ha−1 | 493 ± 11.5 (22.23) e | 9.6 | 5.7 ± 0.1 e | 8.5 | 1.4 | 56.2 ± 3.5 de | 5.5 |
MC 1 t ha−1 + NC 1 t ha−1 + FYM 2.5 t ha−1 | 287 ± 15.3 (16.95) a | 47.5 | 2.7 ± 0.1 a | 56.0 | 0.8 | 71.2 ± 3.6 a | 33.7 |
Carbofuran 3 G 2.0 kg (a.i.) ha−1 | 388 ± 19.9 (19.73) bc | 28.8 | 4.7 ± 0.2 bcd | 24.3 | 1.1 | 58.8 ± 4.1 c | 10.5 |
Control | 546 ± 14.3 (23.38) f | 6.2 ± 0.7 e | 1.6 | 53.2 ± 2.9 f | - | ||
LSD (p ≤ 0.05) | 0.75 | 0.70 | 2.53 |
Treatments | Nematode Population 250 g−1 Soil | Reduction over Control (%) | RGI (0–10) Scale | Reduction over Control (%) | RF = Pf/Pi | Yield (t ha−1) | Increase over Control (%) |
---|---|---|---|---|---|---|---|
MC 1.5 t ha−1 | 467 ± 57.7 (21.6) b | 34.9 | 4.7 ± 0.4 b | 36.9 | 1.0 | 35.7 ± 2.2 b | 7.3 |
NC 1.5 t ha−1 | 500 ± 50.0 (22.3) bc | 30.3 | 4.9 ± 0.7 bc | 34.2 | 1.1 | 35.4 ± 4.0 b | 6.5 |
FYM 5.0 t ha−1 | 633 ± 28.8 (26.1) e | 11. 7 | 6.8 ± 0.2 e | 9.8 | 1.3 | 33.3 ± 2.4 b | 0.3 |
MC 1 t ha−1 + NC 1 t ha−1 + FYM 2.5 t ha−1 | 327 ± 46.2 (18.4) a | 54.4 | 3.3 ± 0.2 a | 55.6 | 0.7 | 46.1 ± 2.0 a | 38.8 |
Carbofuran 3 G 2.0 kg (a.i.) ha−1 | 517 ± 76.3 (22.7) bcd | 27.9 | 5.2 ± 0.2 bcd | 30.2 | 1.1 | 37.9 ± 5.2 b | 14.0 |
Control | 717 ± 57.7 (26.7) e | - | 7.5 ± 0.6 e | 36.9 | 1.5 | 33.2 ± 1.1 b | - |
LSD (p ≤ 0.05) | 2.59 | 0.92 | 4.74 |
Treatments/ Nutrient Availability | MC 1 t ha−1 | NC 1 t ha−1 | FYM 2.5 t ha−1 | MC + NC + FYM (1.0 + 1.0 + 2.5) t ha−1 | Carbofuran 3 G 2 kg (a.i.) ha−1 | Untreated Control | LSD (p ≤ 0.05) |
---|---|---|---|---|---|---|---|
Organic carbon (g kg−1 soil) | 1.02 ± 0.04 a | 0.42 ± 0.03 c | 0.39 ± 0.01 d | 0.96 ± 0.05 b | 0.32 ± 0.02 d | 0.36 ± 0.05 d | 0.28 |
Available phosphorus (mg kg−1 soil) | 99.0 ± 6.16 a | 81.5 + 2.6 c | 76.25 + 3.04 d | 96.25 ± 3.04 b | 67.5 ± 3.60 e | 67.0 ± 2.41 e | 1.87 |
Available potassium (mg kg−1 soil) | 277.5 ± 4.58 b | 277.5 ± 4.35 b | 255.0 ± 5.29 c | 397.5 ± 6.08 a | 210.0 ± 4.58 d | 210.0 ± 3.60 d | 3.95 |
Soil pH | 7.52 ± 0.00 ab | 7.50 ± 0.01 ab | 7.70 ± 0.00 a | 7.60 ± 0.02 a | 7.70 ± 0.00 a | 7.75 ± 0.01 a | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhillon, N.K.; Kaur, S.; Anupam; Buttar, H.S.; Singh, K.; Khapte, P.S.; Kumar, P. Management of Root-Knot Nematode with Non-Chemical Methods for Sustainable Production of Cucumber under Protected Cultivation. Agronomy 2023, 13, 124. https://doi.org/10.3390/agronomy13010124
Dhillon NK, Kaur S, Anupam, Buttar HS, Singh K, Khapte PS, Kumar P. Management of Root-Knot Nematode with Non-Chemical Methods for Sustainable Production of Cucumber under Protected Cultivation. Agronomy. 2023; 13(1):124. https://doi.org/10.3390/agronomy13010124
Chicago/Turabian StyleDhillon, Narpinderjeet Kaur, Sukhjeet Kaur, Anupam, Harwinder Singh Buttar, Kuldip Singh, Pratapsingh S. Khapte, and Pardeep Kumar. 2023. "Management of Root-Knot Nematode with Non-Chemical Methods for Sustainable Production of Cucumber under Protected Cultivation" Agronomy 13, no. 1: 124. https://doi.org/10.3390/agronomy13010124
APA StyleDhillon, N. K., Kaur, S., Anupam, Buttar, H. S., Singh, K., Khapte, P. S., & Kumar, P. (2023). Management of Root-Knot Nematode with Non-Chemical Methods for Sustainable Production of Cucumber under Protected Cultivation. Agronomy, 13(1), 124. https://doi.org/10.3390/agronomy13010124