Comparison of Weather Acquisition Periods Influencing a Statistical Model of Aerial Pesticide Drift
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Statistical Analysis
3. Results
4. Conclusions
- Use of Weather Method 2, that implemented weather averages over the length of a run, resulted in model-based estimates for RbCl concentration that compared well with field data averages.
- Model results using Weather Method 2 showed only slight sensitivity to changes in wind speed, and this was more pronounced further downwind. The degree of this effect was also consistent with field results.
- The effects of changes in solar radiation were comparable between the two methods.
- Use of Weather Method 1 resulted in unexpected (inverse) relationship of RbCl concentration with respect to increases in wind speed via sensitivity analysis and would not be recommended for use in a statistical model of downwind spray drift.
- Statistically modeled downwind sampled concentration is highly sensitive to characterization of wind, and care should be taken in its measurement for realistic drift assessment.
- The experiment procedure and statistical analytical methods can be adopted for UAV spray application of plant protection materials to characterize spray deposition and off-target drift.
5. Further Discussion
- Pesticide parameters—the values of the parameters depend on spray volumes, total spray amount of the system to determine spray flight operation parameter specification, coefficient of variation to measure the uniformity of the total system spray application, density of droplets, and effective swath width. Spray volumes can be high volume, medium volume, low volume, very low volume, and ultra-low volume. Among them very low (5~50 L/hm2) and ultra-low (<5 L/hm2) volumes are for UAV spray application, which can be referred to select appropriate spray nozzles.
- Flight parameters, including flight speed, flight altitude, and flight position accuracy.
- Weather parameters including air temperature, relative humidity, precipitation, wind speed, wind direction, and atmospheric stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Zhang, Q. Agricultural Cybernetics; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Ganesh, A.S. A top-down approach. In The Hindu; Retrieved 2022-03-11; ISSN International Centre: Paris, France, 2014; ISSN 0971-751X. [Google Scholar]
- Johnson, M.A. McCook Field 1917–1927; Landfall Press: Dayton, OH, USA, 2002; pp. 190–191. [Google Scholar]
- Huang, Y. Agricultural aviation perspective on precision agriculture in the Mississippi Delta. Smart Agric. 2019, 1, 12–30. [Google Scholar]
- Thomson, S.J.; Huang, Y.; Hanks, J.E.; Martin, D.E. Improving Flow Response of a Variable-rate Aerial Application System by Interactive Refinement. Comput. Electron. Agric. 2010, 73, 99–104. [Google Scholar] [CrossRef]
- Thomson, S.J.; Huang, Y.; Fritz, B.K. Temporal indications of atmospheric stability affecting off-target spray drift in the midsouth U S. In Proceedings of the American Society of Agricultural and Biological Engineers International (ASABE); ASABE: St. Joseph, MI, USA, 2011; 8p. [Google Scholar]
- Thomson, S.J.; Huang, Y.; Fritz, B.K. Atmospheric stability intervals influencing the potential for off-target movement of spray in aerial application. Int. J. Agric. Sci. Technol. 2017, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Thomson, S.J. Atmospheric stability determination at different time intervals for determination of aerial application timing. J. Biosyst. Eng. 2016, 41, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Fisher, D.K.; Silva, M.; Thomson, S.J. A real-time web tool for aerial application to avoid off-target movement of spray induced by stable atmospheric conditions in the Mississippi Delta. Appl. Eng. Agric. 2019, 35, 31–38. [Google Scholar] [CrossRef]
- Huang, Y.; Fisher, D.K. An open-sourced web application for aerial applicators to avoid spray drift caused by temperature inversion. Appl. Eng. Agric. 2021, 37, 77–87. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Pesticide Registration (PR) Notice 2001-x Draft: Spray and Dust Drift Label Statements for Pesticide Products. Available online: https://www.epa.gov/pesticide-registration/pesticide-registration-notices-year (accessed on 20 December 2022).
- Cooper, C.D.; Alley, F.C. Air Pollution Control: A Design Approach, 2nd ed.; Waveland Press, Inc.: Prospect Heights, IL, USA, 1994. [Google Scholar]
- Yates, W.E.; Akesson, N.B.; Coutts, H.H. Evaluation of drift residues from aerial applications. Trans. ASAE 1966, 9, 389–393. [Google Scholar] [CrossRef]
- Yates, W.E.; Akesson, N.B.; Coutts, H.H. Drift hazards related to ultra-low-volume and diluted sprays applied by agricultural aircraft. Trans. ASAE 1967, 10, 628–632. [Google Scholar] [CrossRef]
- Pasquill, F.; Smith, F.B. Atmospheric Diffusion: A Study of the Dispersion of Windborne Material from Industrial and Other Sources, 3rd ed.; Ellis Horwood Limited: Chichester, UK, 1983. [Google Scholar]
- Bird, S.L. A compilation of aerial spray drift field study data for low-flight agricultural application of pesticides. In Chelsea, Mich.: Environmental Fate of Agrochemicals: A Modern Perspective; Leng, M.L., Loevey, E.M., Zubkoff, P.L., Eds.; Lewis Publishers: Chelsea, MI, USA, 1995. [Google Scholar]
- Ganzlemeier, H.; Rautmann, D.; Spangenberg, R.; Streloke, M.; Herrmann, M.; Wenzelburger, H.; Walte, H. Studies on the Spray Drift of Plant Protection Products; Blackwell Wissenschafts-Verlag GmbH: Berlin, Germany, 1995. [Google Scholar]
- Arvidsson, T. Spray Drift as Influenced by Meteorological and Technical Factors. A Methodological Study; Acta Universitatis Agriculturae Sueciae, Agraria 71; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1997. [Google Scholar]
- Smith, D.B.; Bode, L.E.; Gerard, P.D. Predicting ground boom spray drift. Trans. ASAE 2000, 43, 547–553. [Google Scholar] [CrossRef]
- Hewitt, A.J.; Johnson, D.; Fish, J.D.; Hermansky, C.G.; Valcore, D.L. The development of the spray drift task force database on pesticide movements for aerial agricultural spray applications. Environ. Toxicol. Chem. 2001, 21, 648–658. [Google Scholar] [CrossRef]
- Maber, J.; Dewar, P.; Praat, J.P.; Hewitt, A.J. Real time spray drift prediction. Acta Hortic. 2001, 566, 493–498. [Google Scholar] [CrossRef]
- Fritz, B.K.; Hoffmann, W.C.; Lan, Y.; Thomson, S.J.; Huang, Y. Low-level atmospheric temperature inversions: Characteristics and impacts on aerial applications. Int. Agric. Eng. J. 2008, X, PM-08001. [Google Scholar]
- Turner, D.B. Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Teske, M.E.; Bird, S.L.; Esterly, D.M.; Curbishley, T.B.; Ray, S.L.; Perry, S.G. AgDRIFT®: A model for estimating near-field spray drift from aerial applications. Environ. Toxicol. Chem. 2002, 21, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Teske, M.E.; Thistle, H.W.; Ice, G.G. Technical advances in modeling aerially applied sprays. Trans. ASAE 2003, 46, 985–996. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Meteorological Monitoring Guidance for Regulatory Modeling Applications; EPA-454/R-99-005; USEPA Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2000. [Google Scholar]
- ASAE S561.1; Procedures for Measuring Drift Deposits from Ground, Orchard, and Aerial Sprayers. ASABE: St. Joseph, MI, USA, 2004.
- Huang, Y.; Thomson, S.J. Characterization of in-swath spray deposition for CP-11TT flat-fan nozzles used in low volume aerial application of crop production and protection materials. Trans. ASABE 2011, 54, 1973–1979. [Google Scholar] [CrossRef]
- Huang, Y.; Zhan, W.; Fritz, B.K.; Thomson, S.J. Optimizing selection of controllable variables to minimize downwind drift from aerially applied sprays. Appl. Eng. Agric. 2012, 28, 307–314. [Google Scholar] [CrossRef]
- Felsot, A.S.; Unsworth, J.B.; Linders, J.B.H.J.; Roberts, G.; Rautman, D.; Harris, C.; Carazo, E. Agrochemical spray drift; assessment and mitigation—A review. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2011, 46, 1–23. [Google Scholar] [CrossRef]
- Huang, Y.; Thomson, S.J. Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes. Int. J. Agric. Biol. Eng. 2011, 4, 1–6. [Google Scholar]
- Huang, Y.; Thomson, S.J.; Ortiz, B.V.; Reddy, K.N.; Ding, W.; Zablotowicz, R.M.; Bright, J.R. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements. Biosyst. Eng. 2010, 107, 212–220. [Google Scholar] [CrossRef]
- Hoffmann, W.C.; Fritz, B.K.; Thornburg, J.W.; Bagley, W.E.; Birchfield, N.B.; Ellenberger, J. Spray drift reduction evaluations of spray nozzles using a standardized testing protocol. J. ASTM Int. 2010, 7, JAI102820. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.; O’Donnell, C.C.; Chauhan, B.S.; Adkins, S.W.; Kruger, G.R.; Wang, R.; Ferreira, P.H.U.; Hewitt, A.J. Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel. Crop Prot. 2015, 76, 1–6. [Google Scholar] [CrossRef]
- Gil, E.; Gallarta, M.; Balsari, P.; Marucco, P.; Almajanoc, M.P.; Llop, J. Influence of wind velocity and wind direction on measurements of spray drift potential of boom sprayers using drift test bench. Agric. For. Meteorol. 2015, 202, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Fritz, B.K. Meteorological effects on deposition and drift of aerially applied sprays. Trans. ASABE 2006, 49, 1295–1301. [Google Scholar] [CrossRef]
- Arvidsson, T.; Bergstrom, L.; Kreuger, J. Spray drift as influenced by meteorological and technical factors. Pest Manag. Sci. 2009, 67, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.L.; Perry, S.G.; Ray, S.L.; Teske, M.E. Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model. Environ. Toxicol. Chem. 2002, 21, 672–681. [Google Scholar] [CrossRef]
- Woods, N.; Craig, I.P.; Dorr, G.; Young, B. Spray drift of pesticides arising from aerial application in cotton. J. Environ. Qual. 2001, 30, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thistle, H.W.; Teske, M.E.; Richardson, B.; Strand, T.M. Model physics and collection efficiency in estimates of pesticide spray drift model performance. Trans. ASABE 2020, 63, 1939–1945. [Google Scholar] [CrossRef]
- Thomson, S.J.; Womac, A.; Mulrooney, J. Reducing pesticide drift by considering propeller rotation effects from aerial application near buffer zones. Sustain. Agric. Res. 2013, 2, 41–51. [Google Scholar] [CrossRef]
- CPNozzles. Calculation Tools. Available online: https://cpnozzles.com/calculation-tools/ (accessed on 20 December 2022).
- Thomson, S.J.; Young, L.D.; Bright, J.R.; Foster, P.N.; Poythress, D.D. Effects of Spray Release Height and Nozzle/Atomizer Configuration on Penetration of Spray in a Soybean Canopy—Preliminary Results; Technical Paper AA07-008; National Agricultural Aviation Association (NAAA): Washington, DC, USA, 2007. [Google Scholar]
- Sato, A. The RMAX Helicopter UAV; Public Report; Aeronautic Operations; Yamaha Motor Co., Ltd.: Shizuoka, Japan, 2003. [Google Scholar]
- Miller, J.W. Report on the Development and Operation of an UAV for an Experiment on Unmanned Application of Pesticides; AFRL, USAF: Youngstown, OH, USA, 2005. [Google Scholar]
- Huang, Y.; Hoffmann, W.C.; Lan, Y.; Wu, W.; Fritz, B.K. Development of a spray system for an unmanned aerial vehicle platform. Appl. Eng. Agric. 2009, 25, 803–809. [Google Scholar] [CrossRef]
- Chen, P.; Douzals, J.P.; Lan, Y.; Cotteux, E.; Delpuech, X.; Pouxviel, G.; Zhan, Y. Characteristics of unmanned aerial spraying systems and related spray drift: A review. Front. Plant Sci. 2022, 13, 2726. [Google Scholar] [CrossRef]
- Wang, C.; Herbst, A.; Zeng, A.; Wongsuk, S.; Qiao, B.; Qi, P.; Bonds, J.; Overbeck, V.; Yang, Y.; Gao, W.; et al. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Sci. Total Environ. 2021, 777, 146181. [Google Scholar] [CrossRef] [PubMed]
- Biglia, A.; Grella, M.; Bloise, N.; Comba, L.; Mozzanini, E.; Sopegno, A.; Pittarello, M.; Dicembrini, E.; Eloi Alcatrão, L.; Guglieri, G.; et al. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Sci. Total Environ. 2022, 845, 157292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Y.; Reddy, K.N.; Wang, B. Assessing crop damage from dicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning. Pest Manag. Sci. 2019, 75, 3260–3272. [Google Scholar] [CrossRef] [PubMed]
Test Run * | Mean Air Temp (°C) | Mean Relative Humidity (%) | Mean Solar Irradiance (kW/m2) | Mean Wind Velocity (m/s) | Mean Wind Direction ** (Degrees) |
---|---|---|---|---|---|
1 | 29 | 44 | 0.6 | 4.8 | 2 |
2 | 29 | 43 | 0.5 | 5.0 | −6 |
3 | 29 | 42 | 0.4 | 4.8 | 3 |
4 | 29 | 43 | 0.4 | 4.4 | −3 |
5 | 25 | 75 | 0.7 | 5.5 | −9 |
6 | 25 | 74 | 0.6 | 3.3 | −9 |
7 | 27 | 64 | 1.0 | 4.0 | −6 |
8 | 28 | 55 | 0.9 | 3.6 | 8 |
9 | 29 | 57 | 0.9 | 3.9 | −17 |
10 | 29 | 55 | 1.0 | 4.3 | −15 |
11 | 30 | 54 | 0.9 | 3.9 | −19 |
12 | 30 | 56 | 0.8 | 3.3 | −27 |
13 | 30 | 51 | 0.9 | 3.8 | −22 |
14 | 30 | 51 | 0.4 | 4.1 | −11 |
15 | 30 | 52 | 0.3 | 4.0 | −32 |
16 | 29 | 52 | 0.3 | 3.9 | −42 |
Downwind Distance (m) | Modeled ln(conc) at Minimum Value of Solar (ng/L) | Modeled ln(conc) at Maximum Value of Solar (ng/L) | % Difference between Min and Max Values | Modeled ln(conc) at Minimum Wind Speed (ng/L) | Modeled ln(conc) at Maximum Wind Speed (ng/L) | % Difference between Min and Max Values |
---|---|---|---|---|---|---|
100 | 1.049 | 0.654 | −37.7 | 1.049 | 0.351 | −66.5 |
135 | 0.999 | 0.605 | −39.4 | 0.999 | 0.301 | −69.9 |
200 | 0.926 | 0.533 | −42.4 | 0.926 | 0.228 | −75.4 |
320 | 0.833 | 0.439 | −47.3 | 0.833 | 0.134 | −83.9 |
Downwind Distance (m) | Modeled ln(conc) at Minimum Value of Solar (ng/L) | Modeled ln(conc) at Maximum Value of Solar (ng/L) | % Difference between Min and Max Values | Modeled ln(conc) at Minimum Wind Speed (ng/L) | Modeled ln(conc) at Maximum Wind Speed (ng/L) | % Difference between Min and Max Values |
---|---|---|---|---|---|---|
100 | 0.688 | 0.398 | −42.2 | 0.688 | 0.723 | 5.1 |
135 | 0.643 | 0.352 | −45.3 | 0.643 | 0.677 | 5.3 |
200 | 0.575 | 0.285 | −50.4 | 0.575 | 0.610 | 6.1 |
320 | 0.489 | 0.198 | −59.5 | 0.489 | 0.524 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomson, S.J.; Huang, Y. Comparison of Weather Acquisition Periods Influencing a Statistical Model of Aerial Pesticide Drift. Agronomy 2023, 13, 213. https://doi.org/10.3390/agronomy13010213
Thomson SJ, Huang Y. Comparison of Weather Acquisition Periods Influencing a Statistical Model of Aerial Pesticide Drift. Agronomy. 2023; 13(1):213. https://doi.org/10.3390/agronomy13010213
Chicago/Turabian StyleThomson, Steven J., and Yanbo Huang. 2023. "Comparison of Weather Acquisition Periods Influencing a Statistical Model of Aerial Pesticide Drift" Agronomy 13, no. 1: 213. https://doi.org/10.3390/agronomy13010213
APA StyleThomson, S. J., & Huang, Y. (2023). Comparison of Weather Acquisition Periods Influencing a Statistical Model of Aerial Pesticide Drift. Agronomy, 13(1), 213. https://doi.org/10.3390/agronomy13010213