Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soil Physical Properties and Soybean Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to the Experimental Site
2.2. Test Materials
2.3. Experimental Design
2.4. Measurement Items and Methods
2.4.1. Determination of Soil Physical Properties
- (1)
- The determination of soil water content was conducted at different stages of soybean growth. Soil samples were collected by taking 10–20 cm of soil with a shovel during the full flowering and podding stage, mid-bulging stage, and maturity stage. Random-sized soil samples were weighed and recorded on-site, then placed in plastic bags and sealed for transportation. The soil samples were dried and weighed in an oven at 105 ± 1 °C to calculate the soil water content. Five replicates of samples were taken for each treatment.
- (2)
- The soil capacity and porosity were determined using the ring knife method at a depth of 0–10 cm for both soybean seedling and maturity stages. Five replicates were taken for each treatment.
- (3)
- To determine the soil mechanical composition, the PARIOPlus soil particle size automatic analyzer (Beijing Litai Science and Technology Co., Ltd., Beijing, China) was utilized. It determined the content of soil viscous particles and powder particles. Additionally, the content of soil sand particles was determined using the wet sieve method [19,20]. The soil particle size grading was carried out according to international system standards.
- (4)
- Water stability aggregates were determined using the wet sieve method [21]. Soil samples obtained by dry sieving were mixed proportionally into 100 g soil samples. These soil samples were then placed on a set of sieves with sizes of 5 mm, 2 mm, 1 mm, 0.5 mm, and 0.25 mm. The sieving process was conducted using the DS/TTF-100 Soil Aggregate Analyser (Beijing Ding Sheng Rong He Science and Technology Co., Ltd., Beijing, China). The aggregate content of each particle size was determined after sieving. The agglomerates of each particle size were washed into a beaker using a spray bottle and then placed in an oven at 40 °C until a constant weight was achieved. The weight of the agglomerates was then measured. The percentage content of water-stable agglomerates for each particle size was calculated, with three replications for each treatment.
2.4.2. Measurement of Yield and Yield Components
2.5. Data Processing
3. Results and Analyses
3.1. Effect of Chemical Fertilizer with Microbial Fertilizer on Soil Physical Properties
3.1.1. Effect of Chemical Fertilizer with Microbial Composite Fertilizer on Soil Water Content
3.1.2. Effect of Compound Microbial Fertilizers with Chemical Fertilizers on Soil Bulk Density
3.1.3. Effect of Chemical Fertilizers with Compound Microbial Fertilizers on Soil Porosity
3.1.4. Effect of Compound Microbial Fertilizer with Chemical Fertilizer on Soil Mechanical Composition
3.1.5. Effect of Chemical Fertilizers with Complex Microbial Fertilizers on the Composition of Soil Water-Stable Aggregates
3.2. Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soybean Yield
3.3. Correlation Analysis
4. Discussion
4.1. Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soil Physical Properties
4.2. Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soybean Yield Formation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Zheng, H.; Li, W.; Olesen, J.E.; Harrison, M.T.; Bai, Z.; Zou, J.; Zheng, A.; Bernacchi, C.; Xu, X.; et al. Genetic progress battles climate variability: Drivers of soybean yield gains in China from 2006 to 2020. Agron. Sustain. Dev. 2023, 43, 50. [Google Scholar] [CrossRef]
- Zhu, W.; Han, X.; Xiang, J. Potentials, Paths and Challenges for China’s Soybean Production. J. South China Norm. Univ. (Soc. Sci. Ed.) 2022, 3, 122–135. [Google Scholar]
- Wang, Y.; Ling, X.; Ma, C.; Liu, C.; Zhang, W.; Huang, J.; Peng, S.; Deng, N. Can China get out of soy dilemma? A yield gap analysis of soybean in China. Agron. Sustain. Dev. 2023, 43, 47. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Sun, Y.; He, B.; Zhang, W.; Chen, D.; Piao, R.; Zhao, H. Meta-analysis of the effect of molybdenum fertiliser application on growth traits, yield and quality of soybean. Soybean Sci. 2022, 41, 288–299. [Google Scholar]
- Li, W.; Yang, D.; Zhao, J.; Wang, H. Research progress on the effects of long-term continuous cropping and crop rotation on biological properties of farmland soils. Chin. Agron. Bull. 2015, 31, 173–178. [Google Scholar]
- Ali, E.; Sang, S.L.; Jörg, R.; Muhammad, F.; Hocheol, S.; Ajit, K.S.; Andrew, R.Z.; Mahtab, A.; Sabry, M.S.; Yong, S.O. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Peter, M.K.; Enzo, L.; Peng, W.; Jan, K.S.; Søren, H. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci. Nano 2019, 6, 3513–3524. [Google Scholar] [CrossRef]
- Amy, T.; Laura, B.; Chris, F.; Stephen, L.; Ciaran, R.; Ed, C.R.; Amanda, T.; Eleanor, W.-T.; Bridget, E. Land degradation neutrality: Testing the indicator in a temperate agricultural landscape. J. Environ. Manag. 2023, 346, 118884. [Google Scholar] [CrossRef]
- Wang, K.; Hou, J.; Zhang, S.; Hu, W.; Yi, G.; Chen, W.; Cheng, L.; Zhang, Q. Preparation of a new biochar-based microbial fertilizer: Nutrient release patterns and synergistic mechanisms to improve soil fertility. Sci. Total Environ. 2022, 860, 160478. [Google Scholar] [CrossRef] [PubMed]
- Wang, K. Preparation of Straw Charcoal-Based Microbial Fertiliser and Its Efficiency Mechanism on Soil Fertility; East China Normal University: Shanghai, China, 2022. [Google Scholar]
- Hang, L.; Songsong, L.; Ruowen, Q.; Enjia, L.; Cuilan, L.; Jinjing, Z.; Qiang, G. Response of Soil Microbial Community Structure to Phosphate Fertilizer Reduction and Combinations of Microbial Fertilizer. Front. Environ. Sci. 2022, 10, 899727. [Google Scholar] [CrossRef]
- Tu, Y.C. Experimental Research on Soil Improvement by Compound Microbial Fertiliser in Arid Mining Area; China University of Mining and Technology: Beijing, China, 2015. [Google Scholar]
- Li, Z.; Xiong, Y.; Lu, Q.; Shi, Q.; Li, Y. Effects of microbial soil conditioners on tobacco growth and tillage environment. Henan Agric. Sci. 2010, 9, 56–60. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, P.; Chen, W.; Xu, S.; Liang, J.; Jia, J. Effect of Three Microbial Fertilizer Carriers on Water Infiltration and Evaporation, Microbial Community and Alfalfa Growth in Saline-alkaline Soil. Commun. Soil Sci. Plant Anal. 2021, 52, 2462–2470. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, D.; Huang, B.; Song, Z.; Ren, L.; Hao, B.; Liu, J.; Zhu, J.; Fang, W.; Yan, D. Organic fertilizer improves soil fertility and restores the bacterial community after 1,3-dichloropropene fumigation. Sci. Total Environ. 2020, 738, 140345. [Google Scholar] [CrossRef] [PubMed]
- Rasool, R.; Kukal, S.S.; Hira, G.S. Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize–wheat system. Soil Tillage Res. 2008, 101, 31–36. [Google Scholar] [CrossRef]
- Powlson, D.S. Advances in Soil Organic Matter Research: The Impact on Agriculture and the Environment. J. Agric. Sci. 1992, 119, 149–150. [Google Scholar] [CrossRef]
- Wang, F.; Hu, S.; Xue, S.; Li, Y.; Han, L.; Hou, Q.; Wang, J. Effects of chemical fertilizer and organic fertilizer on soil structure and organic carbon fraction in celery fields. Gansu Agric. Sci. Technol. 2021, 52, 21–26. [Google Scholar]
- Ran, H.; Guo, Z.; Yi, L.; Xiao, X.; Xu, R.; Hu, Z.; Li, T. Spatial variability of arsenic fractionation in an abandoned arsenic-containing mine: Insights into soil particle sizes and quantitative mineralogical analysis. Sci. Total Environ. 2023, 889, 164145. [Google Scholar] [CrossRef]
- Bi, X.; Chu, H.; Fu, M.; Xu, D.; Zhao, W.; Zhong, Y.; Wang, M.; Li, K.; Zhang, Y. Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Sci. Rep. 2023, 13, 12242. [Google Scholar] [CrossRef]
- Rahmatullah, H.; Qiliang, H.; Kemala, D.R.; Junko, N.; Masakazu, K. No-tillage and rye cover crop systems improve soil water retention by increasing soil organic carbon in Andosols under humid subtropical climate. Soil Tillage Res. 2023, 234, 105861. [Google Scholar] [CrossRef]
- Cong, P.; Ouyang, Z.; Hou, R.; Han, D. Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils. Soil Tillage Res. 2017, 168, 33–41. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, L.; Lu, S.; Chen, G.; Wang, Y.; Yu, S.; Gong, Z. Effects of black soil capacity on nitrogen uptake and yield of soybean. J. Crops 2017, 3, 132–137. [Google Scholar] [CrossRef]
- Nong, Z.; Maojun, M.; Min, Y.; Zhou, Y.; Ma, M. The Effect of Microbial Fertilizer on the Growth, Rhizospheric Environment and Medicinal Quality of Fritillaria taipaiensis. Horticulturae 2021, 7, 500. [Google Scholar] [CrossRef]
- Yang, T.; Jing, H.; Yao, X.; Dong, C.; Yu, Z.; Xue, L. Soil particle composition and its fractal dimension characteristics under different land use modes in loess hills. Res. Soil Water Conserv. 2016, 23, 1–5. [Google Scholar] [CrossRef]
- Peltoniemi, K.; Velmala, S.; Fritze, H.; Lemola, R.; Pennanen, T. Long-term impacts of organic and conventional farming on the soil microbiome in boreal arable soil. Eur. J. Soil Biol. 2021, 104, 103314. [Google Scholar] [CrossRef]
- Anke, H.; Ernst, W. Sources of C and N contributing to the flush in mineralization upon freeze–thaw cycles in soils. Soil Biol. Biochem. 2002, 34, 1495–1505. [Google Scholar] [CrossRef]
- Adesodun, J.K.; Mbagwu, J.S.C.; Oti, N. Distribution of carbon, nitrogen and phosphorus in water-stable aggregates of an organic waste amended Ultisol in southern Nigeria. Bioresour. Technol. 2005, 96, 509–516. [Google Scholar] [CrossRef]
- Maysoon, M.M.; Charles, W.R. Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen. Soil Sci. Soc. Am. J. 2004, 68, 809–816. [Google Scholar] [CrossRef]
- Xie, J.; Cao, H.; Meng, H.; Guo, Y.; Hong, J.; Zhang, J.; Li, Y.; Li, T. Size distribution and stability of soil aggregates under different fertiliser application measures and years of fertiliser application. J. Soil Water Conserv. 2020, 34, 274–281. [Google Scholar] [CrossRef]
- Zhou, Z.; Feng, H.; Ding, J.; Wang, Y.; Li, Z.; Qi, Y. Effects of compound microbial fertiliser on the stability of soil aggregates and enzyme activities in the inter-root zone of tobacco plant. South. Agric. J. 2022, 53, 3088–3097. [Google Scholar]
- Li, C.; Chang, S.; Zhong, F.; Xue, Y.L.; Miao, Y.; Wang, Y.; Dang, T.H. Effects of cropping pattern and fertiliser application on soil aggregates and carbon distribution in farmland of loess dry plateau. J. Appl. Ecol. 2021, 32, 191–200. [Google Scholar] [CrossRef]
- Huang, R.; Lan, M.; Liu, J.; Gao, M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning. Environ. Sci. Pollut. Res. Int. 2017, 24, 27942–27952. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, X.; Ge, L.; Li, Q.; Li, Z.; Wang, L.; Liu, Y. Rhizosphere effects promote soil aggregate stability and associated organic carbon sequestration in rocky areas of desertification. Agric. Ecosyst. Environ. 2020, 304, 107126. [Google Scholar] [CrossRef]
- Steven, J.F.; Edward, Y.; Patrick, O.; Quansah, G.W.; Six, J. Fertilizer and Residue Quality Effects on Organic Matter Stabilization in Soil Aggregates. Soil Sci. Soc. Am. J. 2009, 73, 961–966. [Google Scholar] [CrossRef]
- Ding, X.; Han, X.; Liang, Y.; Qiao, Y.; Li, L.; Li, N. Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil Tillage Res. 2012, 122, 36–41. [Google Scholar] [CrossRef]
- Kou, L. Effects of Long-Term Positioning Fertiliser Application on Soil Aggregation and Its Carbon and Nitrogen Grouping in Dry-Crop Winter Wheat Farmland; Northwest University: Xian, China, 2020. [Google Scholar]
- Mi, S.; Zhang, X.; Wang, Y.; Ma, Y.; Sang, Y.; Wang, X. Effect of different fertilizers on the physicochemical properties, chemical element and volatile composition of cucumbers. Food Chem. 2022, 367, 130667. [Google Scholar] [CrossRef] [PubMed]
- Brooks, K.; Mourtzinis, S.; Conley, S.P.; Reiter, M.S.; Gaska, J.; Holshouser, D.L.; Irby, T.; Kleinjan, J.; Knott, C.; Lee, C.; et al. Soybean yield response to sulfur and nitrogen additions across diverse U. S. Environ. Agron. J. 2022, 115, 370–383. [Google Scholar] [CrossRef]
- Yan, Z.; Chunqiao, X.; Sheng, Y.; Yin, H.; Yang, Z.; Chi, R. Life cycle assessment and life cycle cost analysis of compound microbial fertilizer production in China. Sustain. Prod. Consum. 2021, 28, 1622–1634. [Google Scholar] [CrossRef]
- Angela, M.; Margarita, G.; Reinhard, N. Assessment of the impact of irrigation management on soybean yield and water productivity in a subhumid environment. Agric. Water Manag. 2023, 284, 108356. [Google Scholar] [CrossRef]
- Elham, Y.; Sina, F.; Raj, P.L.; Rostamnejadi, A. Addressing global food insecurity: Soil-applied zinc oxide nanoparticles promote yield attributes and seed nutrient quality in Glycine max L. Sci. Total Environ. 2023, 876, 162762. [Google Scholar] [CrossRef]
- Fanyi, K.; Shenggao, L. Effects of microbial organic fertilizer (MOF) application on cadmium uptake of rice in acidic paddy soil: Regulation of the iron oxides driven by the soil microorganisms. Environ. Pollut. (Barking Essex) 1987, 2022, 307–119447. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; El-Sawah, A.M.; Kobae, Y.; Basit, F.; Holford, P.; Yang, H.; El-Keblawy, A.; Abdel-Fattah, G.G.; Wang, S.; Araus, J.L.; et al. The effects of microbial fertilizer application on growth, yield, and some biochemical changes in the leaves and seeds of guar (Cyamopsis tetragonoloba L.). Food Res. Int. 2023, 172, 113122. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Jiang, G. Effects of different foliar fertilisers on major agronomic traits of summer soybean. Shandong Agric. Sci. 2016, 48, 85–88. [Google Scholar] [CrossRef]
- Zhao, N.; Gu, W.; Zhang, L.; Xia, S.; Zhao, X.; Wu, L. Effects of Russian high-efficiency soybean rhizobial fertiliser on major traits and yield of soybean. Jiangsu Agric. Sci. 2014, 42, 72–73. [Google Scholar] [CrossRef]
- Ren, T.; Li, Z.; Du, B.; Zhang, X.; Xu, Z.; Gao, D.; Zheng, B.; Zhao, W.; Li, G.; Ning, T. Improvement of photosystem performance and seed yield of summer soybean in Huanghuaihai region by organic fertilizer application and rational planting. J. Plant Nutr. Fertil. 2021, 27, 1361–1375. [Google Scholar] [CrossRef]
- Amanullah, I. Soybean quality and profitability improved with peach (Prunus persica L;) remnants, phosphorus, and beneficial microbes. J. Plant Nutr. 2023, 46, 370–385. [Google Scholar] [CrossRef]
- Li, G.; Cong, X.; Li, G.; Zhao, N.; Zhang, D.; Liu, X. Effects of fertilizer and rhizobacteria on the growth of soybean in Luzhong area. Soybean Sci. 2021, 40, 682–687. [Google Scholar] [CrossRef]
Years | pH | Alkali-Hydrolyzed Nitrogen (mg/kg−1) | Available Phosphorus (mg/kg−1) | Quickly Available Potassium (mg/kg−1) | Organic Matter (g/kg−1) | Bulk Density (g/cm−3) |
---|---|---|---|---|---|---|
2021 | 6.30 | 141.80 | 30.60 | 180.00 | 17.94 | 1.26 |
2022 | 6.14 | 137.92 | 21.79 | 177.35 | 15.30 | 1.18 |
Process Name | Urea kg/hm−2 | Heavy Superphosphate kg/hm−2 | Potassium Chloride kg/hm−2 | Compound Microbial Fertilizer kg/hm−2 | Total Nitrogen kg/hm−2 | Total Phosphorus Content kg/hm−2 | Total Potassium kg/hm−2 |
---|---|---|---|---|---|---|---|
T1 (CK) | 120 (54) | 146.74 (67.5) | 75 (37.5) | 0 | 54 | 67.5 | 37.5 |
T2 | 60 (27) | 88.04 (40.5) | 48 (24) | 2023.95 (1.3:1.3:0.6) | 54 | 67.5 | 37.5 |
T3 | 0 (0) | 9.78 (4.5) | 18 (9) | 4048.05 (1.3:1.3:0.6) | 54 | 58.5 (19.57) | 36.0 (3) |
Process Name | Coarse Middle Sand (%) | Fine Sand (%) | Coarse Silt (%) | Middle Silt (%) | Fine Silt (%) | Clay (%) |
---|---|---|---|---|---|---|
P1T1 | 7.20 | 5.90 | 12.28 | 27.43 | 14.45 | 32.74 |
P1T2 | 9.35 | 7.59 | 8.29 | 26.56 | 11. 62 | 36.60 |
P1T3 | 7.91 | 8.88 | 8.90 | 22.65 | 10.44 | 41.22 |
P2T1 | 10.61 | 3.05 | 12.02 | 22.11 | 12.14 | 40.07 |
P2T2 | 8.54 | 6.58 | 10.31 | 20.30 | 12.04 | 42.22 |
P2T3 | 15.52 | 4.06 | 9.06 | 19.15 | 10.05 | 42.15 |
Years | Varieties | Treat Menu | Pod Number | Seed Number | 100 Seed Weight/g | Seed Weight/g | Yield/kg·km−2 |
---|---|---|---|---|---|---|---|
2021 | Jinyuan 55 | P1T1 | 24.07 ± 3.99 a | 54.58 ± 8.35 a | 18.83 ± 0.01 a | 9.78 ± 0.57 ab | 3014.94 ± 55.06 a |
P1T2 | 26.00 ± 2.42 a | 57.23 ± 3.78 a | 19.78 ± 1.09 a | 10.91 ± 0.94 a | 3407.44 ± 183.44 a | ||
P1T3 | 20.33 ± 6.97 a | 43.27 ± 3.55 a | 18.33 ± 0.49 a | 7.78 ± 0.59 b | 2733.38 ± 104.00 a | ||
Keshan 1 | P2T1 | 21.03 ± 4.64 a | 51.01 ± 6.41 a | 18.53 ± 2.60 a | 8.67 ± 1.95 a | 3195.49 ± 89.26 a | |
P2T2 | 27.87 ± 4.53 a | 52.30 ± 7.48 a | 19.97 ± 0.33 a | 9.18 ± 2.02 a | 3366.25 ± 250.14 a | ||
P2T3 | 20.46 ± 2.21 a | 46.50 ± 6.84 a | 19.19 ± 0.74 a | 8.06 ± 0.13 a | 2899.56 ± 245.62 a | ||
2022 | Jinyuan 55 | P1T1 | 29.13 ± 1.44 a | 71.66 ± 3.91 ab | 19.66 ± 0.21 a | 12.72 ± 0.56 ab | 3787.47 ± 93.76 b |
P1T2 | 31.15 ± 1.35 a | 76.48 ± 8.15 a | 20.68 ± 0.26 a | 14.92 ± 0.91 a | 4264.60 ± 73.60 a | ||
P1T3 | 23.54 ± 0.74 b | 54.23 ± 5.17 b | 20.13 ± 0.13 a | 10.81 ± 1.04 b | 3135.03 ± 101.39 c | ||
Keshan 1 | P2T1 | 29.10 ± 5.04 a | 74.13 ± 16.1 a | 19.81 ± 0.71 a | 13.15 ± 0.73 a | 3526.80 ± 328.00 ab | |
P2T2 | 34.40 ± 5.16 a | 78.83 ± 5.33 a | 20.21 ± 0.16 a | 14.75 ± 1.47 a | 4247.33 ± 91.66 a | ||
P2T3 | 24.83 ± 2.85 a | 56.29 ± 3.44 a | 18.19 ± 0.09 b | 10.59 ± 1.24 a | 3124.30 ± 269.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Ma, W.; Qiang, B.; Jin, X.; Zhang, Y.; Wang, M. Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soil Physical Properties and Soybean Yield. Agronomy 2023, 13, 2488. https://doi.org/10.3390/agronomy13102488
Fu C, Ma W, Qiang B, Jin X, Zhang Y, Wang M. Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soil Physical Properties and Soybean Yield. Agronomy. 2023; 13(10):2488. https://doi.org/10.3390/agronomy13102488
Chicago/Turabian StyleFu, Chenye, Weiran Ma, Binbin Qiang, Xijun Jin, Yuxian Zhang, and Mengxue Wang. 2023. "Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soil Physical Properties and Soybean Yield" Agronomy 13, no. 10: 2488. https://doi.org/10.3390/agronomy13102488
APA StyleFu, C., Ma, W., Qiang, B., Jin, X., Zhang, Y., & Wang, M. (2023). Effect of Chemical Fertilizer with Compound Microbial Fertilizer on Soil Physical Properties and Soybean Yield. Agronomy, 13(10), 2488. https://doi.org/10.3390/agronomy13102488