Near-Infrared Spectroscopy and Chemometrics Methods to Predict the Chemical Composition of Cratylia argentea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Cratylia Cultivation
2.3. Research Material and Preparation
2.4. Model Development
2.5. Model Evaluation and Statistical Analysis
3. Results and Discussion
3.1. General
3.2. Calibration and Validation: R2, RMSEc and RMSEp
3.3. Ratio of Performance to Deviation
3.4. External Cross-Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Queiroz, L.P. O Gênero Cratylia Martius ex Bentham (Leguminosae Papilionoideae, Phaseoleae): Revisão Taxonômica e Aspectos Biológicos. Master’s Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 1991; 129p. [Google Scholar]
- Queiroz, L.P.; Coradin, L. Biogeografía de Cratylia en áreas prioritarias para Coleta. In Memorias del Taller Potencial del Género Cratylia Como Leguminosa Forrajera; Pizarro, E.A., Coradin, L., Eds.; EMBRAPA/Cenargen/CPAC/CIAT: Brasilia, Brasil, 1996; pp. 1–28. [Google Scholar]
- Argel, P.; Gonzalez, J.; Lobo, M. Cratylia argentea: A Shrub Legume for Livestock Production in the Tropics. In Feeding Systems with Legumes to Intensify Dairy Farms; Holmann, F., Lascano, C., Eds.; Centro Internacional de Agricultura Tropical; Tropileche Consortium; International Livestock Research Institute: Cali, Colombia, 2004; pp. 150–154. [Google Scholar]
- Hohnwald, S.; Trautwein, J.; Camarão, A.P.; Wollny, C.B. Relative palatability and growth performance of capoeira species as supplementary forages in the NE-amazon. Agric. Ecosyst. Environ. 2016, 218, 107–115. [Google Scholar] [CrossRef]
- Raaflaub, M.; Lascano, C.E. The effect of wilting and drying on intake rate and acceptability by sheep of the shrub legume Cratylia argentea. Trop. Grassl. 1995, 29, 97–101. [Google Scholar]
- Matrangolo, W.J.R.; Brasileiro, B.P.; Silva, C.J.; Netto, D.A.M.; Mattar, E.P.L.; Frade, E.F.; Silva, I.H.F.; Silva, I.S.; Crivelaro, J.C.B.; Ribeiro, J.P.O.; et al. Aspectos de Cratylia argentea na região central de Minas Gerais e potencialidades em sistemas agrobiodiversos. In Cadernos de Agroecologia; Comunidaco Tecnico 233; Embrapa Milho e Sorgo: Sete Lagoas, MG, Brazil, 2018; p. 41. [Google Scholar]
- Gonzalez, J.; Di Palma, M.V.L.; Acuña, V.R.; Argel, P.J.; Hidalgo, C.A.; Romero, F.; Utilization of the shrub Cratylia argentea, cv. Veraniega as protein supplement for milking cows during the dry season in Costa Rica. In International Symposium on Silvopastoral Systems: Second Congress on Agroforestry and Livestock Production in Latin America; Ibrahim, M., Ed.; CATIE/IICA: Turrialba, Costa Rica, 2001; p. 478. [Google Scholar]
- Silva, M.E.; Araújo, J.V.; Silveira, W.F.; Carvalho, L.M.; Ribeiro, R.R. Effectiveness of cratylia argentea as an animal feed supplement in the control of gastrointestinal nematodes in sheep. Semin. CiÊNcias AgrÁRias 2018, 39, 657. [Google Scholar] [CrossRef]
- Valles-de la Mora, B.; Castillo-Gallegos, E.; Alonso-Díaz, M.; Ocaña-Zavaleta, E.; Jarillo-Rodríguez, J. Live-weight gains of Holstein × zebu heifers grazing a Cratylia argentea/Toledo-grass (Brachiaria brizantha) association in the mexican humid tropics. Agrofor. Syst. 2016, 91, 1057–1068. [Google Scholar] [CrossRef]
- Andersson, M.S.; Peters, M.; Schultze-Kraft, R.; Franco, L.H.; Lascano, C.E. Phenological, agronomic and forage quality diversity among germplasm accessions of the tropical legume shrub cratylia argentea. J. Agric. Sci. 2006, 144, 237–248. [Google Scholar] [CrossRef]
- Braga, E.; Braga Filho, E.; Silva, J.A.; Faturi, C.; Domingues, F.N.; Lourenço Júnior, J.D. Ruminal degradability of tropical leguminous plants from Eastern Amazonia. Semin. Ciências Agrárias 2018, 39, 845. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Lee, E.-J.; Ban, S.-E.; Lee, J.-W. Near infrared spectroscopy model for analyzing chemical composition of biomass subjected to Fenton oxidation and hydrothermal treatment. Renew. Energy 2021, 172, 1341–1350. [Google Scholar] [CrossRef]
- Guimarães, C.C.; Assis, C.; Simeone, M.L.; Sena, M.M. Use of near-infrared spectroscopy, partial least-squares, and ordered predictors selection to predict four quality parameters of sweet sorghum juice used to produce bioethanol. Energy Fuels 2016, 30, 4137–4144. [Google Scholar] [CrossRef]
- Moros, J.; Garrigues, S.; Guardia, M. de Vibrational Spectroscopy provides a green tool for multi-component analysis. Trends Anal. Chem. 2010, 29, 578–591. [Google Scholar] [CrossRef]
- Norris, K.H.; Barnes, R.F.; Moore, J.E.; Shenk, J.S. Predicting forage quality by infrared replectance spectroscopy. J. Anim. Sci. 1976, 43, 889–897. [Google Scholar] [CrossRef]
- Deinum, B.; Struik, P.C. Genetic variation in digestibility of forage maize (Zea mays L.) and its estimation by near infrared reflectance spectroscopy (NIRS). an analysis. Euphytica 1989, 42, 89–98. [Google Scholar] [CrossRef]
- Harris, P.A.; Nelson, S.; Carslake, H.B.; Argo, C.M.G.; Wolf, R.; Fabri, F.B.; Brolsma, K.M.; van Oostrum, M.J.; Ellis, A.D. Comparison of NIRS and wet chemistry methods for the nutritional analysis of Haylages for horses. J. Equine Vet. Sci. 2018, 71, 13–20. [Google Scholar] [CrossRef]
- Tibola, C.S.; de Miranda, M.Z.; Guarienti, E.M. Avaliação de Parâmetros de Qualidade de Trigo por Espectroscopia no Infravermelho Próximo. In Espectroscopia No Infravermelho Próximo Para Avaliar Indicadores De Qualidade Tecnológica e Contaminantes Em Grãos; Tibola, C.S., de Medeiros, E.P., Simeone, M.L.F., Eds.; Embrapa: Brasília, Brazil, 2018; pp. 95–125. [Google Scholar]
- Dillon, P. Achieving high dry-matter intake from pasture with grazing dairy cows. In Fresh Herb. Dairy Cattle Key to a Sustain; Elgersma, A., Dijkstra, J., Tamminga, S., Eds.; Springer: Food Chain, NY, USA, 2006; pp. 1–26. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Allen, J.D.; Tunnicliffe, R.; Smith, M.; Garnsworthy, P.C. Variation in composition of pre-grazed pasture herbage in the United Kingdom, 2006–2012. Anim. Feed Sci. Technol. 2014, 196, 139–144. [Google Scholar] [CrossRef]
- de Sá Júnior, A.; de Carvalho, L.G.; da Silva, F.F.; de Carvalho Alves, M. Application of the Köppen Classification for climatic zoning in the state of Minas Gerais, Brazil. Theor. Appl. Climatol. 2011, 108, 1–7. [Google Scholar] [CrossRef]
- Campos, A.; Silva, B.; Freitas, D.; Fernandes, M. Qualidade Física do Latossolo Vermelho Distrófico Cultivado com Milho. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/203319/1/Circ-253.pdf (accessed on 30 August 2023).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Soil Classification System; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Navas Panadero, A.; Daza Cárdenas, J.I.; Montaña Barrera, V. Desempeño de Bancos Forrajeros de Cratylia argentea (Desv.) kuntze, em suelos degradados em el Departamento de Casanare. Rev. De Med. Vet. 2020, 1, 29–42. [Google Scholar] [CrossRef]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos e Biológicos, 3rd ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2006. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Neto, M.; Simeone, M.L.; Guimarães, C.; Andrade, H.M.; Queiroz, L.; Simão, E.d.P. Predição do Teor de Carbono Total em Solos de Áreas Experimentais de Integração Lavoura- Pecuária por Meio da Espectroscopia NIR. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/953275/predicao-do-teor-de-carbono-total-em-solos-de-areas-experimentais-de-integracao-lavoura-pecuaria-por-meio-da-espectroscopia-nir (accessed on 10 August 2023).
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Williams, P.C. Implementation of Near-Infrared Technology. In Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P.C., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001; pp. 145–169. [Google Scholar]
- Bhering, L.L. Rbio: A Tool for Biometric and Statistical Analysis Using the R Platform. Crop Breed. Appl. Biotechnol. 2017, 17, 187–190. [Google Scholar] [CrossRef]
- Williams, P.; Manley, M.; Antoniszyn, J. Near Infrared Technology: Getting the Best Out of Light; PDK Grain: Nanaimo, BC, Canada, 2003. [Google Scholar]
- Pena, C.A.; Soto, A.; King, A.W.; Rodríguez, H. Improved reactivity of cellulose via its crystallinity reduction by nondissolving pretreatment with an ionic liquid. ACS Sustain. Chem. Eng. 2019, 7, 9164–9171. [Google Scholar] [CrossRef]
- Pauly, M.; Gille, S.; Liu, L.; Mansoori, N.; de Souza, A.; Schultink, A.; Xiong, G. Hemicellulose biosynthesis. Planta 2013, 238, 627–642. [Google Scholar] [CrossRef]
- Balakshin, M.; Capanema, E.A.; Zhu, X.; Sulaeva, I.; Potthast, A.; Rosenau, T.; Rojas, O.J. Spruce milled wood lignin: Linear, branched or cross-linked? Green Chem. 2020, 22, 3985–4001. [Google Scholar] [CrossRef]
- Williams, P.C.; Sobering, D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. 1993, 1, 25–32. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’Brien, B.; O’Donovan, M.; Condon, T.; Murphy, M.D. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Inf. Process. Agric. 2022, 9, 243–253. [Google Scholar] [CrossRef]
- Mazabel, J.; Worthington, M.; Castiblanco, V.; Peters, M.; Arango, J. Using near infrared reflectance spectroscopy for estimating nutritional quality of brachiaria humidicola in breeding selections. Agrosystems Geosci. Environ. 2020, 3, e20070. [Google Scholar] [CrossRef]
- Norman, H.C.; Hulm, E.; Humphries, A.W.; Hughes, S.J.; Vercoe, P.E. Broad near-infrared spectroscopy calibrations can predict the nutritional value of >100 forage species within the Australian feedbase. Anim. Prod. Sci. 2020, 60, 1111. [Google Scholar] [CrossRef]
- Andueza, D.; Picard, F.; Jestin, M.; Andrieu, J.; Baumont, R. NIRS prediction of the feed value of temperate forages: Efficacy of four calibration strategies. Animal 2011, 5, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Shahidian, S.; Carapau, Â.; Rato, A.E. Near-infrared spectroscopy (NIRS) and optical sensors for estimating protein and fiber in dryland Mediterranean Pastures. AgriEngineering 2021, 3, 73–91. [Google Scholar] [CrossRef]
- Andrade Ribeiro, M.C.; Loures Guerra, G.; Cano Serafim, C.; Nóbrega de Carvalho, L.; Galbeiro, S.; Vendrame, P.R.; Monteiro do Carmo, J.P.; Rodrigues Franconere, E.R.; Ferracini, J.G.; do Prado, I.N.; et al. Prediction models of the nutritional quality of fresh and dry Brachiaria Brizantha cv. Piatã Grass by near infrared spectroscopy. J. Appl. Anim. Res. 2023, 51, 193–203. [Google Scholar] [CrossRef]
- Oluk, A.C.; Yucel, H.; Bilgin, F.D.; Serbester, U. Estimation of forage quality by near infrared reflectance spectroscopy in dallisgrass, paspalum dilatatum, Poir. J. Near Infrared Spectrosc. 2022, 30, 189–196. [Google Scholar] [CrossRef]
- Kumar, K. Partial Least Square (PLS) Analysis. Resonance 2021, 26, 429–442. [Google Scholar] [CrossRef]
Chemical Properties (%) | N cal | SD | Min | Max | LV | R2cal | RMSEc | N val | R2val | RMSEp |
---|---|---|---|---|---|---|---|---|---|---|
CP | 108 | 3.27 | 11.59 ± 0.24 | 28.51 ± 0.76 | 6 | 0.94 | 0.66 ± 0.01 | 47 | 0.93 | 0.83 ± 0.01 |
NDF | 105 | 8.66 | 33.89 ± 0.41 | 64.15 ± 0.57 | 10 | 0.93 | 2.15 ± 0.15 | 45 | 0.91 | 2.71 ± 0.09 |
ADF | 107 | 10.87 | 29.55 ± 0.32 | 72.69 ± 1.05 | 10 | 0.92 | 2.85 ± 0.25 | 45 | 0.88 | 3.55 ± 0.38 |
DM | 82 | 1.21 | 91.59 ± 0.01 | 96.05 ± 0.01 | 3 | 0.91 | 0.36 ± 0.05 | 35 | 0.89 | 0.39 ± 0.01 |
Chemical Properties (%) | N cal | SD | Min | Max | LV | R2cal | RMSEc | N val | R2val | RMSEp |
---|---|---|---|---|---|---|---|---|---|---|
CP | 108 | 3.27 | 11.59 ± 0.24 | 28.51 ± 0.76 | 5 | 0.94 | 0.73 ± 0.01 | 47 | 0.93 | 0.84 ± 0.01 |
NDF | 105 | 8.66 | 33.89 ± 0.41 | 64.15 ± 0.57 | 8 | 0.93 | 2.20 ± 0.12 | 45 | 0.91 | 2.59 ± 0.08 |
ADF | 107 | 10.87 | 29.55 ± 0.32 | 72.69 ± 1.05 | 8 | 0.92 | 2.85 ± 0.23 | 45 | 0.88 | 3.55 ± 0.35 |
DM | 82 | 1.21 | 91.59 ± 0.01 | 96.05 ± 0.01 | 3 | 0.91 | 0.35 ± 0.03 | 35 | 0.89 | 0.38 ± 0.01 |
Measured Mean | Predicted Mean | Bias * | p Value + | Relative RMSEp (%) | RPD | |
---|---|---|---|---|---|---|
CP | 20.12 ± 0.03 | 20.04 ± 0.19 | −0.17 | 0.1399 | 3.85 | 4.8 ± 0.3 |
NDF | 41.62 ± 0.62 | 42.07 ± 0.63 | −0.98 | 0.6026 | 4.31 | 4.0 ± 0.1 |
ADF | 44.25 ± 0.10 | 44.68 ± 0.18 | −0.37 | 0.8543 | 6.34 | 3.5 ± 0.3 |
DM | 94.19 ± 0.01 | 94.20 ± 0.01 | 0.17 | 0.5077 | 0.38 | 3.4 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, L.F.; Lana, Â.M.Q.; Climaco, L.C.; Matrangolo, W.J.R.; Barbosa, E.P.; da Silva, K.T.; Rowntree, J.E.; da Silva, E.A.; Simeone, M.L.F. Near-Infrared Spectroscopy and Chemometrics Methods to Predict the Chemical Composition of Cratylia argentea. Agronomy 2023, 13, 2525. https://doi.org/10.3390/agronomy13102525
Abreu LF, Lana ÂMQ, Climaco LC, Matrangolo WJR, Barbosa EP, da Silva KT, Rowntree JE, da Silva EA, Simeone MLF. Near-Infrared Spectroscopy and Chemometrics Methods to Predict the Chemical Composition of Cratylia argentea. Agronomy. 2023; 13(10):2525. https://doi.org/10.3390/agronomy13102525
Chicago/Turabian StyleAbreu, Lucas Freires, Ângela Maria Quintão Lana, Leonardo Campos Climaco, Walter José Rodrigues Matrangolo, Elizabeth Pereira Barbosa, Karina Toledo da Silva, Jason E. Rowntree, Edilane Aparecida da Silva, and Maria Lucia Ferreira Simeone. 2023. "Near-Infrared Spectroscopy and Chemometrics Methods to Predict the Chemical Composition of Cratylia argentea" Agronomy 13, no. 10: 2525. https://doi.org/10.3390/agronomy13102525
APA StyleAbreu, L. F., Lana, Â. M. Q., Climaco, L. C., Matrangolo, W. J. R., Barbosa, E. P., da Silva, K. T., Rowntree, J. E., da Silva, E. A., & Simeone, M. L. F. (2023). Near-Infrared Spectroscopy and Chemometrics Methods to Predict the Chemical Composition of Cratylia argentea. Agronomy, 13(10), 2525. https://doi.org/10.3390/agronomy13102525