The Effect of Bioclimatic Covariates on Ensemble Machine Learning Prediction of Total Soil Carbon in the Pannonian Biogeoregion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Data
2.2. Climate and Base Environmental Covariates
Covariate Group | Individual Covariate | Data Source | Reference |
---|---|---|---|
Surface reflectance | Surface reflectance in 620–670 nm band (B01) | MOD09A1 | [30] |
Surface reflectance in 841–876 nm band (B02) | |||
Surface reflectance in 459–479 nm band (B03) | |||
Surface reflectance in 545–565 nm band (B04) | |||
Surface reflectance in 1230–1250 nm band (B05) | |||
Surface reflectance in 1628–1652 nm band (B06) | |||
Surface reflectance in 2105–2155 nm band (B07) | |||
Phenology covariates | Greenup | MCD12Q2 | [31] |
MidGreenup | |||
Peak | |||
Maturity | |||
MidGreendown | |||
Senescence | |||
Dormancy | |||
Area under enhanced vegetation index 2 curve (EVI_Area) | |||
Derived covariates | Elevation | SRTM | [32] |
USDA soil taxonomy great groups (soil_type) | OpenLandMap | [19] | |
Land surface temperature during day (LST_Day) | MOD11A1 | [33] | |
Land surface temperature during night (LST_Night) | |||
Normalized difference vegetation index (NDVI) | MOD13A2 | [34] | |
Enhanced vegetation index (EVI) | |||
Leaf area index (LAI) | MOD15A2H | [35] | |
Fraction of absorbed photosynthetically active radiation (FAPAR) | |||
Gross primary productivity (GPP) | MOD17A2H | [36] | |
Net photosynthesis (NetPsy) |
Climate Parameter | Label | Description | Unit | Value Range in the Study Area | |
---|---|---|---|---|---|
Min | Max | ||||
Air temperature | bio01 | annual mean | °C | 5.2 | 12.5 |
bio02 | mean diurnal range | °C | 8.6 | 10.6 | |
bio03 | isothermality | % | 28 | 33 | |
bio04 | seasonality | °C | 70.4 | 81.0 | |
bio05 | max of warmest month | °C | 20.1 | 28.8 | |
bio06 | max of coldest month | °C | –8.8 | –1.3 | |
bio07 | annual range | °C | 28.6 | 33.1 | |
bio08 | mean of wettest quarter | °C | 9.3 | 20.6 | |
bio09 | mean of driest quarter | °C | –4.2 | 18.1 | |
bio10 | max of warmest quarter | °C | 14.1 | 21.8 | |
bio11 | max of coldest quarter | °C | –4.2 | 2.3 | |
Precipitation | bio12 | annual total | mm | 512 | 856 |
bio13 | total of warmest month | mm | 61 | 123 | |
bio14 | total of coldest month | mm | 23 | 48 | |
bio15 | seasonality | CV | 19 | 43 | |
bio16 | total of wettest quarter | mm | 164 | 317 | |
bio17 | total of driest quarter | mm | 72 | 150 | |
bio18 | total of warmest quarter | mm | 164 | 317 | |
bio19 | total of coldest quarter | mm | 76 | 172 |
2.3. Ensemble Machine Learning Prediction and Accuracy Assessment
3. Results and Discussion
3.1. Hyperparameter Tuning of Individual Machine Learning Methods
3.2. Prediction Accuracy of Ensemble and Individual Machine Learning Methods
3.3. Variable Importance of Climate and Base Environmental Covariates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bhattacharya, S.S.; Kim, K.-H.; Das, S.; Uchimiya, M.; Jeon, B.H.; Kwon, E.; Szulejko, J.E. A Review on the Role of Organic Inputs in Maintaining the Soil Carbon Pool of the Terrestrial Ecosystem. J. Environ. Manag. 2016, 167, 214–227. [Google Scholar] [CrossRef]
- Keskin, H.; Grunwald, S.; Harris, W.G. Digital Mapping of Soil Carbon Fractions with Machine Learning. Geoderma 2019, 339, 40–58. [Google Scholar] [CrossRef]
- Taylor, A.; Kalnins, A.; Koot, M.; Jackson, R.; Toloza, A.; Ahmed, H.S.; Goddard, R.; Blake, W.H. Portable Gamma Spectrometry for Rapid Assessment of Soil Texture, Organic Carbon and Total Nitrogen in Agricultural Soils. J. Soils Sediments 2023, 23, 2556–2563. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Reza Owliaie, H.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the Spatial Prediction of Soil Organic Carbon Using Environmental Covariates Selection: A Comparison of a Group of Environmental Covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Tayebi, M.; Fim Rosas, J.T.; Mendes, W.D.S.; Poppiel, R.R.; Ostovari, Y.; Ruiz, L.F.C.; dos Santos, N.V.; Cerri, C.E.P.; Silva, S.H.G.; Curi, N.; et al. Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sens. 2021, 13, 2223. [Google Scholar] [CrossRef]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant Nutrition under Climate Change and Soil Carbon Sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Hombegowda, H.C.; van Straaten, O.; Köhler, M.; Hölscher, D. On the Rebound: Soil Organic Carbon Stocks Can Bounce Back to near Forest Levels When Agroforests Replace Agriculture in Southern India. Soil 2016, 2, 13–23. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Hengl, T.; Miller, M.A.E.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele, S.M.; et al. African Soil Properties and Nutrients Mapped at 30 m Spatial Resolution Using Two-Scale Ensemble Machine Learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Antonić, O.; Šiljeg, A.; Cukrov, N.; Rapčan, I.; Plaščak, I.; Gašparović, M. A Multiscale Cost–Benefit Analysis of Digital Soil Mapping Methods for Sustainable Land Management. Sustainability 2022, 14, 12170. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Sylvain, J.-D.; Anctil, F.; Thiffault, É. Using Bias Correction and Ensemble Modelling for Predictive Mapping and Related Uncertainty: A Case Study in Digital Soil Mapping. Geoderma 2021, 403, 115153. [Google Scholar] [CrossRef]
- Radočaj, D.; Vinković, T.; Jurišić, M.; Gašparović, M. The Relationship of Environmental Factors and the Cropland Suitability Levels for Soybean Cultivation Determined by Machine Learning. Poljoprivreda 2022, 28, 53–59. [Google Scholar] [CrossRef]
- Nadeu, E.; Gobin, A.; Fiener, P.; van Wesemael, B.; van Oost, K. Modelling the Impact of Agricultural Management on Soil Carbon Stocks at the Regional Scale: The Role of Lateral Fluxes. Glob. Chang. Biol. 2015, 21, 3181–3192. [Google Scholar] [CrossRef]
- European Environment Agency. Biogeographical Regions. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618 (accessed on 30 July 2023).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Koppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Négrel, P.; Ladenberger, A.; Reimann, C.; Birke, M.; Demetriades, A.; Sadeghi, M.; Albanese, S.; Andersson, M.; Baritz, R.; Batista, M.J.; et al. GEMAS: Geochemical Distribution of Mg in Agricultural Soil of Europe. J. Geochem. Explor. 2021, 221, 106706. [Google Scholar] [CrossRef]
- Batjes, N.H.; Ribeiro, E.; van Oostrum, A. Standardised Soil Profile Data to Support Global Mapping and Modelling (WoSIS Snapshot 2019). Earth Syst. Sci. Data 2020, 12, 299–320. [Google Scholar] [CrossRef]
- Hengl, T.; Nauman, T. Predicted USDA Soil Great Groups at 250 m (Probabilities); Zenodo: Geneva, Switzerland, 2018. [Google Scholar]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Minasny, B.; Triantafilis, J. Comparing Data Mining Classifiers to Predict Spatial Distribution of USDA-Family Soil Groups in Baneh Region, Iran. Geoderma 2015, 253–254, 67–77. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Pradhan, B.; Hembram, T.K. Hybrid Ensemble Machine Learning Approaches for Landslide Susceptibility Mapping Using Different Sampling Ratios at East Sikkim Himalayan, India. Adv. Space Res. 2021, 68, 2819–2840. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.-X.; Zhang, G.-L. Mapping High Resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Zhao, M.-S.; Rossiter, D.G.; Li, D.-C.; Zhao, Y.-G.; Liu, F.; Zhang, G.-L. Mapping Soil Organic Matter in Low-Relief Areas Based on Land Surface Diurnal Temperature Difference and a Vegetation Index. Ecol. Indic. 2014, 39, 120–133. [Google Scholar] [CrossRef]
- Körner, C.; Möhl, P.; Hiltbrunner, E. Four Ways to Define the Growing Season. Ecol. Lett. 2023, 26, 1277–1292. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.E.; Brown, T.; Keenan, T.F.; Duursma, R.A.; van Dijk, A.I.J.M.; Beringer, J.; Culvenor, D.; Evans, B.; Huete, A.; Hutley, L.B.; et al. Reviews and Syntheses: Australian Vegetation Phenology: New Insights from Satellite Remote Sensing and Digital Repeat Photography. Biogeosciences 2016, 13, 5085–5102. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M. A Wildfire Growth Prediction and Evaluation Approach Using Landsat and MODIS Data. J. Environ. Manag. 2022, 304, 114351. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.R.P.; Mishra, U.; Wills, S.; Gautam, S. Regional Environmental Controllers Influence Continental Scale Soil Carbon Stocks and Future Carbon Dynamics. Sci. Rep. 2021, 11, 6474. [Google Scholar] [CrossRef]
- Woltz, V.L.; Stagg, C.L.; Byrd, K.B.; Windham-Myers, L.; Rovai, A.S.; Zhu, Z. Above- and Belowground Biomass Carbon Stock and Net Primary Productivity Maps for Tidal Herbaceous Marshes of the United States. Remote Sens. 2023, 15, 1697. [Google Scholar] [CrossRef]
- Vermote, E. MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V061; NASA EOSDIS Land Processes DAAC: Missoula, MT, USA, 2021. [Google Scholar]
- Friedl, M.; Gray, J.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V061; NASA EOSDIS Land Processes DAAC: Missoula, MT, USA, 2022. [Google Scholar]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 1 Arc Second; NASA JPL: Pasadena, CA, USA, 2013. [Google Scholar]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V061; NASA EOSDIS Land Processes DAAC: Missoula, MT, USA, 2021. [Google Scholar]
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid V061; NASA EOSDIS Land Processes DAAC: Missoula, MT, USA, 2021. [Google Scholar]
- Myneni, R.; Knyazikhin, Y.; Park, T. MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V061; NASA EOSDIS Land Processes DAAC: Missoula, MT, USA, 2021. [Google Scholar]
- Running, S.; Zhao, M. MODIS/Terra Gross Primary Productivity Gap-Filled 8-Day L4 Global 500 m SIN Grid V061; NASA EOSDIS Land Processes DAAC: Missoula, MT, USA, 2021. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and Soil Organic Matter Decomposition Rates–Synthesis of Current Knowledge and a Way Forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Sayer, E.J.; Heard, M.S.; Grant, H.K.; Marthews, T.R.; Tanner, E.V.J. Soil Carbon Release Enhanced by Increased Tropical Forest Litterfall. Nat. Clim. Chang. 2011, 1, 304–307. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. Isprs J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Jia, Y.; Jin, S.; Savi, P.; Gao, Y.; Tang, J.; Chen, Y.; Li, W. GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation. Remote Sens. 2019, 11, 1655. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Machines for Classification. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Awad, M., Khanna, R., Eds.; Apress: Berkeley, CA, USA, 2015; pp. 39–66. ISBN 978-1-4302-5990-9. [Google Scholar]
- Pham, B.T.; Qi, C.; Ho, L.S.; Nguyen-Thoi, T.; Al-Ansari, N.; Nguyen, M.D.; Nguyen, H.D.; Ly, H.-B.; Le, H.V.; Prakash, I. A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil. Sustainability 2020, 12, 2218. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Khandelwal, M.; Yang, H.; Yang, P.; Li, C. Performance Evaluation of Hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost Models to Predict Blast-Induced Ground Vibration. Eng. Comput. 2022, 38, 4145–4162. [Google Scholar] [CrossRef]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine Learning for Predicting Greenhouse Gas Emissions from Agricultural Soils. Sci. Total Environ. 2020, 741, 140338. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.; Adermann, E.; Pizzolato, M.; Pechenkin, R.; Rodríguez, C.G.; Taravat, A. Comparative Analysis of Machine Learning Algorithms for Soil Erosion Modelling Based on Remotely Sensed Data. Remote Sens. 2023, 15, 482. [Google Scholar] [CrossRef]
- Tan, Q.; Geng, J.; Fang, H.; Li, Y.; Guo, Y. Exploring the Impacts of Data Source, Model Types and Spatial Scales on the Soil Organic Carbon Prediction: A Case Study in the Red Soil Hilly Region of Southern China. Remote Sens. 2022, 14, 5151. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar, N.; Behrens, T.; Scholten, T. Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space. Remote Sens. 2020, 12, 1095. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Rapčan, I.; Domazetović, F.; Milošević, R.; Plaščak, I. An Independent Validation of SoilGrids Accuracy for Soil Texture Components in Croatia. Land 2023, 12, 1034. [Google Scholar] [CrossRef]
- Somarathna, P.D.S.N.; Malone, B.P.; Minasny, B. Mapping Soil Organic Carbon Content over New South Wales, Australia Using Local Regression Kriging. Geoderma Reg. 2016, 7, 38–48. [Google Scholar] [CrossRef]
- Van Eynde, E.; Fendrich, A.N.; Ballabio, C.; Panagos, P. Spatial Assessment of Topsoil Zinc Concentrations in Europe. Sci. Total Environ. 2023, 892, 164512. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, B.; Zhou, C.; Li, F.; Zhang, Z.; Ding, L.; Zhang, T.; Xu, L. A Systematic Review of Research Studies on the Estimation of Net Primary Productivity in the Three-River Headwater Region, China. J. Geogr. Sci. 2017, 27, 161–182. [Google Scholar] [CrossRef]
- Shen, C.; Xiong, J.; Zhang, H.; Feng, Y.; Lin, X.; Li, X.; Liang, W.; Chu, H. Soil pH Drives the Spatial Distribution of Bacterial Communities along Elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and Variation of C:N:P Ratios in China’s Soils: A Synthesis of Observational Data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Clark, D.B.; Mercado, L.M.; Sitch, S.; Jones, C.D.; Gedney, N.; Best, M.J.; Pryor, M.; Rooney, G.G.; Essery, R.L.H.; Blyth, E.; et al. The Joint UK Land Environment Simulator (JULES), Model Description—Part 2: Carbon Fluxes and Vegetation Dynamics. Geosci. Model Dev. 2011, 4, 701–722. [Google Scholar] [CrossRef]
- Koven, C.D.; Hugelius, G.; Lawrence, D.M.; Wieder, W.R. Higher Climatological Temperature Sensitivity of Soil Carbon in Cold than Warm Climates. Nat. Clim. Chang. 2017, 7, 817–822. [Google Scholar] [CrossRef]
Environmental Covariates | Method | R2 | RMSE |
---|---|---|---|
Bioclimatic and base covariates | RF | 0.427 | 12.882 |
XGB | 0.408 | 12.280 | |
SVM | 0.163 | 15.014 | |
Ensemble | 0.580 | 10.392 | |
Base covariates | RF | 0.375 | 13.425 |
XGB | 0.294 | 13.291 | |
SVM | 0.304 | 13.277 | |
Ensemble | 0.548 | 10.679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radočaj, D.; Jurišić, M.; Tadić, V. The Effect of Bioclimatic Covariates on Ensemble Machine Learning Prediction of Total Soil Carbon in the Pannonian Biogeoregion. Agronomy 2023, 13, 2516. https://doi.org/10.3390/agronomy13102516
Radočaj D, Jurišić M, Tadić V. The Effect of Bioclimatic Covariates on Ensemble Machine Learning Prediction of Total Soil Carbon in the Pannonian Biogeoregion. Agronomy. 2023; 13(10):2516. https://doi.org/10.3390/agronomy13102516
Chicago/Turabian StyleRadočaj, Dorijan, Mladen Jurišić, and Vjekoslav Tadić. 2023. "The Effect of Bioclimatic Covariates on Ensemble Machine Learning Prediction of Total Soil Carbon in the Pannonian Biogeoregion" Agronomy 13, no. 10: 2516. https://doi.org/10.3390/agronomy13102516
APA StyleRadočaj, D., Jurišić, M., & Tadić, V. (2023). The Effect of Bioclimatic Covariates on Ensemble Machine Learning Prediction of Total Soil Carbon in the Pannonian Biogeoregion. Agronomy, 13(10), 2516. https://doi.org/10.3390/agronomy13102516