Glyphosate- and Imazapic-Resistant Chloris virgata Populations in the Southeastern Cropping Region of Australia
Abstract
:1. Introduction
2. Material and Methods
2.1. Seed Collection
2.2. Herbicide Screening
2.3. Statistical Analyses
3. Results and Discussion
3.1. ACCase-Inhibitors
3.2. Glyphosate
3.3. Imazapic
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Llewellyn, R.S.; Ronning, D.; Ouzman, J.; Walker, S.; Mayfield, A.; Clarke, M. Impact of Weeds on Australian Grain Production: The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices. Report for GRDC; CSIRO: Canberra, Australia, 2016; p. 112. [Google Scholar]
- Manalil, S.; Mobli, A.; Chauhan, B.S. Competitiveness of windmill grass (Chloris truncata) and feathertop Rhodes grass (Chloris virgata) in mungbean (Vigna radiata). Crop Pasture Sci. 2020, 71, 916–923. [Google Scholar] [CrossRef]
- Mahajan, G.; Chauhan, B.S. Evaluation of preemergent herbicides for Chloris virgata control in mungbean. Plants 2021, 10, 1632. [Google Scholar] [CrossRef]
- Squires, C.; Mahajan, G.; Walsh, M.; Chauhan, B.S. Effect of planting time and row spacing on growth and seed production of junglerice (Echinochloa colona) and feather fingergrass (Chloris virgata) in sorghum. Weed Technol. 2021, 35, 974–979. [Google Scholar] [CrossRef]
- Desai, H.S.; Chauhan, B.S. Differential germination characteristics of glyphosate-resistant and glyphosate-susceptible Chloris virgata populations under different temperature and moisture stress regimes. PLoS ONE 2021, 16, e0253346. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Manalil, S. Seedbank persistence of four summer grass weed species in the northeast cropping region of Australia. PLoS ONE 2022, 17, e0262288. [Google Scholar] [CrossRef]
- Ngo, T.D.; Boutsalis, P.; Preston, C.; Gill, G. Growth, development, and seed biology of feather fingergrass (Chloris virgata) in Southern Australia. Weed Sci. 2017, 65, 413–425. [Google Scholar] [CrossRef]
- Fernando, N.; Humphries, T.; Florentine, S.K.; Chauhan, B.S. Factors affecting seed germination of feather fingergrass (Chloris virgata). Weed Sci. 2016, 64, 605–612. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. 2022. Available online: http://www.weedscience.org (accessed on 2 October 2022).
- Desai, H.S.; Thompson, M.; Chauhan, B.S. Target-site resistance to glyphosate in Chloris virgata biotypes and alternative herbicide options for its control. Agronomy 2020, 10, 1266. [Google Scholar] [CrossRef]
- Ngo, T.D.; Krishnan, M.; Boutsalis, P.; Gill, G.; Preston, C. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia. Pest Manag. Sci. 2018, 74, 1094–1100. [Google Scholar] [CrossRef]
- Manalil, S.; Werth, J.; Jackson, R.; Chauhan, B.; Preston, C. An assessment of weed flora 14 years after the introduction of glyphosate-tolerant cotton in Australia. Crop Pasture Sci. 2017, 68, 773–780. [Google Scholar] [CrossRef]
- GRDC. Integrated Weed Management of Feathertop Rhodes Grass; GRDC: Kingston, ACT, Australia, 2020; p. 35. [Google Scholar]
- Genstat. Genstat for Windows; Version 21.1.2.25781; VSN International: Hemel Hempstead, UK, 2021. [Google Scholar]
- Singh, V.; Maity, A.; Abugho, S.; Swart, J.; Drake, D.; Bagavathiannan, M. Multiple herbicide–resistant Lolium spp.is prevalent in wheat production in Texas Blacklands. Weed Technol. 2020, 34, 652–660. [Google Scholar]
- Boutsalis, P.; Gill, G.S.; Preston, C. Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across southeastern Australia. Weed Technol. 2012, 26, 391–398. [Google Scholar] [CrossRef]
- Saini, R.K.; Malone, J.; Preston, C.; Gill, G. Target enzyme-based resistance to clethodim in Lolium rigidum populations in Australia. Weed Sci. 2015, 63, 946–953. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Congreve, M.; Mahajan, G. Management options for large plants of glyphosate-resistant feather fingergrass (Chloris virgata) in Australian fallow conditions. PLoS ONE 2021, 16, e0261788. [Google Scholar] [CrossRef] [PubMed]
- Werth, J.; Boucher, L.; Thornby, D.; Walker, S.; Charles, G. Changes in weed species since the introduction of glyphosate-resistant cotton. Crop Pasture Sci. 2013, 64, 791–798. [Google Scholar] [CrossRef]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef]
- Barroso, A.A.M.; Albrecht, A.J.P.; Dos Reis, F.C.; Placido, H.F.; Toledo, R.E.; Albrecht, L.P.; Filho, R.V. Different glyphosate susceptibility in Chloris polydactyla accessions. Weed Technol. 2014, 28, 587–591. [Google Scholar] [CrossRef]
- Bracamonte, E.; da Silveira, H.M.; la Cruz, R.A.-D.; Domínguez-Valenzuela, J.A.; Cruz-Hipolito, H.E.; De Prado, R. From tolerance to resistance: Mechanisms governing the differential response to glyphosate in Chloris barbata. Pest Manag. Sci. 2018, 74, 1118–1124. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Jha, P. Glyphosate resistance in Sonchus oleraceus and alternative herbicide options for its control in Southeast Australia. Sustainability 2020, 12, 8311. [Google Scholar] [CrossRef]
- McWhorter, C.G.; Jordan, T.N.; Wills, G.D. Translocation of 14C-glyphosate in soybeans (Glycine max) and Johnsongrass (Sorghum halepense). Weed Sci. 1980, 28, 113–118. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Malone, J.M.; Boutsalis, P.; Shirley, N.; Preston, C. Temperature influences the level of glyphosate resistance in barnyardgrass (Echinochloa colona). Pest Manag. Sci. 2016, 72, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Vila-Aiub, M.M.; Gundel, P.E.; Yu, Q.; Powles, S.B. Glyphosate resistance in Sorghum halepense and Lolium rigidum is reduced at suboptimal growing temperatures. Pest Manag. Sci. 2013, 69, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Waldecker, M.A.; Wyse, D.L. Soil moisture effects on glyphosate absorption and translocation in common milkweed (Asclepias syriaca). Weed Sci. 1985, 33, 299–305. [Google Scholar] [CrossRef]
- Tranel, P.J.; Wright, T.R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci. 2002, 50, 700–712. [Google Scholar] [CrossRef]
- Walsh, M.; Newman, P.; Powles, S. Targeting weed seeds in-crop: A new weed control paradigm for global agriculture. Weed Technol. 2013, 27, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Widderick, M.; McLean, A. Optimal intervals differ for double knock application of paraquat after glyphosate or haloxyfop for improved control of Echinochloa colona, Chloris virgata and Chloris truncata. Crop Prot. 2018, 113, 1–5. [Google Scholar] [CrossRef]
- Werth, J.; Thornby, D.; Keenan, M.; Hereward, J.; Chauhan, B.S. Effectiveness of glufosinate, dicamba, and clethodim on glyphosate-resistant and -susceptible populations of five key weeds in Australian cotton systems. Weed Technol. 2021, 35, 967–973. [Google Scholar] [CrossRef]
Herbicide | Highly Resistant a | Moderately Resistant b | Slightly Resistant c | Susceptible d |
---|---|---|---|---|
–––––––––––% of the population––––––––––– | ||||
Clethodim | 0 | 0 | 0 | 100 |
Glyphosate | 57.5 | 27.5 | 5 | 10 |
Haloxyfop | 0 | 0 | 0 | 100 |
Imazapic | 2.5 | 85 | 12.5 | 0 |
Population | LD50 | RI | GR50 | RI |
---|---|---|---|---|
––g a.e. ha−1–– | ––g a.e. ha−1–– | |||
7/17 | 1692 | 9.0 | 355 | 2.8 |
11/17 | 1351 | 7.2 | 262 | 2.0 |
12/19 | 1979 | 10.6 | 308 | 2.4 |
3/21 | 1789 | 9.6 | 662 | 5.1 |
12/21 | 187 | 1.0 | 129 | 1.0 |
19/21 | 2689 | 14.4 | 471 | 3.7 |
25/21 | 262 | 1.4 | 148 | 1.1 |
Population | LD50 | RI | GR50 | RI |
---|---|---|---|---|
––g a.i. ha−1–– | ––g a.i. ha−1–– | |||
9/17 | 59 | 1.0 | 4 | 1.0 |
11/17 | 85 | 1.4 | 44 | 11.0 |
7/19 | 135 | 2.3 | 64 | 16.0 |
12/19 | 95 | 1.6 | 15 | 3.8 |
12/21 | 65 | 1.1 | 15 | 3.8 |
16/21 | 92 | 1.6 | 24 | 6.0 |
19/21 | 83 | 1.4 | 22 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, B.S.; Mahajan, G. Glyphosate- and Imazapic-Resistant Chloris virgata Populations in the Southeastern Cropping Region of Australia. Agronomy 2023, 13, 173. https://doi.org/10.3390/agronomy13010173
Chauhan BS, Mahajan G. Glyphosate- and Imazapic-Resistant Chloris virgata Populations in the Southeastern Cropping Region of Australia. Agronomy. 2023; 13(1):173. https://doi.org/10.3390/agronomy13010173
Chicago/Turabian StyleChauhan, Bhagirath Singh, and Gulshan Mahajan. 2023. "Glyphosate- and Imazapic-Resistant Chloris virgata Populations in the Southeastern Cropping Region of Australia" Agronomy 13, no. 1: 173. https://doi.org/10.3390/agronomy13010173
APA StyleChauhan, B. S., & Mahajan, G. (2023). Glyphosate- and Imazapic-Resistant Chloris virgata Populations in the Southeastern Cropping Region of Australia. Agronomy, 13(1), 173. https://doi.org/10.3390/agronomy13010173