Low-Temperature-Induced Winter Dormancy in a Predatory Stink Bug Eocanthecona furcellata (Wolff) in the Subtropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Insects
2.2. Population Dynamic of E. furcellata in a Semi-Field Greenhouse
2.3. Development and Reproduction of E. furcellata in the Laboratory
2.4. Ovarian Development of E. furcellata and Dormancy
2.5. Statistical Analyses
3. Results
3.1. Population Dynamic of E. furcellata in a Semi-Field Greenhouse
3.2. Development and Reproduction of E. furcellata in the Laboratory
3.3. Ovarian Development of E. furcellata and Dormancy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, S.D. Insect thermoperiodism. Annu. Rev. Entomol. 1983, 28, 91–108. [Google Scholar] [CrossRef]
- Denlinger, D.L. Relationship between cold hardiness and diapause. In Insects at Low Temperature; Lee, R.E., Denlinger, D.L., Eds.; Springer: Boston, MA, USA, 1991; pp. 174–198. [Google Scholar]
- Bale, J.S.; Hayward, S.A.L. Insect overwintering in a changing climate. J. Exp. Biol. 2010, 213, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.D. Photoperiodic determination of insect development and diapause. J. Comp. Physiol. 1974, 90, 275–295. [Google Scholar] [CrossRef]
- Goto, S.G. Roles of circadian clock genes in insect photoperiodism. Entomol. Sci. 2013, 16, 1–16. [Google Scholar] [CrossRef]
- Sauders, D. Insect photoperiodism: Bünning’s hypothesis, the history and development of an idea. Eur. J. Entomol. 2021, 118, 1–13. [Google Scholar] [CrossRef]
- Hahn, D.A.; Denlinger, D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011, 56, 103–121. [Google Scholar] [CrossRef]
- Snodgrass, G.L.; Jackson, R.E.; Perera, O.P.; Allen, K.C.; Luttrell, R.G. Effect of food and temperature on emergence from diapause in the tarnished plant bug (Hemiptera: Miridae). Environ. Entomol. 2012, 41, 1302–1310. [Google Scholar] [CrossRef]
- Hand, S.C.; Denlinger, D.L.; Podrabsky, J.E.; Roy, R. Mechanisms of animal diapause: Recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol.-Reg. I. 2016, 310, 1193–1211. [Google Scholar] [CrossRef]
- Karp, X. Hormonal regulation of diapause and development in nematodes, insects, and fishes. Front. Ecol. Evol. 2021, 9, 735924. [Google Scholar] [CrossRef]
- Tauber, M.J.; Tauber, C.A.; Masaki, S. Seasonal Adaptations of Insects; Oxford University Press: New York, NY, USA, 1986; pp. 7–67. [Google Scholar]
- Tomiuk, J.; Niklasson, M.; Parker, E. Maintenance of clonal diversity in Dipsa bifurcata (Fallén, 1810) (Diptera: Lonchopteridae). II. Diapause stabilizes clonal coexistence. Heredity 2004, 93, 72–77. [Google Scholar] [CrossRef]
- Musolin, D.L.; Numata, H. Photoperiodic and temperature control of diapause induction and colour change in the southern green stink bug Nezara viridula. Physiol. Entomol. 2003, 28, 65–74. [Google Scholar] [CrossRef]
- Musolin, D.L.; Tougou, D.; Fujisaki, K. Photoperiodic response in the subtropical and warm-temperate zone populations of the southern green stink bug Nezara viridula: Why does it not fit the common latitudinal trend? Physiol. Entomol. 2011, 36, 379–384. [Google Scholar] [CrossRef]
- Musolin, D.L. Surviving winter: Diapause syndrome in the southern green stink bug Nezara viridula in the laboratory, in the field, and under climate change conditions. Physiol. Entomol. 2012, 37, 309–322. [Google Scholar] [CrossRef]
- Masaki, S. Summer diapause. Annu. Rev. Entomol. 1980, 25, 1–25. [Google Scholar] [CrossRef]
- Matthée, J.J. Induction of diapause in eggs of Locustana pardalina (Walker) (Acrididae) by high temperatures. J. Ent. Soc. S. Afr. 1978, 41, 25–30. [Google Scholar]
- Claret, J.; Carton, Y. Diapause in a tropical species, Cothonaspis boulardi (Parasitic Hymenoptera). Oecologia 1980, 45, 32–34. [Google Scholar] [CrossRef]
- Diniz, D.F.A.; de Albuquerque, C.M.R.; Oliva, L.O.; de Melo-Santos, M.A.V.; Ayres, C.F.J. Diapause and quiescence: Dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasite. Vector. 2017, 10, 310. [Google Scholar] [CrossRef]
- Boivin, G. Overwintering strategies of egg parasitoids. In Biological Control with Egg Parasitoids; Wajnberg, E., Hassan, S.A., Eds.; CAB International: Wallingford, UK, 1994; pp. 219–244. [Google Scholar]
- Christiansen-Weniger, P.; Hardie, J. Environmental and physiological factors for diapause induction and termination in the aphid parasitoid, Aphidius ervi (Hymenoptera: Aphidiidae). J. Insect Physiol. 1999, 45, 357–364. [Google Scholar] [CrossRef]
- Lalonde, R.G. Some dynamical consequences of parasitoid diapause. Oikos 2004, 107, 338–344. [Google Scholar] [CrossRef]
- Tougeron, K. Diapause research in insects: Historical review and recent work perspectives. Entomol. Exp. Appl. 2019, 167, 27–36. [Google Scholar] [CrossRef]
- Yang, L.H.; Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2014, 2, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Wang, H.J.; Ren, H.D.; Hong, C.F. Studies on the biological characteristics of Cantheconidea furcellata (Wolff) (Hemiptera: Pentatomidae, Asopinae). For. Res. 1997, 11, 89–93. (In Chinese) [Google Scholar]
- Nebapure, S.M.; Agnihotri, M. Canthecona furcellata: A predator of Maruca vitrata. Ann. Plant Sci. 2011, 19, 451–508. [Google Scholar]
- Ray, S.N.; Khan, M.A. Biology of a predatory bug, Canthecona furcellata (Wolff) (Hemiptera: Pentatomidae) on poplar defoliator, Clostera fulgurita Walk (Lepidoptera: Notodontidae). J. Biopestic. 2011, 4, 109–111. [Google Scholar]
- Lenin, E.A.; Rajan, S.J. Biology of predatory bug Eocanthecona furcellata (Wolff) (Hemiptera: Pentatomidae) on Corcyra cephalonica Stainton. J. Entomol. Zool. Stud. 2016, 4, 338–340. [Google Scholar]
- Jiang, J.; Liang, G. The selective predation of Cantheconidea furcellata Wolff on the different instar larvae of Spodoptera litura in coexistence of three-age type. Acta Ecol. Sin. 2001, 21, 684–687. (In Chinese) [Google Scholar]
- Wen, J.; Chen, K.W.; Fu, L.; Chen, Y.G. Exposure of Eocanthecona furcellata (Hemiptera: Pentatomidae) nymphs and adults to high temperatures induces an aestivo-hibernal egg diapause: A strategy for surviving hot summers. Appl. Entomol. Zool. 2017, 52, 457–467. [Google Scholar] [CrossRef]
- Zerbino, M.S.; Miguel, L.; Altier, N.A.; Panizzi, A.R. Overwintering of Piezodorus guildinii (Heteroptera, Pentatomidae) populations. Neotrop. Entomol. 2020, 49, 179–190. [Google Scholar] [CrossRef]
- Song, H.; Jung, M.; Hwang, S.; Kim, J.; Kim, D.; Lee, D.H. Survey of overwintering Halyomorpha halys (Hemiptera: Pentatomidae) in ports of export and natural landscapes surrounding the ports in Republic of Korea. PLoS ONE 2022, 17, e0270532. [Google Scholar] [CrossRef]
- Nedvěd, O.; Kalushkov, P.; Hodek, I. Termination of diapause in the lime seed bug Oxycarenus lavaterae (Heteroptera: Lygaeoidea: Oxycarenidae). Eur. J. Entomol. 2023, 120, 150–156. [Google Scholar] [CrossRef]
- Numa, H. Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus. Mem. Fac. Sci. Kyoto Univ. Ser. Biol. 1985, 10, 29–48. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. 2020. Available online: http://www.R-project.org (accessed on 31 October 2022).
- Chakravarty, S.; Agnihotri, M.; Jagdish, J. Seasonal abundance of predatory bugs, Eocanthecona furcellata (Wolff.) and Rhynocoris fuscipes (F.) and its olfactory responses towards plant and pest-mediated semiochemical cues in pigeonpea ecosystem. Legume Res. 2016, 40, 351–357. [Google Scholar]
- Liu, Z.; Xin, Y.; Zhang, Y.; Fan, J.; Sun, J. Summer diapause induced by high temperatures in the oriental tobacco budworm: Ecological adaptation to hot summers. Sci. Rep. 2016, 6, 27443. [Google Scholar] [CrossRef] [PubMed]
- Birch, L.C. The intrinsic rate of natural increase in an insect population. J. Anim. Ecol. 1948, 17, 15–26. [Google Scholar] [CrossRef]
- Zheng, X.M.; Tao, Y.L.; Chi, H.; Wan, F.H.; Chu, D. Adaptability of small brown planthopper to four rice cultivars using life table and population projection method. Sci. Rep. 2017, 7, 42399. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, G.P. Phenological adaptation and the polymodal emergence patterns of insects. In Evolution of Insect Migration and Diapause; Dingle, H., Ed.; Springer: New York, NY, USA, 1978; pp. 127–144. [Google Scholar]
- Joschinski, J.; Bonte, D. Diapause and bet-hedging strategies in insects: A meta-analysis of reaction norm shapes. Oikos 2021, 130, 1240–1250. [Google Scholar] [CrossRef]
- Belozerov, V. Diapause and quiescence as two main kinds of dormancy and their significance in life cycles of mites and ticks (Chelicerata: Arachnida: Acari). Part 1. Acariformes. Acarina 2008, 16, 79–130. [Google Scholar]
- Hodek, I. Diapause development, diapause termination and the end of diapause. Eur. J. Entomol. 1996, 93, 475–487. [Google Scholar]
- Sarkar, S.; Babu, A.; Chakraborty, K.; Deka, B.; Roy, S. Eocanthecona furcellata (Wolff) (Hemiptera: Pentatomidae), a potential biocontrol agent of the black inch worm, Hyposidra talaca Walker (Lepidoptera: Geometridae) infesting tea. Phytoparasitica 2021, 49, 363–376. [Google Scholar] [CrossRef]
- Colinet, H.; Boivin, G. Insect parasitoids cold storage: A comprehensive review of factors of variability and consequences. Biol. Control 2011, 58, 83–95. [Google Scholar] [CrossRef]
Temperature (℃) | Egg (d) 5 | Nymph (d) 5 | Pre-Oviposition (d) 5 | Adult Longevity (d) 4,5 |
---|---|---|---|---|
16 1 | -- | -- | -- | -- |
18 2 | 20.53 ± 0.19 a (32) 6 | -- | -- | -- |
20 3 | 17.73 ± 0.05 b (88) | 44.06 ± 0.32 a (18) | -- | 63.00 ± 0.44 a (17) |
22 | 13.79 ± 0.04 c (95) | 31.28 ± 0.14 b (67) | 28.55 ± 2.61 a (20) | 68.24 ± 2.52 a (63) |
26 | 6.45 ± 0.11 d (98) | 12.21 ± 0.26 c (72) | 13.89 ± 1.35 b (19) | 39.05 ± 2.34 b (63) |
Temperature (°C) | R01 | rm2 | T3 | λ4 |
---|---|---|---|---|
16 5 | - | - | - | - |
18 5 | - | - | - | - |
20 5 | - | - | - | - |
22 | 42.16 | 0.14 | 27.00 | 1.15 |
26 | 81.64 | 0.18 | 24.02 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wen, J.; Luo, Q.; Kuang, Z.; Chen, K. Low-Temperature-Induced Winter Dormancy in a Predatory Stink Bug Eocanthecona furcellata (Wolff) in the Subtropics. Agronomy 2023, 13, 2573. https://doi.org/10.3390/agronomy13102573
Zhu Y, Wen J, Luo Q, Kuang Z, Chen K. Low-Temperature-Induced Winter Dormancy in a Predatory Stink Bug Eocanthecona furcellata (Wolff) in the Subtropics. Agronomy. 2023; 13(10):2573. https://doi.org/10.3390/agronomy13102573
Chicago/Turabian StyleZhu, Yongji, Jian Wen, Qinglan Luo, Zhaolang Kuang, and Kewei Chen. 2023. "Low-Temperature-Induced Winter Dormancy in a Predatory Stink Bug Eocanthecona furcellata (Wolff) in the Subtropics" Agronomy 13, no. 10: 2573. https://doi.org/10.3390/agronomy13102573
APA StyleZhu, Y., Wen, J., Luo, Q., Kuang, Z., & Chen, K. (2023). Low-Temperature-Induced Winter Dormancy in a Predatory Stink Bug Eocanthecona furcellata (Wolff) in the Subtropics. Agronomy, 13(10), 2573. https://doi.org/10.3390/agronomy13102573