Nitrate Content Assessment in Spinach: Exploring the Potential of Spectral Reflectance in Open Field Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Spectral Data
2.3. Analytical Determination
2.4. Statistics
3. Results and Discussion
3.1. Descriptive Statistic Field Experiments
3.2. PCA
3.3. Mixed Linear Models
3.4. Wavebands Responsiveness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Santamaria, P.; Gonnella, M.; Elia, A.; Parente, A.; Serio, F. Ways of reducing rocket salad nitrate content. Acta Hortic. 2001, 548, 529–536. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Colla, G.; Rouphael, Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem. 2019, 285, 468–477. [Google Scholar] [CrossRef]
- Ranasinghe, R.A.S.N.; Marapana, R.A.U.J. Nitrate and nitrite content of vegetables: A review. J. Pharmacogn. Phytochem. 2018, 7, 322–328. [Google Scholar]
- Phillips, W.E.J. Naturally occurring nitrate and nitrite in foods in relation to infant methaemoglobinaemia. Food Chem. Toxicol. 1971, 9, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Hmelak Gorenjak, A.; Cencič, A. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 2013, 42, 158–172. [Google Scholar] [CrossRef]
- Jovanovski, E.; Bosco, L.; Khan, K.; Au-Yeung, F.; Ho, H.; Zurbau, A.; Jenkins, A.L.; Vuksan, V. Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: A randomized, controlled trial in healthy adults. Clin. Nutr. Res. 2015, 4, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Mills, C.E.; Khatri, J.; Maskell, P.; Odongerel, C.; Webb, A.J. It is rocket science–why dietary nitrate is hard to ‘beet’! Part II: Further mechanisms and therapeutic potential of the nitrate-nitrite-NO pathway. Br. J. Clin. Pharmacol. 2017, 83, 140–151. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EC) No 1258/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs. Off. J. Eur. Union (OJEU) 2011, 320, 15–17. [Google Scholar]
- Parks, S.E.; Irving, D.E.; Milham, P.J. A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. Sci. Hortic. 2012, 134, 1–6. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- Loeza Corte, J.M.; Morales Ruiz, A.; Olivar Hernandez, A.; Vargas Ramirez, E.J.; Marin Beltran, M.E.; Leon de la Rocha, J.F.; Hernandez Herrera, P.; Diaz Lopez, E. Effect of nitrogen on agronomic yield, SPAD units and nitrate content in roselle (Hibiscus sabdariffa L.) in dry weather. Int. J. Environ. Agric. Biotech. 2016, 1, 769–776. [Google Scholar]
- Zhou, G.; Xinhua, Y. Assessing nitrogen nutritional status, biomass and yield of cotton with NDVI, SPAD and petiole sap nitrate concentration. Exp. Agric. 2018, 54, 531–548. [Google Scholar] [CrossRef]
- Yue, X.; Hu, Y.; Zhang, H.; Schmidhalter, U. Evaluation of both SPAD reading and SPAD index on estimating the plant nitrogen status of winter wheat. Int. J. Plant Prod. 2020, 14, 67–75. [Google Scholar]
- Galieni, A.; D’Ascenzo, N.; Stagnari, F.; Pagnani, G.; Xie, Q.; Pisante, M. Past and future of plant stress detection: An overview from remote sensing to positron emission tomography. Front. Plant Sci. 2021, 11, 1975. [Google Scholar] [CrossRef]
- Torres, I.; Sánchez, M.T.; Pérez-Marín, D. Integrated soluble solid and nitrate content assessment of spinach plants using portable NIRS sensors along the supply chain. Postharvest Biol. Technol. 2020, 168, 111273. [Google Scholar]
- Entrenas, J.A.; Pérez-Marín, D.; Torres, I.; Garrido-Varo, A.; Sánchez, M.T. Simultaneous detection of quality and safety in spinach plants using a new generation of NIRS sensors. Postharvest Biol. Technol. 2020, 160, 111026. [Google Scholar] [CrossRef]
- Perez-Marin, D.; Torres, I.; Entrenas, J.A.; Vega, M.; Sánchez, M.T. Pre-harvest screening on-vine of spinach quality and safety using NIRS technology. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 207, 242–250. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Chakraborty, S.K.; Kotwaliwale, N.; Vishwakarma, A.K. Chemometric strategies for nondestructive and rapid assessment of nitrate content in harvested spinach using Vis-NIR spectroscopy. J. Food Sci. 2020, 85, 3653–3662. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Tomita, H.; Uno, Y.; Shiraishi, N. Development of method for non-destructive measurement of nitrate concentration in vegetable leaves by near-infrared spectroscopy. IFAC Proc. Vol. 2011, 44, 1773–1778. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.H.; Yang, L.Z. Nondestructive determination of nitrate content in spinach leaves with visible-near infrared high spectra. Spectrosc. Spect. Anal. 2009, 29, 926–930. [Google Scholar]
- Sarkar, S.; Jha, P.K. Is precision agriculture worth it? Yes, maybe. J. Biotechnol. Crop Sci. 2020, 9, 4–9. [Google Scholar]
- Misara, R.; Verma, D.; Mishra, N.; Rai, S.K.; Mishra, S. Twenty-two years of precision agriculture: A bibliometric review. Precis. Agric. 2022, 23, 2135–2158. [Google Scholar] [CrossRef]
- Repubblica Italiana-Ministero delle Politiche Agricole Alimentari e Forestali. Decreto Ministeriale 185 del 13 Settembre 1999. In Approvazione dei “Metodi ufficiali di analisi chimica del suolo”; Gazzetta Ufficiale della Repubblica Italiana—suppl. ord. n.248 del 21 ottobre 1999—Serie generale; Istituto Poligrafico dello Stato: Roma, Italy, 1999. [Google Scholar]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Morton, F.B.; Altschul, D. Data reduction analyses of animal behaviour: Avoiding Kaiser’s criterion and adopting more robust automated methods. Anim. Behav. 2019, 149, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Exploratory Factor Analysis. In Multivariate Data Analysis, 4th ed.; Hair, J., Anderson, R.E., Tatham, R.L., Black, W.C., Eds.; Prentice-Hall Inc.: Hoboken, NJ, USA, 1995; pp. 94–154. [Google Scholar]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486. [Google Scholar] [CrossRef] [PubMed]
- Oppong, F.B.; Agbedra, S.Y. Assessing univariate and multivariate normality. a guide for non-statisticians. Math. Theory Model. 2016, 6, 26–33. [Google Scholar]
- McLean, R.A.; Sanders, W.L.; Stroup, W.W. A unified approach to mixed linear models. Am. Stat. 1991, 45, 54–64. [Google Scholar]
- Microsoft Corporation. Microsoft Excel. 2018. Available online: https://office.microsoft.com/excel (accessed on 2 November 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 2 November 2022).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R package Version 1.0.7; 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 10 November 2022).
- Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots, R package Version 0.4.0; 2020. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 10 November 2022).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- McCaw, Z. RNOmni: Rank Normal Transformation Omnibus Test, R package Version 1.0.1; 2022. Available online: https://CRAN.R-project.org/package=RNOmni (accessed on 10 November 2022).
- Garnier, S.; Ross, N.; Rudis, R.; Camargo, A.P.; Sciaini, M.; Scherer, C. Rvision—Colorblind-Friendly Color Maps for R, R package Version 0.6.2; 2021. Available online: https://sjmgarnier.github.io/viridis/ (accessed on 10 November 2022).
- Pane, C.; Galieni, A.; Riefolo, C.; Nicastro, N.; Castrignanò, A. Hyperspectral Reflectance Response of Wild Rocket (Diplotaxis tenuifolia) Baby-Leaf to Bio-Based Disease Resistance Inducers Using a Linear Mixed Effect Model. Plants 2021, 10, 2575. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Feret, J.B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef] [PubMed]
- Walrafen, G.E.; Pugh, E. Raman Combinations and Stretching Overtones from Water, Heavy Water, and NaCl in Water at Shifts to ca. 7000 cm−1. J. Solut. Chem. 2004, 33, 81–97. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring vegetation systems in the Great Plains with Earth Resources Technology (ERTS) Satellite. In Proceedings of the 3rd Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Verma, B.; Prasad, R.; Srivastava, P.K.; Yadav, S.A.; Singh, P.; Singh, R.K. Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms. Comput. Electron. Agric. 2022, 192, 106581. [Google Scholar] [CrossRef]
- Friedel, M.; Hendgen, M.; Stoll, M.; Löhnertz, O. Performance of reflectance indices and of a handheld device for estimating in-field the nitrogen status of grapevine leaves. Aust. J. Grape Wine Res. 2020, 26, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
Field Coordinates | Genotype | Sowing Date | Harvest Date | |
---|---|---|---|---|
Exp. A | 42°47′50″ N 13°47′02″ E | Bufflehead—Rijk Zwaan | 24 October 2020 | 26 January 2021 |
Exp. B | 42°47′54″ N 13°48′06″ E | Monterey F1—Cora Seeds | 22 January 2021 | 5 May 2021 |
Exp. C | 42°48′08″ N 13°46′49″ E | Kangaroo RZ F1—Rijk Zwaan | 15 October 2021 | 27 January 2022 |
Treatment | Yield (g m−2) Fresh Weight | [Nitrate] (mg kg−1 DW) | |
---|---|---|---|
Exp. A | N_0 | 1467 ± 63 | 1219 ± 152 |
N_50 | 2035 ± 227 | 932 ± 161 | |
N_100 | 2452 ± 21 | 1513 ± 146 | |
N_150 | 2852 ± 333 | 2185 ± 633 | |
N_200 | 3554 ± 286 | 3368 ± 268 | |
N_250 | 3555 ± 198 | 4885 ± 344 | |
Exp. B | N_0 | 1160 ± 113 | 732 ± 68 |
N_50 | 2313 ± 862 | 789 ± 38 | |
N_100 | 2699 ± 471 | 790 ± 91 | |
N_150 | 2749 ± 410 | 1214 ± 250 | |
N_200 | 4440 ± 547 | 2419 ± 626 | |
N_250 | 4412 ± 491 | 2457 ± 237 | |
Exp. C | N_0 | 1253 ± 61 | 1142 ± 60 |
N_50 | 1616 ± 97 | 1089 ± 20 | |
N_100 | 2893 ± 208 | 1577 ± 90 | |
N_150 | 3497 ± 200 | 1809 ± 57 | |
N_200 | 4445 ± 128 | 3489 ± 47 | |
N_250 | 4087 ± 339 | 4147 ± 133 |
Levene’s Test | PC1 | rPC2 | rPC3 |
---|---|---|---|
F value | 1.0477 | 4.7962 | 2.3938 |
p-value | 3.92 × 10−1 | 4.56 × 10−4 *** | 4.08 × 10−2 * |
Random Effects | PC1 | rPC2 | rPC3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Variance | St. Dev | Variance % | Variance | St. Dev | Variance % | Variance | St. Dev | Variance % | |
N_fert: (GE: block) | 318.8 | 17.8 | 25.0% | 0.1837 | 0.4286 | 27.7% | 0.2772 | 17.8 | 28.7% |
GE: block | 153.2 | 12.4 | 12.0% | 0.0883 | 0.2972 | 13.3% | 0.1411 | 12.4 | 14.6% |
GE | 550.2 | 23.5 | 43.2% | 0.2195 | 0.4685 | 33.1% | 0.0923 | 23.5 | 9.6% |
Residual | 250.9 | 15.8 | 19.7% | 0.1709 | 0.4134 | 25.8% | 0.4552 | 15.8 | 47.1% |
Fixed Effects | PC1 | rPC2 | rPC3 | |||
---|---|---|---|---|---|---|
t-Value | p-Value | t-Value | p-Value | t-Value | p-Value | |
N_0 | 1.43 | 2.44 × 10−1 | −3.09 | * 4.16 × 10−2 | 1.91 | 9.32 × 10−2 |
N_50 | −1.25 | 2.20 × 10−1 | 2.46 | * 1.88 × 10−2 | −1.55 | 1.29 × 10−1 |
N_100 | −3.41 | ** 1.68 × 10−3 | 3.53 | ** 1.17 × 10−3 | −1.62 | 1.14 × 10−1 |
N_150 | −2.99 | ** 5.09 × 10−3 | 4.31 | *** 1.21 × 10−4 | −2.34 | * 2.49 × 10−2 |
N_200 | −2.15 | * 3.90 × 10−2 | 6.60 | *** 1.23 × 10−7 | −2.44 | * 2.00 × 10−2 |
N_250 | −2.56 | * 1.49 × 10−2 | 5.97 | *** 8.06 × 10−7 | −2.54 | * 1.57 × 10−2 |
Random Effects | [Nitrate] | ||
---|---|---|---|
Variance | St. Dev | Variance % | |
N_fert: (GE) | 0.0875 | 0.296 | 23.3% |
GE: block | 0.0174 | 0.132 | 4.63% |
GE | 0.165 | 0.407 | 44.0% |
Residual | 0.106 | 0.325 | 28.1% |
Fixed Effects | [Nitrate] | |
---|---|---|
t-Value | p-Value | |
N_0 | −2.40 × 100 | 5.1 × 10−2 |
N_50 | −1.28 × 100 | 2.2 × 10−1 |
N_100 | 6.22 × 10−1 | 5.4 × 10−1 |
N_150 | 2.72 × 100 | * 1.5 × 10−2 |
N_200 | 5.25 × 100 | *** 8.7 × 10−5 |
N_250 | 7.62 × 100 | *** 1.0 × 10−6 |
Exp. | Equation (Reflectance [nm]) | R2 | Exp. | Spectrum Zone | Equation (Reflectance [nm]) | R2 | ||
---|---|---|---|---|---|---|---|---|
Simple Ratio | A | vis-vis | 465/735 | 0.57 | C | vis-vis | 460/740 | 0.77 |
vis-NIR + NIR-vis | 463/1350 | 0.63 | vis-NIR + NIR-vis | 460/1350 | 0.82 | |||
NIR-NIR | 1198/1259 | 0.47 | NIR-NIR | 1150/1157 | 0.67 | |||
vis-SWIR + SWIR-vis | 435/1632 | 0.50 | vis-SWIR + SWIR-vis | 494/1652 | 0.76 | |||
NIR-SWIR + SWIR-NIR | 2298/1345 | 0.52 | NIR-SWIR + SWIR-NIR | 1300/1974 | 0.62 | |||
SWIR-SWIR | 1972/1437 | 0.56 | SWIR-SWIR | 1979/2030 | 0.74 | |||
B | vis-vis | 454/740 | 0.77 | A + B + C | vis-vis | 525/720 | 0.69 | |
vis-NIR + NIR-vis | 454/1240 | 0.77 | vis-NIR + NIR-vis | 496/751 | 0.64 | |||
NIR-NIR | 1301/1294 | 0.83 | NIR-NIR | 1318/1165 | 0.56 | |||
vis-SWIR + SWIR-vis | 745/1522 | 0.76 | vis-SWIR + SWIR-vis | 740/1970 | 0.65 | |||
NIR-SWIR + SWIR-NIR | 1289/1568 | 0.79 | NIR-SWIR + SWIR-NIR | 1165/1970 | 0.65 | |||
SWIR-SWIR | 1593/1570 | 0.83 | SWIR-SWIR | 1972/2270 | 0.68 | |||
Normalized Difference | A | vis-vis | (732 + 463)/(732 − 463) | 0.57 | C | vis − vis | (740 + 460)/(740 − 460) | 0.77 |
vis-NIR + NIR-vis | (1350 + 463)/(1350 − 463) | 0.63 | vis − NIR + NIR − vis | (1350 + 460)/(1350 − 460) | 0.81 | |||
NIR-NIR | (1259 + 1198)/(1259 − 1198) | 0.46 | NIR − NIR | (1150 + 1157)/(1150 − 1157) | 0.67 | |||
vis-SWIR + SWIR-vis | (495 + 1632)/(495 − 1632) | 0.50 | vis − SWIR + SWIR − vis | (494 + 1640)/(494 − 1640) | 0.75 | |||
NIR-SWIR + SWIR-NIR | (1338 + 2297)/(1338 − 2297) | 0.52 | NIR − SWIR + SWIR − NIR | (1120 + 2397)/(1120 − 2397) | 0.60 | |||
SWIR-SWIR | (2297 + 1800)/(2297 − 1800) | 0.56 | SWIR − SWIR | (2030 + 1979)/(2030 − 1979) | 0.73 | |||
B | vis-vis | (740 + 454)/(740 − 454) | 0.77 | A + B + C | vis − vis | (722 + 525)/(722 − 525) | 0.69 | |
vis-NIR + NIR-vis | (454 + 1240)/(454 −1240) | 0.77 | vis − NIR + NIR − vis | (751 + 496)/(751 − 496) | 0.65 | |||
NIR-NIR | (1301 + 1294)/(1301 − 1294) | 0.83 | NIR − NIR | (1318 + 1165)/(1318 − 1165) | 0.57 | |||
vis-SWIR + SWIR-vis | (1570 + 750)/(1570 − 750) | 0.74 | vis − SWIR + SWIR − vis | (740 + 1972)/(740 − 1972) | 0.60 | |||
NIR-SWIR + SWIR-NIR | (1289 + 1570)/(1289 − 1570) | 0.77 | NIR − SWIR + SWIR − NIR | (1349 + 1972)/(1349 − 1972) | 0.62 | |||
SWIR-SWIR | (1593 + 1570)/(1593 −1570) | 0.83 | SWIR − SWIR | (2270 + 1972)/(2270 − 1972) | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stagnari, F.; Polilli, W.; Campanelli, G.; Platani, C.; Trasmundi, F.; Scortichini, G.; Galieni, A. Nitrate Content Assessment in Spinach: Exploring the Potential of Spectral Reflectance in Open Field Experiments. Agronomy 2023, 13, 193. https://doi.org/10.3390/agronomy13010193
Stagnari F, Polilli W, Campanelli G, Platani C, Trasmundi F, Scortichini G, Galieni A. Nitrate Content Assessment in Spinach: Exploring the Potential of Spectral Reflectance in Open Field Experiments. Agronomy. 2023; 13(1):193. https://doi.org/10.3390/agronomy13010193
Chicago/Turabian StyleStagnari, Fabio, Walter Polilli, Gabriele Campanelli, Cristiano Platani, Flaviano Trasmundi, Gianpiero Scortichini, and Angelica Galieni. 2023. "Nitrate Content Assessment in Spinach: Exploring the Potential of Spectral Reflectance in Open Field Experiments" Agronomy 13, no. 1: 193. https://doi.org/10.3390/agronomy13010193
APA StyleStagnari, F., Polilli, W., Campanelli, G., Platani, C., Trasmundi, F., Scortichini, G., & Galieni, A. (2023). Nitrate Content Assessment in Spinach: Exploring the Potential of Spectral Reflectance in Open Field Experiments. Agronomy, 13(1), 193. https://doi.org/10.3390/agronomy13010193