Sediment-Based Growing Media Provides a Window Opportunity for Environmentally Friendly Production of Ornamental Shrubs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Physical, Chemical and Biochemical Properties of Growing Media
2.3. Plant Growth and Biomass Production
2.4. Physiological Analyses
2.5. Statistical Analysis
3. Results
3.1. Physiological Responses of Plants during Vegetative Growth
3.2. Plant and Growing Media Performance at the End of Growing Cycle
3.2.1. Properties of Growing Media
3.2.2. Plant Growth and Biomass Production
3.2.3. Principal Component Analysis (PCA)
4. Discussion
4.1. Growing Media Effect
4.1.1. Comparison between Peat- and Sediment-Based Growing Media (PE vs. TSs)
4.1.2. Comparison among Sediment-Based Growing Media Mixed with Different Matrices (PE:TS vs. CF:TS vs. WF:TS)
4.2. Irrigation Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Royalfloraholland. Available online: https://np-royalfloraholland-production.s3-eu-west-1.amazonaws.com/8-Over-ons/Documenten/Royal-FloraHolland-Annual-Report-2021.pdf (accessed on 27 September 2022).
- Daniele, C.; Fratini, R.; Marone, E. Economic analysis to support the implementation of Directive 60/2000 EC in the context of the plant nurseries of Pistoia (Italy). Econ. Dirit. Agroaliment. 2011, 16, 107–121. [Google Scholar]
- Lazzerini, G.; Merante, P.; Lucchetti, S.; Nicese, F.P. Assessing environmental sustainability of ornamental plant production: A nursery level approach in Pistoia District, Italy. Agroecol. Sustain. Food Syst. 2018, 42, 911–932. [Google Scholar] [CrossRef]
- Gabellini, S.; Scaramuzzi, S. Evolving consumption trends, marketing strategies, and governance settings in ornamental horticulture: A grey literature review. Horticulturae 2022, 8, 234. [Google Scholar] [CrossRef]
- Salachna, P. Trends in ornamental plant production. Horticulturae 2022, 8, 413. [Google Scholar] [CrossRef]
- Lazzerini, G.; Lucchetti, S.; Nicese, F.P. Green House Gases (GHG) emissions from the ornamental plant nursery industry: A Life Cycle Assessment (LCA) approach in a nursery district in central Italy. J. Clean. Prod. 2016, 112, 4022–4030. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Arias, O.; Pulgar, J.A.; Soto, M. Application of organic wastes to soils and legislative intricacies in a circular economy context. Clean Technol. Environ. Policy 2022, 24, 1871–1888. [Google Scholar] [CrossRef]
- Durand, S.; Jackson, B.E.; Fonteno, W.C.; Michel, J.C. The use of wood fiber for reducing risks of hydrophobicity in peat-based substrates. Agronomy 2021, 11, 907. [Google Scholar] [CrossRef]
- Mattei, P.; D’Acqui, L.P.; Nicese, F.P.; Lazzerini, G.; Masciandaro, G.; Macci, C.; Doni, S.; Sarteschi, F.; Giagnoni, L.; Renella, G. Use of phytoremediated sediments dredged in maritime port as plant nursery growing media. J. Environ. Manag. 2017, 186, 225–232. [Google Scholar] [CrossRef]
- Macci, C.; Vannucchi, F.; Doni, S.; Peruzzi, E.; Lucchetti, S.; Castellani, M.; Masciandaro, G. Recovery and environmental recycling of sediments: The experience of CNR-IRET Pisa. J. Soils Sediments 2022, 22, 2865–2872. [Google Scholar] [CrossRef]
- Martínez-Nicolás, J.J.; Legua, P.; Núñez-Gómez, D.; Martínez-Font, R.; Hernández, F.; Giordani, E.; Melgarejo, P. Potential of dredged bioremediated marine sediment for strawberry cultivation. Sci. Rep. 2020, 10, 19878. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Nicolás, J.J.; Legua, P.; Hernández, F.; Martínez-Font, R.; Giordani, E.; Melgarejo, P. Effect of phytoremediated port sediment as an agricultural medium for pomegranate cultivation: Mobility of contaminants in the plant. Sustainability 2021, 13, 9661. [Google Scholar] [CrossRef]
- Tozzi, F.; Renella, G.; Cristina, M.; Masciandaro, G.; Gonnelli, C.; Colzi, I.; Giagnoni, L.; Pecchioli, S.; Nin, S.; Giordani, E. Agronomic performance and food safety of strawberry cultivated on a remediated sediment. Sci. Total Environ. 2021, 796, 148803. [Google Scholar] [CrossRef]
- Tozzi, F.; Del Bubba, M.; Petrucci, W.A.; Pecchioli, S.; Macci, C.; García, F.H.; Nicolás, J.J.M.; Giordani, E. Use of a remediated dredged marine sediment as a substrate for food crop cultivation: Sediment characterization and assessment of fruit safety and quality using strawberry (Fragaria x ananassa Duch.) as model species of contamination transfer. Chemosphere 2020, 238, 124651. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; Martínez-Nicolás, J.J.; Melgarejo, P.; Núñez-Gómez, D.; Lidón, V.; Martínez-Font, R.; Legua, P. Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable ‘Verna’Lemon Production. Foods 2022, 11, 3053. [Google Scholar] [CrossRef]
- Ferrans, L.; Schmieder, F.; Mugwira, R.; Marques, M.; Hogland, W. Dredged sediments as a plant-growing substrate: Estimation of health risk index. Sci. Total Environ. 2022, 846, 157463. [Google Scholar] [CrossRef]
- Brendel, O. The relationship between plant growth and water consumption: A history from the classical four elements to modern stable isotopes. Ann. For. Sci. 2021, 78, 47. [Google Scholar] [CrossRef]
- Tozzi, F.; Antonetti, M.; Prisa, D.; Burchi, G.; Turchi, A.; Macci, C.; Peruzzi, E.; Nin, S. Developing patterns in Prunus laurocerasus grown on sediment enriched substrates. J. Soils Sediments 2022, 22, 2117–2127. [Google Scholar] [CrossRef]
- UNI EN 13041 Soil Improvers and Growing Media—Determination of Physical Properties—Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total pore Space 2012. Available online: https://store.uni.com/en/uni-en-13041-2012 (accessed on 27 December 2022).
- UNI EN 13038 Soil Improvers and Growing Media—Determination of Electrical Conductivity 2012. Available online: https://store.uni.com/en/uni-en-13038-2012 (accessed on 27 December 2022).
- UNI EN 13037 Soil improvers and growing media—Determination of pH 2012. Available online: https://store.uni.com/en/uni-en-13037-2012 (accessed on 27 December 2022).
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Kukkonen, S.; Vestberg, M.; Sirviö, H.; Niemi, R.M. Application of soil enzyme activity test kit in a field experiment. Soil Biol. Biochem. 2001, 33, 1665–1672. [Google Scholar] [CrossRef]
- De Groot, C.C.; Marcelis, L.F.M.; Van den Boogaard, R.; Lambers, H. Regulation of growth by phosphorus supply in whole tomato plants. In Plant Nutrition Developments in Plant and Soil Sciences; Horst, W.J., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 114–115. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4-2. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, M.; Gu, X.; Wang, J.; Pang, Y.; Gao, L.; Xia, T. Analysis of interfering substances in the measurement of Malondialdehyde content in plant leaves. Am. J. Biochem. Biotechnol. 2013, 9, 235–242. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic-Amst. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Tozzi, F.; Pecchioli, S.; Renella, G.; Melgarejo, P.; Legua, P.; Macci, C.; Doni, S.; Masciandaro, G.; Giordani, E.; Lenzi, A. Remediated marine sediment as growing medium for lettuce production: Assessment of agronomic performance and food safety in a pilot experiment. J. Sci. Food Agric. 2019, 99, 5624–5630. [Google Scholar] [CrossRef]
- Melgarejo, P.; Legua, P.; Perez-Sarmiento, F.; Martínez-Font, R.; Martínez-Nicol, J.J.; Giordani, E.; Tozzi, F.; Hernandez, F. Effect of a new remediated substrate on bioactive compounds and antioxidant characteristics of pomegranate (Punica granatum L.) cultivar “Purple Queen”. Arch. Agron. Soil. Sci. 2019, 65, 1565–1574. [Google Scholar] [CrossRef]
- Raviv, M. Composts in growing media: What’s new and what’s next? Acta Hortic. 2013, 982, 39–52. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [Green Version]
- European Union Regulation 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1009 (accessed on 27 December 2022).
- Government of Italy. Legislative Decree n. 52 of 29 April 2010: Reorganization and Review of the Fertilizer Regulations (Riordino e Revisione Della Disciplina in Materia di Fertilizzanti). Gazzetta Ufficiale della Repubblica Italiana. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2010;75 (accessed on 27 December 2022).
- Sinsabaugh, R.S. Enzymic analysis of microbial pattern and process. Biol. Fertil. Soils 1994, 17, 69–74. [Google Scholar] [CrossRef]
- Fujita, K.; Miyabara, Y.; Kunito, T. Microbial biomass and ecoenzymatic stoichiometries vary in response to nutrient availability in an arable soil. Eur. J. Soil. Biol. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Paillat, L.; Cannavo, P.; Barraud, F.; Huché-Thélier, L.; Guénon, R. Growing medium type affects organic fertilizer mineralization and CNPS microbial enzyme activities. Agronomy 2020, 10, 1955. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Fernández-Martínez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, V.; Peruzzi, E.; Masciandaro, G.; Doni, S.; Macci, C.; Bonari, E.; Silvestri, N. Comparison among Different Rewetting Strategies of Degraded Agricultural Peaty Soils: Short-Term Effects on Chemical Properties and Ecoenzymatic Activities. Agronomy 2020, 10, 1084. [Google Scholar] [CrossRef]
- Naylor, D.; Sadler, N.; Bhattacharjee, A.; Graham, E.B.; Anderton, C.R.; McClure, R.; Lipton, M.; Hofmockel, K.S.; Jansson, J.K. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 2020, 45, 29–59. [Google Scholar] [CrossRef]
- Turner, B.L.; Condron, L.M.; France, C.A.M.; Lehmann, J.; Solomon, D.; Peltzer, D.A.; Richardson, S.J. Sulfur dynamics during long-term ecosystem development. Biogeochemistry 2016, 128, 281–305. [Google Scholar] [CrossRef]
- Khuong, T.T.H.; Robaglia, C.; Caffarri, S. Photoprotection and growth under different lights of Arabidopsis single and double mutants for energy dissipation (npq4) and state transitions (pph1). Plant Cell Rep. 2019, 38, 741–753. [Google Scholar] [CrossRef]
- Loureiro, S.; Santos, C.; Pinto, G.; Costa, A.; Monteiro, M.; Nogueira, A.J.A.; Soares, A. Toxicity assessment of two soils from Jales mine (Portugal) Using Plants: Growth and biochemical parameters. Arch. Environ. Contam. Toxicol. 2006, 50, 182–190. [Google Scholar] [CrossRef]
- Taulavuori, E.; Hellström, E.K.; Taulavuori, K.; Laine, K. Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J. Exp. Bot. 2001, 52, 2375–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asati, A.; Pichhode, M.; Nikhil, K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016, 5, 2319–4847. [Google Scholar]
- Wang, S.; Zheng, J.; Wang, Y.; Yang, Q.; Chen, T.; Chen, Y.; Chi, D.; Xia, D.; Siddique, K.H.M.; Wang, T. Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Front. Plant Sci. 2021, 12, 650432. [Google Scholar] [CrossRef]
- Strømme, E. Modern Potting Composts. A Manual on the Preparation and Use of Growing Media for Pot Plants; Bunt, A.C., Ed.; Allen and Unwin: London, UK, 1976; Volume 277, pp. 367–368. ISBN 0-04-635010-1. [Google Scholar]
- Thomas, M.B.; Spurway, M.I.; Stewart, D.P.C. A review of factors influencing organic matter decomposition and nitrogen immobilisation in container media. In The International Plant Propagators’ Society Combined Proceedings; The International Plant Propagators’ Society: Carlisle, PA, USA, 1999; Volume 48, pp. 66–71. [Google Scholar]
- Mondini, C.; Cayuela, M.L.; Sinicco, T.; Sánchez-Monedero, M.A.; Bertolone, E.; Bardi, L. Soil application of meat and bone meal. Short-term e_ects on mineralization dynamics and soil biochemical and microbiological properties. Soil Biol. Biochem. 2008, 40, 462–474. [Google Scholar] [CrossRef]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Abell, G.C.; Banks, J.; Ross, D.J.; Keane, J.P.; Robert, S.S.; Revill, A.T.; Volkman, J.K. Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. FEMS Microbiol. Ecol. 2011, 75, 111–122. [Google Scholar] [CrossRef]
- Choi, S.; Xu, L.; Kim, H.-J. Influence of physical properties of peat-based potting mixes substituted with parboiled rice hulls on plant growth under two irrigation regimes. Hortic Environ. Biotechnol. 2019, 60, 895–911. [Google Scholar] [CrossRef]
Parameters | Treated Sediment | Coconut Fiber | Peat | Wood Fiber | Pumice |
---|---|---|---|---|---|
EC (dS m−1) | 0.27 | 0.31 | 0.06 | 0.21 | 0.03 |
pH | 7.8 | 6.9 | 4.3 | 6.5 | 7.5 |
N-NH3 (mg kg−1) | 0.6 | 6.8 | 53 | 9.9 | 0.4 |
N-NO3(mg kg−1) | 45 | 132 | 100 | 516 | 17 |
Humidity (%) | 2.20 | 9.58 | 13.97 | 7.08 | 1.58 |
TN (%) | 0.08 | 0.99 | 1.27 | 1.40 | 0.02 |
TOC (%) | 0.71 | 26.4 | 35.8 | 44.6 | 0.3 |
TP (g kg−1) | 382 | 441 | 193 | 660 | 308 |
Metals | |||||
Ca (g kg−1) | 24.0 | 4.3 | 2.3 | 8.6 | 6.3 |
Mg (g kg−1) | 5.7 | 1.2 | 6.2 | 0.9 | 3.5 |
Na (g kg−1) | 1.6 | 2.6 | 0.3 | 0.5 | 2.6 |
K (g kg−1) | 1.9 | 4.0 | 0.1 | 1.4 | 9.9 |
Fe (g kg−1) | 17.4 | 3.5 | 0.7 | 0.6 | 10.3 |
Cu (mg kg−1) | 45 | 12 | 10 | 15 | 17 |
Zn (mg kg−1) | 165 | 12 | 8 | 21 | 33 |
Mn (mg kg−1) | 279 | 40 | 15 | 52 | 358 |
Ni (mg kg−1) | 44 | 4 | 3 | 5 | 9 |
Cr (mg kg−1) | 48 | 6 | 3 | 7 | 9 |
Pb (mg kg−1) | 46 | 8 | 13 | 9 | 33 |
Cd (mg kg−1) | - | - | - | - | - |
Growing Media | Raw Material (v/v) | ||||
---|---|---|---|---|---|
Peat (PE) | Coconut Fiber (CF) | Wood Fiber (WF) | Pumice (Pu) | Treated Sediment (TS) | |
PE (control) | 60 | - | - | 40 | - |
PE:TS25 | 45 | - | - | 30 | 25 |
PE:TS50 | 30 | - | - | 20 | 50 |
CF:TS25 | - | 45 | - | 30 | 25 |
CF:TS50 | - | 30 | - | 20 | 50 |
WF:TS25 | - | - | 45 | 30 | 25 |
WF:TS50 | - | - | 30 | 20 | 50 |
Treatment | Gas Exchanges Parameters | Leaf Area | ||||
---|---|---|---|---|---|---|
GM | Ci | WUEPn | E | Gs | Pn | |
PE | 245.83 b | 4.50 abc | 1.92 a | 91.20 b | 7.91 a | 7204.65 a |
PE:TS25 | 244.83 b | 4.55 ab | 1.68 b | 91.00 b | 7.24 b | 5729.63 ab |
PE:TS50 | 250.50 ab | 4.40 abc | 1.68 b | 94.85 a | 7.05 b | 5626.27 ab |
CF:TS25 | 248.00 b | 4.45 abc | 1.48 c | 60.85 c | 5.10 c | 5271.15 ab |
CF:TS50 | 259.67 a | 4.80 a | 0.98 d | 59.15 d | 4.99 c | 4705.11 bc |
WF:TS25 | 253.83 ab | 4.10 bc | 0.70 e | 56.00 e | 4.64 d | 4083.92 bc |
WF:TS50 | 266.83 a | 3.95 c | 0.64 e | 48.62 f | 4.05 e | 3594.12 c |
DWV | ||||||
DWV 250 | 252.95 | 4.36 | 1.43 a | 76.37 a | 6.24 a | 4852.32 |
DWV 200 | 245.48 | 4.43 | 1.16 b | 63.94 b | 5.43 b | 5494.78 |
Interaction | ||||||
PE DWV 250 | 251.00 | 4.70 abc | 2.20 a | 94.70 c | 8.60 a | 6743.95 |
PE DWV 200 | 240.67 | 4.30 abcd | 1.64 bc | 87.70 d | 7.21 b | 7665.34 |
PE:TS25 DWV 250 | 250.00 | 4.50 abc | 1.96 b | 80.30 e | 7.45 b | 5380.85 |
PE:TS25 DWV 200 | 239.67 | 4.60 abc | 1.40 d | 101.70 b | 7.03 c | 6078.42 |
PE:TS50 DWV 250 | 244.67 | 5.00 ab | 1.73 bc | 82.70 e | 7.09 c | 5453.03 |
PE:TS50 DWV 200 | 256.33 | 3.80 bcd | 1.62 cd | 107.00 a | 7.00 c | 5899.50 |
CF:TS25 DWV 250 | 251.33 | 4.00 abcd | 1.68 bcd | 65.70 f | 5.20 e | 4943.83 |
CF:TS25 DWV 200 | 244.67 | 4.90 ab | 1.28 e | 56.00 gh | 5.00 e | 5598.47 |
CF:TS50 DWV 250 | 262.33 | 4.50 abc | 1.15 e | 63.00 f | 5.09 e | 4482.64 |
CF:TS50 DWV 200 | 257.00 | 5.10 a | 0.82 f | 55.30 gh | 4.90 e | 4927.58 |
WF:TS25 DWV 250 | 247.00 | 4.70 abc | 0.78 fg | 58.00 g | 4.99 e | 3598.40 |
WF:TS25 DWV 200 | 260.67 | 3.50 cd | 0.61 fg | 54.00 h | 4.29 f | 4569.43 |
WF:TS50 DWV 250 | 279.33 | 3.10 d | 0.70 fg | 41.50 i | 4.90 e | 3363.52 |
WF:TS50 DWV 200 | 254.33 | 4.80 ab | 0.58 g | 24.60 l | 3.20 g | 3824.73 |
Significance | ||||||
GM | * | * | ** | ** | ** | ** |
DWV | ns | ns | ** | ** | ** | ns |
GMxDWV | ns | ** | ** | ** | ** | ns |
GM | Chls | Carotenoids | MDA | Chroma | ||
---|---|---|---|---|---|---|
a | b | Tot | ||||
PE | 0.25 a | 0.97 a | 1.21 a | 0.22 c | 0.47 a | 7.70 c |
PE:TS25 | 0.68 b | 0.70 bc | 0.77 b | 0.50 ab | 0.40 b | 8.05 bc |
PE:TS50 | 0.08 b | 0.67 c | 0.75 b | 0.48 b | 0.38 b | 8.56 b |
CF:TS25 | 0.10 b | 0.84 abc | 0.93 b | 0.60 ab | 0.32 c | 8.91 b |
CF:TS50 | 0.11 b | 0.77 bc | 0.88 b | 0.49 ab | 0.37 b | 8.91 b |
WF:TS25 | 0.05 b | 0.75 bc | 0.80 b | 0.63 ab | 0.36 bc | 11.60 a |
WF:TS50 | 0.07 b | 0.86 ab | 0.92 b | 0.72 a | 0.38 b | 11.10 a |
DWV | ||||||
DWV 250 | 0.076 b | 0.745 b | 0.822 b | 0.556 a | 0.38 | 9.26 |
DWV 200 | 0.128 a | 0.839 a | 0.967 a | 0.486 b | 0.38 | 9.39 |
Significance | ||||||
GM | ** | * | ** | ** | ** | ** |
DWV | * | * | * | * | ns | ns |
GMxDWV | ns | ns | ns | ns | ns | ns |
GM | Ca | Cu | Fe | K | Mg | Mn | P |
---|---|---|---|---|---|---|---|
PE | 13,432.5 b | 1.3 cd | 27.1 bc | 14,812.9 c | 1568.5 b | 1097.1 a | 4452.8 a |
PE:TS25 | 14,434.1 ab | 2.0 bc | 22.0 c | 16,408.2 b | 1915.7 a | 81.1 b | 1979.7 d |
PE:TS50 | 16,074.0 a | 1.8 cd | 24.6 c | 16,665.3 b | 1948.7 a | 52.7 b | 1985.8 d |
CF:TS25 | 10,355.0 cd | 0.9 d | 22.4 c | 19,331.7 a | 1522.8 b | 73.1 b | 2397.7 cd |
CF:TS50 | 11,459.6 c | 1.6 cd | 25.7 bc | 18,308.7 a | 1378.7 bc | 29.6 b | 2062.7 d |
WF:TS25 | 11,568.0 c | 3.6 a | 31.9 b | 18,132.4 a | 1400.3 bc | 81.5 b | 3388.6 b |
WF:TS50 | 9297.6 d | 2.9 ab | 38.8 a | 18,,809.7 a | 1234.2 c | 61.4 b | 3020.3 bc |
DWV | |||||||
DWV 250 | 11,910.9 | 2.4 a | 25.7 b | 17,658.9 | 1573.4 | 230.0 a | 2716.9 |
DWV 200 | 12,837.9 | 1.6 b | 29.2 a | 17,332.2 | 1560.6 | 191.8 b | 2793.9 |
Significance | |||||||
GM | ** | ** | ** | ** | ** | ** | ** |
DWV | ns | ** | * | ns | ns | * | ns |
GMxDWV | ns | ns | ns | ns | ns | ns | ns |
GM | AC | AW | pH | EC | N-NO3− | N-NH4+ | TP | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | |
PE | 36.26 aA | 24.05 bC | 10.07 bA | 13.53 aA | 3.69 aE | 3.62 aC | 0.49 bC | 0.54 aB | 25.4 aA | 15.8 bD | 5.57 aA | 2.86 bA | 499 bC | 808 aA |
PE:TS25 | 21.19 aC | 23.20 aC | 9.80 bA | 12.61 aA | 6.61 aD | 6.48 bB | 0.46 aCD | 0.48 aC | 12.4 bBC | 43.8 aB | 4.65 aB | 1.65 bB | 630 bB | 724 aC |
PE:TS50 | 22.90 aC | 23.72 aC | 7.86 aB | 7.89 aB | 7.08 aC | 6.80 bA | 0.43 bD | 0.66 aA | 7.0 bC | 42.2 aB | 3.73 aBC | 1.83 bB | 701 bA | 806 aA |
CF:TS25 | 20.76 bC | 29.94 aB | 4.36 bC | 9.86 aB | 7.00 aB | 6.79 bA | 0.37 aE | 0.34 aD | 20.0 bB | 31.6 aC | 3.44 aBC | 2.80 aA | 743 aA | 762 aB |
CF:TS50 | 28.04 aB | 28.54 aB | 7.84 aB | 6.63 aB | 7.22 aB | 6.79 bA | 0.63 aA | 0.35 aD | 14.7 bB | 28.3 aC | 3.13 aC | 1.72 bB | 636 bB | 710 aC |
WF:TS25 | 29.32 bB | 41.24 aA | 4.64 aC | 4.16 aC | 7.27 aB | 6.89 bA | 0.56 aB | 0.30 bD | 11.8 bBC | 63.1 aA | 4.23 aB | 3.00 aA | 672 aAB | 585 bE |
WF:TS50 | 21.59 bC | 24.87 aC | 4.36 aC | 3.54 aC | 7.43 aA | 6.89 bA | 0.38 aE | 0.35 bD | 11.6 bBC | 71.1 aA | 3.38 aBC | 2.84 aA | 716 aA | 659 aD |
Signif | ||||||||||||||
GM | ** | ** | ** | ** | ** | ** | ** | |||||||
DWV | ** | ** | ** | ** | ** | ** | ** | |||||||
GM * DWV | ** | ** | ** | ** | ** | ** | ** | |||||||
GM | TN | Mg | K | Na | Zn | Aryl-S | β-Glu | |||||||
DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | DWV250 | DWV200 | |
PE | 0.665 A | 0.555 A | 3144 | 3233 | 5678 A | 7735 A | 2141 A | 2601 A | 19.4 C | 24.0 C | 3.79 E | 8.33 E | 592 aA | 405 bC |
PE:TS25 | 0.365 B | 0.350 B | 3694 | 3261 | 4122 B | 4784 B | 1826 B | 2041 B | 35.8 A | 31.0 B | 133 C | 144 B | 411 bB | 711 aA |
PE:TS50 | 0.145 D | 0.215 D | 3519 | 3353 | 3956 B | 3630 B | 1668 CD | 1454 D | 35.4 A | 36.0 A | 135 C | 117 CD | 583 aA | 252 bD |
CF:TS25 | 0.180 D | 0.170 E | 3696 | 3225 | 6155 A | 5238 B | 2140 A | 1810 C | 31.0 B | 27.1 BC | 164 B | 129 C | 596 aA | 347 bC |
CF:TS50 | 0.150 D | 0.127 E | 3590 | 3232 | 4071 B | 4360 B | 1557 D | 1690 CD | 39.3 A | 39.1 A | 102 D | 115 D | 272 aC | 280 aD |
WF:TS25 | 0.260 C | 0.286 C | 3343 | 3836 | 5848 A | 4703 B | 1670 C | 1690 CD | 33.7 AB | 36.0 A | 183 A | 173 A | 562 aA | 515 aB |
WF:TS50 | 0.135 D | 0.170 E | 3496 | 3840 | 4441 B | 4229 B | 1509 D | 1594 D | 35.5 A | 35.4 A | 96.4 D | 155 B | 236 bC | 394 aC |
Signif | ||||||||||||||
GM | ** | ns | ** | ** | ** | ** | ** | |||||||
DWV | ns | ns | ns | ns | ns | ns | ** | |||||||
GM * DWV | ns | ns | ns | ns | ns | ns | ** |
Treatment | Plant Growth Parameters | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPH (cm) | NVS (n) | LVS (cm) | NEL (n) | BSD (mm) | |||||||||||
GM | Jun | Sep | Dec | Jun | Sep | Dec | Jun | Sep | Dec | Jun | Sep | Dec | Jun | Sep | Dec |
PE | 85.3 a | 86.2 a | 101.7 a | 7.3 a | 17.5 a | 33.3 a | 23.4 | 24.4 b | 27.3 | 13.5 | 26.1 b | 39.3 | 16.6 a | 19.3 a | 22.9 ab |
PE:TS25 | 82.2 ab | 87.8 a | 103.2 a | 5.5 abc | 14.7 ab | 24.9 bc | 27.2 | 30.8 a | 29.0 | 15.6 | 32.8 a | 47.6 | 15.6 a | 19.1 a | 20.7 ab |
PE:TS50 | 73.0 c | 83.0 ab | 102.7 a | 6.1 ab | 14.8 ab | 28.3 ab | 25.0 | 25.8 b | 23.5 | 14.5 | 29.4 ab | 42.3 | 15.2 a | 19.4 a | 20.5 ab |
CF:TS25 | 79.3 b | 88.6 a | 94.8 ab | 6.4 ab | 15.5 ab | 27.0 ab | 25.9 | 28.5 ab | 24.7 | 15.1 | 31.5 a | 44.7 | 15.7 a | 19.8 a | 23.5 a |
CF:TS50 | 71.7 c | 78.7 b | 87.5 b | 5.4 abc | 13.2 bc | 23.5 bc | 25.8 | 29.0 ab | 24.7 | 14.8 | 29.5 ab | 44.5 | 14.9 ab | 19.3 a | 20.6 ab |
WF:TS25 | 62.5 d | 68.4 c | 75.7 c | 4.9 bc | 11.7 c | 20.2 c | 23.6 | 25.2 b | 23.0 | 13.2 | 29.2 ab | 41.1 | 12.9 c | 16.9 ab | 18.8 bc |
WF:TS50 | 62.5 d | 67.4 c | 73.8 c | 5.6 c | 10.9 c | 18.6 c | 25.1 | 26.1 b | 23.3 | 15.0 | 29.1 ab | 44.9 | 13.4 bc | 18.1 b | 19.3 b |
DWV | |||||||||||||||
DWV 250 | 72.6 | 80.9 | 90.7 | 5.7 | 13.7 | 25.4 | 25.2 | 26.5 | 25.7 | 14.8 | 30.8 | 44.0 | 14.7 | 18.8 | 20.1 |
DWV 200 | 75.0 | 79.7 | 92.0 | 5.5 | 14.4 | 24.9 | 25.1 | 27.8 | 24.5 | 14.2 | 29.4 | 43.0 | 15.1 | 18.9 | 20.3 |
Significance | |||||||||||||||
GM | ** | ** | ** | * | ** | * | ns | * | ns | ns | * | ns | ** | * | ** |
DWV | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
GMxDWV | ns | ** | ns | ns | ** | ns | ns | ns | ns | ns | * | ns | ns | ns | ns |
Treatment | Biomass Parameters | ||||
---|---|---|---|---|---|
GM | Root DW (g) | Stem DW (g) | Leaf DW (g) | Total DW (g) | RGR (g g−1 Day−1) |
PE | 392.0 ab | 140.6 a | 128.8 a | 661.4 a | 0.0093 a |
PE:TS25 | 452.1 a | 128.8 ab | 127.2 a | 708.2 a | 0.0099 a |
PE:TS50 | 438.8 a | 115.4 b | 108.8 ab | 662.9 a | 0.0086 ab |
CF:TS25 | 354.8 ab | 126.3 ab | 114.7 ab | 595.8 a | 0.0083 b |
CF:TS50 | 435.2 a | 107.9 b | 98.6 bc | 623.6 a | 0.0081 b |
WF:TS25 | 331.9 b | 72.2 c | 76.9 cd | 480.9 b | 0.0048 c |
WF:TS50 | 350.1 ab | 65 c | 66.6 d | 481.6 b | 0.0048 c |
DWV | |||||
DWV 250 | 390.6 | 101.5 | 95.6 b | 583.8 | 0.0076 |
DWV 200 | 396.4 | 113.4 | 110.5 a | 620.3 | 0.0081 |
Significance | |||||
GM | * | ** | ** | ** | ns |
DWV | ns | ns | * | ns | ns |
GMxDWV | ns | ns | ns | ns | ns |
Interaction | Growth Parameters | ||||
---|---|---|---|---|---|
MPH (cm) | NVS (n) | LVS (cm) | NEL (n) | BSD (mm) | |
PE DWV 250 | 91.5 a | 16.3 ab | 24.6 | 29.4 ab | 17.0 |
PE DWV 200 | 80.9 b | 18.8 a | 24.2 | 22.8 b | 16.2 |
PE:TS25 DWV 250 | 89.0 ab | 14.4 abc | 29.0 | 32.3 a | 15.4 |
PE:TS25 DWV 200 | 86.5 ab | 14.9 abc | 32.7 | 33.2 a | 15.9 |
PE:TS50 DWV 250 | 83.8 ab | 13.4 bc | 25.7 | 29.5 ab | 14.8 |
PE:TS50 DWV 200 | 82.3 ab | 16.3ab | 25.8 | 29.2 ab | 15.6 |
CF:TS25 DWV 250 | 89.2 ab | 16.8 ab | 28.4 | 34.3 a | 15.8 |
CF:TS25 DWV 200 | 88.0 ab | 14.3 abc | 28.6 | 28.8 ab | 15.7 |
CF:TS50 DWV 250 | 77.1 bc | 13.3 bc | 28.3 | 31.2 ab | 14.0 |
CF:TS50 DWV 200 | 80.3 b | 13.2 bc | 29.7 | 27.7 ab | 15.8 |
WF:TS25 DWV 250 | 68.9 cd | 11.3 b | 23.4 | 28.5 ab | 13.4 |
WF:TS25 DWV 200 | 66.7 d | 12.2 bc | 26.8 | 29.8 ab | 12.4 |
WF:TS50 DWV 250 | 66.9 d | 10.4 c | 25.5 | 28.5 ab | 12.8 |
WF:TS50 DWV 200 | 67.4 cd | 11.4 c | 26.7 | 29.7 ab | 14.0 |
Significance | ** | ** | ns | * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nin, S.; Bonetti, D.; Antonetti, M.; Peruzzi, E.; Manzi, D.; Macci, C. Sediment-Based Growing Media Provides a Window Opportunity for Environmentally Friendly Production of Ornamental Shrubs. Agronomy 2023, 13, 92. https://doi.org/10.3390/agronomy13010092
Nin S, Bonetti D, Antonetti M, Peruzzi E, Manzi D, Macci C. Sediment-Based Growing Media Provides a Window Opportunity for Environmentally Friendly Production of Ornamental Shrubs. Agronomy. 2023; 13(1):92. https://doi.org/10.3390/agronomy13010092
Chicago/Turabian StyleNin, Stefania, Daniele Bonetti, Maurizio Antonetti, Eleonora Peruzzi, Davide Manzi, and Cristina Macci. 2023. "Sediment-Based Growing Media Provides a Window Opportunity for Environmentally Friendly Production of Ornamental Shrubs" Agronomy 13, no. 1: 92. https://doi.org/10.3390/agronomy13010092
APA StyleNin, S., Bonetti, D., Antonetti, M., Peruzzi, E., Manzi, D., & Macci, C. (2023). Sediment-Based Growing Media Provides a Window Opportunity for Environmentally Friendly Production of Ornamental Shrubs. Agronomy, 13(1), 92. https://doi.org/10.3390/agronomy13010092