Synergy between Zeolites and Leguminous Cover Crops Improved Olive Tree Performance and Soil Properties in a Rainfed Olive Orchard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Layout
2.2. Field and Laboratory Determinations
2.2.1. Leaf Gas Exchange
2.2.2. Leaf Non-Structural Carbohydrates and Soluble Proteins
2.2.3. Tree Nutritional Status and Olive Yield
2.2.4. Soil Properties
2.2.5. Soil Microbial Biomass and Diversity
2.3. Statistical Analysis
3. Results
3.1. Leaf Gas Exchange
3.2. Non-Structural Carbohydrates and Soluble Proteins
3.3. Tree Nutritional Status and Olive Yield
3.4. Soil Properties
3.5. Soil Microbial Biomass and Diversity
4. Discussion
4.1. Self-Reseeding Cover Crops Ameliorated Olive Tree Physiology and Crop Yield
4.2. Major Changes in Soil Physical, Chemical and Biological Properties Were Induced by Zeolites over Legume Cover Crops
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, M.Â.; Raimundo, S.; Arrobas, M. Cover Cropping in Rainfed Fruticulture. World J. Agric. Soil Sci. 2019, 1, 1–3. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- IPCC. Climate Change 2021. The Physical Science Basis. Summary for Policymakers; Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; IPCC: Geneva, Switzerland, 2021; p. 40. [Google Scholar]
- Ozdemir, Y. Effects of Climate change on olive cultivation and table olive and olive oil quality. Sci. Pap. Ser. B Hortic. 2016, LX, 65–69. [Google Scholar]
- Nearing, M.; Pruski, F.; O’Neal, M.R. Expected climate change impacts on soil erosion rates: A review. JSWC 2004, 59, 43–50. [Google Scholar]
- Coupel-Ledru, A.; Lebon, E.; Christophe, A.; Gallo, A.; Gago, P.; Pantin, F.; Doligez, A.; Simonneau, T. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc. Natl. Acad. Sci. USA 2016, 113, 8963–8968. [Google Scholar] [CrossRef]
- Mi, N.; Zhang, Y.S.; Ji, R.P.; Cai, F.; Zhang, S.J.; Zhao, X.L. Effects of climate change on water use efficiency in rain-fed plants. Int. J. Plant Prod. 2012, 6, 513–534. [Google Scholar]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Olesen, J.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- Li, Y.; Chang, S.X.; Tian, L.; Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 2018, 121, 50–58. [Google Scholar] [CrossRef]
- Conservation Agriculture. Available online: http://www.fao.org/conservation-agriculture/en/ (accessed on 25 September 2023).
- Carter, M.R. Soil Quality for Sustainable Land Management. J. Agron. 2002, 94, 38–47. [Google Scholar]
- Carrera, L.M.; Buyer, J.S.; Vinyard, B.; Abdul-Baki, A.A.; Sikora, L.J.; Teasdale, J.R. Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. App. Soil Ecol. 2007, 37, 247–255. [Google Scholar] [CrossRef]
- Henriksen, C.B.; Hussey, K.; Holm, P.E. Exploiting soil-management strategies for climate mitigation in the European Union: Maximizing “win–win” solutions across policy regimes. Ecol. Soc. 2011, 16, 17. [Google Scholar] [CrossRef]
- Drinkwater, L.; Snapp, S. Nutrients in Agroecosystems: Rethinking the Management Paradigm. Adv. Agron. 2007, 92, 163–186. [Google Scholar]
- Haruna, S.I.; Nkongolo, N.V. Cover Crop Management Effects on Soil Physical and Biological Properties. Procedia Environ. Sci. 2015, 29, 13–14. [Google Scholar] [CrossRef]
- Wortman, S.E.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 2013, 72, 232–241. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; Di Felice, V.; Radicetti, E. Long-term residual effects of the management of cover crop biomass on soil nitrogen and yield of endive (Cichorium endivia L.) and savoy cabbage (Brassica oleracea var. sabauda). Soil Tillage Res. 2014, 139, 1–7. [Google Scholar] [CrossRef]
- Sarrantonio, M.; Gallandt, E. The Role of Cover Crops in North American Cropping Systems. J. Crop Prod. 2003, 8, 53–74. [Google Scholar] [CrossRef]
- Halde, C.; Entz, M.H. Plant species and mulch application rate affected decomposition of cover crop mulches used in organic rotational no-till systems. Can. J. Plant Sci. 2016, 96, 59–71. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Huang, L.; Ban, Y.; Tang, M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 2017, 12, e0182264. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, M.; Tripathi, B.N. Glomalin: An arbuscular mycorrhizal fungal soil protein. Protoplasma 2013, 250, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Schindler, F.V.; Mercer, E.J.; Rice, J.A. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol. Biochem. 2007, 39, 320–329. [Google Scholar] [CrossRef]
- Correia, C.; Brito, C.; Fernandes-Silva, A.; Bacelar, E.; Gonçalves, B.; Ferreira, H.; Moutinho Pereira, J.; Rodrigues, M. Sustainable management of olive rainfed orchards by the introduction of leguminous cover crops. Ecology 2013, 7, 146–156. [Google Scholar]
- Chehab, H.; Tekaya, M.; Gouiaa, M.; Mahjoub, Z.; Laamari, S.; Sfina, H.; Chihaoui, B.; Boujnah, D.; Mechri, B. The use of legume and grass cover crops induced changes in ion accumulation, growth and physiological performance of young olive trees irrigated with high-salinity water. Sci. Hortic. 2018, 232, 170–174. [Google Scholar] [CrossRef]
- Balota, E.L.; Calegari, A.; Nakatani, A.S.; Coyne, M.S. Benefits of winter cover crops and no-tillage for microbial parameters in a Brazilian Oxisol: A long-term study. Agric. Ecosyst. Environ. 2014, 197, 31–40. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Dimande, P.; Pereira, E.L.; Ferreira, I.Q.; Freitas, S.; Correia, C.M.; Moutinho-Pereira, J.; Arrobas, M. Early-maturing annual legumes: An option for cover cropping in rainfed olive orchards. Nutr. Cycl. Agroecosyst. 2015, 103, 153–166. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M.; et al. Zeolites Enhance Soil Health, Crop Productivity and Environmental Safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water Air Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D. Basics of Zeolites In Fly Ash Zeolites; Springer: Berlin/Heidelberg, Germany, 2016; pp. 5–31. [Google Scholar]
- Belviso, C. Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes 2020, 8, 820. [Google Scholar] [CrossRef]
- Perez-Caballero, R.; Benitez, J.G.C.; Gonzalez, J. The Effect of Adding Zeolite to Soils in Order to Improve the N-K Nutrition of Olive Trees. Preliminary Results. Am. J. Agric. Biol. Sci. 2008, 2, 321–324. [Google Scholar]
- Dubey, A.; Mailapalli, D.R. Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environ. Technol. Innov. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Jakkula, V.; Wani, S. Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity. Sci. Rev. Chem. Commun. 2018, 8, 119. [Google Scholar]
- Ge, M.; Zhou, H.; Vaidheeswaran, A.; Rogers, W.; Fan, D.; Li, C. Multi-scale experimental investigation on the fluidization of Geldart B 13X zeolite particles: A comprehensive dataset for CFD validation. J. Chem. Eng. 2023, 471, 144724. [Google Scholar] [CrossRef]
- Al-tabbal, J.; Al-Mefleh, N.; Alzboon, K.; Tadros, M. Effects of Volcanic Zeolite Tuff on Olive (Olea Europaea L.) Growth and Soil Chemistry under a Constant Water Level: Five Years’ Monitoring Experience. Environ. Nat. Resour. J. 2020, 18, 44–54. [Google Scholar] [CrossRef]
- Domenico, P. Zeolites and Effective microorganisms for the qualitative improvement of olive trees. Atti Soc. Toscana Sci. Nat. 2017. Available online: https://www.researchgate.net/publication/312554383_Zeolites_and_Effective_microorganisms_for_the_qualitative_improvement_of_olive_trees (accessed on 25 September 2023).
- Martins, S.; Silva, E.; Brito, C.; Pinto, L.; Martins-Gomes, C.; Gonçalves, A.; Arrobas, M.; Rodrigues, M.Â.; Correia, C.M.; Nunes, F.M. Combining Zeolites with Early-Maturing Annual Legume Cover Crops in Rainfed Orchards: Effects on Yield, Fatty Acid Composition and Polyphenolic Profile of Olives and Olive Oil. Molecules 2023, 28, 2545. [Google Scholar] [CrossRef]
- von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Einerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Walinga, I.; Van Vark, W.; Houba, V.; Van der Lee, J. Soil and Plant Analysis. Part. 7 Plant Analysis Procedures; Wageningen Agricultural University: Wageningen, The Netherlands, 1997. [Google Scholar]
- van Reeuwijk, L. Procedures for Soil Analysis, 6th ed.; ISRIC: Wageningen, The Netherlands; FAO: Rome, Italy, 2002. [Google Scholar]
- Balbino, L.R. La Méthode Egner-Riehm et la Détermination du Phosfore et du Potassium «assimilável» des sols du Portugal. Medit. Cont. Fert. Plantas Cultiv. 1968, II, 10. [Google Scholar]
- Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Barranco, D.; Rallo, L. El Cultivo del Olivo, 7th ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2017. [Google Scholar]
- Turrini, A.; Caruso, G.; Avio, L.; Gennai, C.; Palla, M.; Agnolucci, M.; Tomei, P.E.; Giovannetti, M.; Gucci, R. Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. Appl. Soil Ecol. 2017, 116, 70–78. [Google Scholar] [CrossRef]
- Moreno, B.; Garcia-Rodriguez, S.; Cañizares, R.; Castro, J.; Benítez, E. Rainfed olive farming in south-eastern Spain: Long-term effect of soil management on biological indicators of soil quality. Agric. Ecosyst. Environ. 2009, 131, 333–339. [Google Scholar] [CrossRef]
- Herencia, J.F. Soil quality indicators in response to long-term cover crop management in a Mediterranean organic olive system. Biol. Agric. Hortic. 2018, 34, 211–231. [Google Scholar] [CrossRef]
- Raffa, D.W.; Antichi, D.; Carlesi, S.; Puig-Sirera, À.; Rallo, G.; Bàrberi, P. Ground vegetation covers increase grape yield and must quality in Mediterranean organic vineyards despite variable effects on vine water deficit and nitrogen status. Eur. J. Agron. 2022, 136, 126483. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M.; Sifola, M.I.; Pellegrini, S.; Pagliai, M.; et al. Changes of soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Rubio-Asensio, J.S.; Abbatantuono, F.; Ramírez-Cuesta, J.M.; Hortelano, D.; Ruíz, J.L.; Parra, M.; Martínez-Meroño, R.M.; Intrigliolo, D.S.; Buesa, I. Effects of Cover Crops and Drip Fertigation Regime in a Young Almond Agroecosystem. Agronomy 2022, 12, 2606. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Quemada, M.; Martín-Lammerding, D.; Vanclooster, M. Assessing the cover crop effect on soil hydraulic properties by inverse modelling in a 10-year field trial. Agric. Water Manag. 2019, 222, 62–71. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J.; Phillips, N.C.; Cui, S.; Gao, Y. Improving soil physical properties through the use of cover crops: A review. Agrosyst. Geosci. Environ. 2020, 3, e20105. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Ferreira, H.; Coutinho, J.; Moutinho-Pereira, J.; Correia, C.M. Salicylic acid increases drought adaptability of young olive trees by changes on redox status and ionome. Plant Physiol. Biochem. 2019, 141, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Bacelar, E.A.; Santos, D.L.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Ferreira, H.F.; Correia, C.M. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. Plant Sci. 2006, 170, 596–605. [Google Scholar] [CrossRef]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B.; Barker, A.V. Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis, Interpretation and Use of Results of Agronomic and Horticultural Crop Plant Tissue; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014. [Google Scholar]
- Bowles, T.M.; Jackson, L.E.; Loeher, M.; Cavagnaro, T.R. Ecological intensification and arbuscular mycorrhizas: A meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 2017, 54, 1785–1793. [Google Scholar] [CrossRef]
- Tosi, M.; Ogilvie, C.M.; Spagnoletti, F.N.; Fournier, S.; Martin, R.C.; Dunfield, K.E. Cover Crops Modulate the Response of Arbuscular Mycorrhizal Fungi to Water Supply: A Field Study in Corn. Plants 2023, 12, 1015. [Google Scholar] [CrossRef]
- Soti, P.; Rugg, S.; Racelis, A. Potential of Cover Crops in Promoting Mycorrhizal Diversity and Soil Quality in Organic Farms. J. Agric. Sci. 2016, 8, 42–47. [Google Scholar] [CrossRef]
- Njeru, E.M.; Avio, L.; Sbrana, C.; Turrini, A.; Bocci, G.; Bàrberi, P.; Giovannetti, M. First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron. Sustain. Dev. 2013, 34, 841–848. [Google Scholar] [CrossRef]
- Sardans, J.; Lambers, H.; Preece, C.; Alrefaei, A.F.; Penuelas, J. Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): Has the puzzle been completely solved? Plant J. 2023, 114, 1227–1242. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J. Effects of Zeolite on Aggregation, Nutrient Availability, and Growth Characteristics of Corn (Zea mays L.) in Cadmium-Contaminated Soils. Water Air Soil Pollut. 2022, 233, 436. [Google Scholar] [CrossRef]
- Litaor, M.I.; Katz, L.; Shenker, M. The influence of compost and zeolite co-addition on the nutrients status and plant growth in intensively cultivated Mediterranean soils. Soil Use Manag. 2017, 33, 72–80. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Ab Majid, N.M. Minimizing ammonia volatilization from urea, improving lowland rice (cv. MR219) seed germination, plant growth variables, nutrient uptake, and nutrient recovery using clinoptilolite zeolite. Arch. Agron. Soil Sci. 2016, 62, 708–724. [Google Scholar] [CrossRef]
- Thor, K. Calcium—Nutrient and Messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.; Wan, S.; Li, X. The Significance of Calcium in Photosynthesis. Int. J. Mol. Sci. 2019, 20, 1353. [Google Scholar] [CrossRef]
- Ridolfi, M.; Roupsard, O.; Garrec, J.; Dreyer, E. Effects of a calcium deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution. Ann. For. Sci. 1996, 53, 325–335. [Google Scholar] [CrossRef]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant 2016, 38, 145. [Google Scholar] [CrossRef]
- Waraich, E.; Ahmad, R.; Ullah, S.; Ashraf, M. Ehsanullah, Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci. 2011, 5, 764–777. [Google Scholar]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef]
- Seyed, Y.S.L.; Rouhollah, M.; Mosharraf, M.H.; Ismail, M.M.R. Water Stress in Plants: Causes, Effects and Responses. In Water Stress; Mofizur, R.I.M., Hiroshis, H., Eds.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Chen, D.; Wang, S.; Cao, B.; Cao, D.; Leng, G.; Li, H.; Yin, L.; Shan, L.; Deng, X. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings. Front. Plant Sci. 2015, 6, 1241. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.I.; Arrobas, M.; Brito, C.; Gonçalves, A.; Silva, E.; Martins, S.; Raimundo, S.; Rodrigues, M.Â.; Correia, C.M. Mycorrhizal Fungi were More Effective than Zeolites in Increasing the Growth of Non-Irrigated Young Olive Trees. Sustainability 2020, 12, 10630. [Google Scholar] [CrossRef]
- Arrobas, M.; Decker, J.V.; Feix, B.L.; Godoy, W.I.; Casali, C.A.; Correia, C.M.; Ângelo Rodrigues, M. Biochar and zeolites did not improve phosphorus uptake or crop productivity in a field trial performed in an irrigated intensive farming system. Soil Use Manag. 2022, 38, 564–575. [Google Scholar] [CrossRef]
- Lopes, J.I.; Arrobas, M.; Raimundo, S.; Gonçalves, A.; Brito, C.; Martins, S.; Pinto, L.; Moutinho-Pereira, J.; Correia, C.M.; Rodrigues, M.Â. Photosynthesis, Yield, Nutrient Availability and Soil Properties after Biochar, Zeolites or Mycorrhizal Inoculum Application to a Mature Rainfed Olive Orchard. Agriculture 2022, 12, 171. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Jarosz, R.; Szerement, J.; Gondek, K.; Mierzwa-Hersztek, M. The use of zeolites as an addition to fertilisers—A review. CATENA 2022, 213, 106125. [Google Scholar] [CrossRef]
- Ahmed, O.; Sumalatha, G.; Muhamad, A. Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. Int. J. Phys. Sci. 2010, 5, 2393–2401. [Google Scholar]
- Filcheva, E.G.; Tsadilas, C.D. Influence of clinoptilolite and compost on soil properties. Commun. Soil Sci. Plant Anal. 2002, 33, 595–607. [Google Scholar] [CrossRef]
- Noori, M.; Zendehdel, M.; Ahmadi, A. Using natural zeolite for improvement of soil salinity and crop yield. Toxicol. Environ. Chem. 2006, 88, 77–84. [Google Scholar] [CrossRef]
- Weil, R.; Brady, N. The Nature and Properties of Soils, 15th ed.; Pearson: London, UK, 2017. [Google Scholar]
- Latifah, O.; Ahmed, O.H.; Majid, N.M.A. Short Term Enhancement of Nutrients Availability in Zea mays L. Cultivation on an Acid Soil Using Compost and Clinoptilolite Zeolite. Compos. Sci. Util. 2017, 25, 22–35. [Google Scholar] [CrossRef]
- Doni, S.; Gispert, M.; Peruzzi, E.; Macci, C.; Mattii, G.B.; Manzi, D.; Masini, C.M.; Grazia, M. Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use Manag. 2021, 37, 832–842. [Google Scholar] [CrossRef]
- Ozturk, H.S.; Ok, S.S.; Arcak, S. Leaching of boron through sewage sludge amended soil: The role of clinoptilolite. Bioresour. Technol. 2004, 95, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Ozbahce, A.; Tari, A.; Gönülal, E.; Simsekli, N. Zeolite for Enhancing Yield and Quality of Potatoes Cultivated Under Water-Deficit Conditions. Potato Res. 2018, 61, 247–259. [Google Scholar] [CrossRef]
- Moral García, F.J.; Rebollo, F. Characterization of soil fertility using the Rasch model. J. Soil Sci. Plant Nutr. 2017, 17, 486–498. [Google Scholar]
- Kumar, P.; Jadhav, P.D.; Rayalu, S.; Devotta, S. Surface-modified zeolite-A for sequestration of arsenic and chromium anions. Curr. Sci. 2007, 92, 512–517. [Google Scholar]
- Tashauoei, H.R.; Attar, H.M.; Amin, M.M.; Kamali, M.; Nikaeen, M.; Dastjerdi, M.V. Removal of cadmium and humic acid from aqueous solutions using surface modified nanozeolite A. Int. J. Environ. Sci. Technol. 2010, 7, 497–508. [Google Scholar] [CrossRef]
- Ponizovsky, A.A.; Tsadilas, C.D. Lead(II) retention by Alfisol and clinoptilolite: Cation balance and pH effect. Geoderma 2003, 115, 303–312. [Google Scholar] [CrossRef]
- Chander, K.; Joergensen, R.G. Decomposition of 14C labelled glucose in a Pb-contaminated soil remediated with synthetic zeolite and other amendments. Soil Biol. Biochem. 2002, 34, 643–649. [Google Scholar] [CrossRef]
- Kaschuk, G.; Alberton, O.; Hungria, M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biol. Biochem. 2010, 42, 1–13. [Google Scholar] [CrossRef]
- Lepcha, N.T.; Devi, N.B. Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecol. Process. 2020, 9, 65. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.d.C.; Kitano, I.T.; Ribeiro, I.A.d.F.; Lacava, P.T. The Potential Use of Actinomycetes as Microbial Inoculants and Biopesticides in Agriculture. Front. Soil Sci. 2022, 2, 833181. [Google Scholar] [CrossRef]
- Nautiyal, P.; Rajput, R.; Pandey, D.; Arunachalam, K.; Arunachalam, A. Role of glomalin in soil carbon storage and its variation across land uses in temperate Himalayan regime. Biocatal. Agric. Biotechnol. 2019, 21, 101311. [Google Scholar] [CrossRef]
- González-Chávez, M.C.; Carrillo-González, R.; Wright, S.F.; Nichols, K.A. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Pollut. 2004, 130, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Zhu, X.; Chen, C.; Wu, J.; Yang, B.; Zakari, S.; Jiang, X.J.; Singh, N.; Liu, W. The role of glomalin in mitigation of multiple soil degradation problems. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1604–1638. [Google Scholar] [CrossRef]
T | LC | ZL | p-Value | ||
---|---|---|---|---|---|
SS | 2017 | 173.2 ± 12.9 | 140.9 ± 6.14 | 141.2 ± 12.6 | n.s. |
2018 | 192.1 ± 10.5 a | 163.6 ± 6.97 b | 162.9 ± 9.07 b | 0.034 | |
2019 | 245.0 ± 22.4 a | 140.9 ± 13.3 b | 157.6 ± 9.37 b | <0.001 | |
St | 2017 | 88.6 ± 3.44 | 78.8 ± 2.58 | 82.0 ± 2.88 | n.s. |
2018 | 105.9 ± 3.69 a | 95.9 ± 2.18 b | 89.5 ± 1.59 b | 0.001 | |
2019 | 201.1 ± 6.43 | 202.0 ± 8.04 | 228.6 ± 12.2 | n.s. | |
SP | 2017 | 7.44 ± 0.524 b | 13.8 ± 1.98 a | 11.6 ± 1.62 ab | 0.022 |
2018 | 11.9 ± 0.874 b | 13.3 ± 1.79 ab | 17.9 ± 2.13 a | 0.045 | |
2019 | 10.4 ± 0.364 b | 14.1 ± 0.924 a | 15.6 ± 1.14 a | 0.027 |
T | LC | ZL | p-Value | |
---|---|---|---|---|
pH (H2O) | ||||
0–10 cm | 5.22 ± 0.029 b | 5.46 ± 0.122 b | 6.23 ± 0.203 a | 0.005 |
10–20 cm | 5.22 ± 0.068 b | 5.20 ± 0.046 b | 5.80 ± 0.124 a | 0.004 |
TOC | ||||
0–10 cm | 20.3 ± 2.12 | 19.9 ± 0.788 | 23.2 ± 1.62 | n.s. |
10–20 cm | 18.4 ± 0.727 | 24.8 ± 3.28 | 31.8 ± 4.72 | n.s. |
Kjeldahl N | ||||
0–10 cm | 0.875 ± 0.063 b | 0.640 ± 0.062 b | 1.63 ± 0.047 a | <0.001 |
10–20 cm | 1.16 ± 0.081 b | 0.878 ± 0.067 b | 1.67 ± 0.074 a | 0.001 |
Extract. P | ||||
0–10 cm | 9.31 ± 0.927 b | 18.2 ± 4.07 b | 45.9 ± 9.57 a | 0.012 |
10–20 cm | 10.81 ± 1.32 b | 23.8 ± 2.39 ab | 31.5 ± 5.05 a | 0.013 |
Extract. K | ||||
0–10 cm | 217.3 ± 23.4 | 189.3 ± 9.33 | 294.7 ± 34.7 | n.s. |
10–20 cm | 213.3 ± 10.9 | 200.0 ± 10.1 | 232.0 ± 34.9 | n.s. |
Extract. B | ||||
0–10 cm | 1.38 ± 0.159 b | 1.46 ± 0.205 b | 3.61 ± 0.391 a | 0.002 |
10–20 cm | 1.89 ± 0.129 ab | 1.35 ± 0.174 b | 1.96 ± 0.096 a | 0.039 |
Extract. Fe | ||||
0–10 cm | 28.6 ± 0.949 | 39.1 ± 5.13 | 33.9 ± 2.48 | n.s. |
10–20 cm | 50.7 ± 0.586 | 31.3 ± 2.28 | 39.6 ± 10.4 | n.s. |
Extract. Mn | ||||
0–10 cm | 30.1 ± 7.52 a | 30.8 ± 4.24 a | 4.78 ± 0.299 b | 0.016 |
10–20 cm | 10.1 ± 3.11 c | 38.7 ± 2.05 a | 21.9 ± 0.866 b | <0.001 |
Extract. Zn | ||||
0–10 cm | 0.407 ± 0.031 b | 0.898 ± 0.164 a | 0.452 ± 0.024 b | 0.018 |
10–20 cm | 0.520 ± 0.056 | 0.622 ± 0.095 | 0.460 ± 0.051 | n.s. |
Extract. Cu | ||||
0–10 cm | 3.23 ± 0.991 b | 13.6 ± 1.58 a | 1.78 ± 0.059 b | <0.001 |
10–20 cm | 2.69 ± 0.516 | 4.34 ± 0.349 | 2.97 ± 0.567 | n.s. |
T-GRSP | ||||
0–10 cm | 2.79 ± 0.109 b | 3.30 ± 0.098 b | 4.46 ± 0.209 a | 0.001 |
10–20 cm | 2.14 ± 0.363 b | 2.09 ± 0.128 b | 3.79 ± 0.157 a | 0.004 |
EE-GRSP | ||||
0–10 cm | 1.63 ± 0.105 b | 1.87 ± 0.131 ab | 2.13 ± 0.105 a | 0.044 |
10–20 cm | 1.36 ± 0.169 b | 1.48 ± 0.056 b | 1.68 ± 0.186 a | 0.016 |
T | LC | ZL | p-Value | |
---|---|---|---|---|
Ca | ||||
0–10 cm | 1.19 ± 0.135 b | 0.601 ± 0.143 b | 3.02 ± 0.624 a | 0.010 |
10–20 cm | 2.15 ± 0.316 | 1.13 ± 0.175 | 1.22 ± 0.548 | n.s. |
Mg | ||||
0–10 cm | 0.729 ± 0.105 b | 0.677 ± 0.104 b | 2.15 ± 0.225 a | 0.001 |
10–20 cm | 1.07 ± 0.083 | 1.09 ± 0.167 | 1.03 ± 0.192 | n.s. |
K | ||||
0–10 cm | 0.282 ± 0.019 | 0.248 ± 0.040 | 1.07 ± 0.367 | n.s. |
10–20 cm | 0.288 ± 0.050 | 0.291 ± 0.011 | 0.318 ± 0.106 | n.s. |
Na | ||||
0–10 cm | 0.858 ± 0.065 | 0.596 ± 0.095 | 0.769 ± 0.014 | n.s. |
10–20 cm | 0.786 ± 0.090 | 0.649 ± 0.040 | 0.655 ± 0.042 | n.s. |
Al | ||||
0–10 cm | 0.733 ± 0.066 a | 0.800 ± 0.0001 a | 0.250 ± 0.029 b | <0.001 |
10–20 cm | 0.733 ± 0.033 | 0.866 ± 0.066 | 0.766 ± 0.033 | n.s. |
Exchang. Acidity | ||||
0–10 cm | 1.53 ± 0.167 a | 1.53 ± 0.166 a | 0.766 ± 0.233 b | 0.046 |
10–20 cm | 1.37 ± 0.166 | 1.87 ± 0.166 | 1.53 ± 0.167 | n.s. |
CEC | ||||
0–10 cm | 4.59 ± 0.109 b | 3.66 ± 0.195 b | 7.78 ± 0.626 a | 0.011 |
10–20 cm | 5.66 ± 0.620 | 5.03 ± 0.210 | 4.76 ± 0.911 | n.s. |
T | LC | ZL | p-Value | |
---|---|---|---|---|
Mic-C | ||||
0–10 cm | 131.1 ± 15.4 b | 174.6 ± 4.92 b | 277.2 ± 35.1 a | 0.030 |
10–20 cm | 125.2 ± 16.6 | 132.2 ± 6.89 | 159.5 ± 36.6 | n.s. |
MBQ | ||||
0–10 cm | 0.652 ± 0.077 b | 0.881 ± 0.057 ab | 1.180 ± 0.155 a | 0.034 |
10–20 cm | 0.675 ± 0.070 | 0.545 ± 0.079 | 0.503 ± 0.089 | n.s. |
Bacteria | ||||
0–10 cm | 3.29 ± 0.140 | 3.13 ± 0.069 | 3.70 ± 0.257 | n.s. |
10–20 cm | 2.62 ± 0.042 | 2.67 ± 0.348 | 3.16 ± 0.536 | n.s. |
Fungi | ||||
0–10 cm | 5.14 ± 0.311 | 4.81 ± 0.129 | 4.94 ± 0.022 | n.s. |
10–20 cm | 3.70 ± 0.844 | 4.79 ± 0.071 | 4.73 ± 0.195 | n.s. |
Actinomycetes | ||||
0–10 cm | 2.88 ± 0.219 b | 2.75 ± 0.153 b | 3.76 ± 0.157 a | 0.027 |
10–20 cm | 2.56 ± 0.101 | 2.96 ± 0.181 | 3.18 ± 0.547 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, S.; Brito, C.; Silva, E.; Gonçalves, A.; Arrobas, M.; Pereira, E.; Rodrigues, M.Â.; Nunes, F.M.; Correia, C.M. Synergy between Zeolites and Leguminous Cover Crops Improved Olive Tree Performance and Soil Properties in a Rainfed Olive Orchard. Agronomy 2023, 13, 2674. https://doi.org/10.3390/agronomy13112674
Martins S, Brito C, Silva E, Gonçalves A, Arrobas M, Pereira E, Rodrigues MÂ, Nunes FM, Correia CM. Synergy between Zeolites and Leguminous Cover Crops Improved Olive Tree Performance and Soil Properties in a Rainfed Olive Orchard. Agronomy. 2023; 13(11):2674. https://doi.org/10.3390/agronomy13112674
Chicago/Turabian StyleMartins, Sandra, Cátia Brito, Ermelinda Silva, Alexandre Gonçalves, Margarida Arrobas, Ermelinda Pereira, Manuel Ângelo Rodrigues, Fernando M. Nunes, and Carlos M. Correia. 2023. "Synergy between Zeolites and Leguminous Cover Crops Improved Olive Tree Performance and Soil Properties in a Rainfed Olive Orchard" Agronomy 13, no. 11: 2674. https://doi.org/10.3390/agronomy13112674
APA StyleMartins, S., Brito, C., Silva, E., Gonçalves, A., Arrobas, M., Pereira, E., Rodrigues, M. Â., Nunes, F. M., & Correia, C. M. (2023). Synergy between Zeolites and Leguminous Cover Crops Improved Olive Tree Performance and Soil Properties in a Rainfed Olive Orchard. Agronomy, 13(11), 2674. https://doi.org/10.3390/agronomy13112674