The Electric Spatula: Killing Weeds with Pulsed Microshocks from a Flat-Plate Electrode
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Lolium Multiflorum
3.2. Broadleaf Weeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoek, A.C.; Pearson, D.; James, S.W.; Lawrence, M.A.; Friel, S. Shrinking the food-print: A qualitative study into consumer perceptions, experiences and attitudes towards healthy and environmentally friendly food behaviours. Appetite 2017, 108, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Epp, A.; Lohmann, M.; Bol, G.F. Pesticide residues in food: Attitudes, beliefs, and misconceptions among conventional and organic consumers. J. Food Prot. 2017, 80, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
- Galati, A.; Schifani, G.; Crescimanno, M.; Migliore, G. “Natural wine” consumers and interest in label information: An analysis of willingness to pay in a new Italian wine market segment. J. Clean. Prod. 2019, 227, 405–413. [Google Scholar] [CrossRef]
- Hageman, K.J.; Aebig, C.H.F.; Luong, K.H.; Kaserzon, S.L.; Wong, C.S.; Reeks, T.; Greenwood, M.; Macaulay, S.; Matthaei, C.D. Current-use pesticides in New Zealand streams: Comparing results from grab samples and three types of passive samplers. Environ. Pollut. 2019, 254, 112973. [Google Scholar] [CrossRef] [PubMed]
- Helander, M.; Saloniemi, I.; Omacini, M.; Druille, M.; Salminen, J.P.; Saikkonen, K. Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 2018, 642, 285–291. [Google Scholar] [CrossRef]
- Beckie, H.J.; Flower, K.C.; Ashworth, M.B. Farming without glyphosate? Plants 2020, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Alcántara-de la Cruz, R.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; De Prado, R. Glyphosate ban in Mexico: Potential impacts on agriculture and weed management. Pest Manag. Sci. 2021, 77, 3820–3831. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.; Ghanizadeh, H. Comparing herbicide resistance in New Zealand and Australia. N. Z. J. Agric. Res. 2023, 1–13. [Google Scholar] [CrossRef]
- Buddenhagen, C.E.; Harvey, B.; Wynne-Jones, B.; Hackell, D.L.; Ghanizadeh, H.; Ando, Y.; Ngow, Z.; James, T.K. Ryegrass resistance to glyphosate and amitrole is becoming common in New Zealand vineyards. N. Z. Plant Prot. 2022, 75, 57–63. [Google Scholar] [CrossRef]
- Ngow, Z.; Chynoweth, R.J.; Gunnarsson, M.; Rolston, P.; Buddenhagen, C.E. A herbicide resistance risk assessment for weeds in wheat and barley crops in New Zealand. PLoS ONE 2020, 15, e0234771. [Google Scholar] [CrossRef]
- Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. Robots and shocks: Emerging non-herbicide weed control options for vegetable and arable cropping. N. Z. J. Agric. Res. 2023, 1–23. [Google Scholar] [CrossRef]
- Papadopoulos, L. AI-Powered Robots Cut Out Weeds While Leaving Crops Untouched. Interesting Engineering, 11 March 2023. [Google Scholar]
- Ecorobotix. Smart Sprayisng for Ultra-Localised Treatments of your Row Crops, Pastures and Lawns. Available online: https://ecorobotix.com/en/ (accessed on 21 March 2023).
- Oliveira, L.F.; Moreira, A.P.; Silva, M.F. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
- Ruigrok, T.; van Henten, E.; Booij, J.; van Boheemen, K.; Kootstra, G. Application-specific evaluation of a weed-detection algorithm for plant-specific spraying. Sensors 2020, 20, 7262. [Google Scholar] [CrossRef] [PubMed]
- Lati, R.N.; Rosenfeld, L.; David, I.B.; Bechar, A. Power on! Low-energy electrophysical treatment is an effective new weed control approach. Pest. Manag. Sci. 2021, 77, 4138–4147. [Google Scholar] [CrossRef] [PubMed]
- Carbon Robotics. LaserWeeder The Future of Weed Control. 2023. Available online: https://static1.squarespace.com/static/606b788e71df0270bd2616de/t/63eaad8afd522b68eb17aebd/1676324235820/download+2+pages.pdf (accessed on 16 March 2023).
- Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. Micro electric shocks control broadleaved and grass weeds. Agronomy 2022, 12, 2039. [Google Scholar] [CrossRef]
- Slaven, M.J.; Koch, M.; Borger, C.P.D. Exploring the potential of electric weed control: A review. Weed Sci. 2023, 1–19. [Google Scholar] [CrossRef]
- Nørremark, M.; Sørensen, C.G.; Jorgensen, R.N. HortiBot: Comparison of present and future phytotechnologies for weed control—part III. In Proceedings of the 2006 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, Portland, OR, USA, 9–12 July 2006. [Google Scholar]
- Coleman, G.Y.; Stead, A.; Rigter, M.; Xu, Z.; Johnson, D.W.; Brooker, G.; Sukkarieh, S.; Walsh, M.J. Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control. Weed Technol. 2019, 33, 633. [Google Scholar] [CrossRef]
- Kaufman, K.R.; Schaffner, L.W. Energy and economics of electrical weed control. Trans. ASAE 1982, 25, 0297–0300. [Google Scholar] [CrossRef]
- Vigneault, C.; Benoit, D.L.; McLaughlin, N.B. Energy aspects of weed electrocution. Rev. Weed Sci. 1990, 5, 15–26. [Google Scholar]
- Merfield, C.N. Robotic weeding’s false dawn? Ten requirements for fully autonomous mechanical weed management. Weed Res. 2016, 56, 340–344. [Google Scholar] [CrossRef]
- Diprose, M.F.; Hackam, R.; Benson, F.A. Weed control by high voltage electric shocks. In Proceedings of the 1978 British Crop Protection Conference—Weeds. 1978, pp. 443–450. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALAGROLINEINRA8010221432 (accessed on 16 March 2023).
- Baev, I.V.; Yudaev, V.I. The determination of the most effective current type for electrical damage of plants. Indian J. Sci. Technol. 2017, 10, 1. [Google Scholar]
- Harvey, J.; Reid, D.; Brown, F.; Penny, H. Weed Away: Final Report; Massey University: Palmerston North, New Zealand, 2019; Unpublished. [Google Scholar]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. BMJ 1998, 316, 1236. [Google Scholar] [CrossRef] [PubMed]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics: And Sex and Drugs and Rock ‘n’ Roll, 4th ed.; Sage: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Vigneault, C.; Benoit, D.L. Electrical weed control: Theory and applications. In Physical Control Methods in Plant Protection; Vincent, C., Panneton, B., Fleurat-Lessard, F., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Diprose, M.F.; Fletcher, R.; Longden, P.C.; Champion, M.J. Use of electricity to control bolters in sugar beet (Beta vulgaris L.): A comparison of the electrothermal with chemical and mechanical cutting methods. Weed Res. 1985, 25, 53. [Google Scholar] [CrossRef]
- Diprose, M.F.; Benson, F.A. Electrical methods of killing plants. J. Agric. Eng. Res. 1984, 30, 197–209. [Google Scholar] [CrossRef]
- Lehnhoff, E.A.; Neher, P.; Indacochea, A.; Beck, L. Electricity as an effective weed control tool in non-crop areas. Weed Res. 2022, 62, 149–159. [Google Scholar] [CrossRef]
- Costanzo, E. The influence of an electric field on the growth of soy seedlings. J. Electrost. 2008, 66, 417–420. [Google Scholar] [CrossRef]
- Diprose, M.F.; Benson, F.A.; Willis, A.J. The effect of externally applied electrostatic fields, microwave radiation and electric currents on plants and other organisms, with special reference to weed control. Bot. Rev. 1984, 50, 171–223. [Google Scholar] [CrossRef]
- England, S.J.; Robert, D. The ecology of electricity and electroreception. Biol. Rev. 2022, 97, 383–413. [Google Scholar] [CrossRef]
- Schmiedchen, K.; Petri, A.-K.; Driessen, S.; Bailey, W.H. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants. Environ. Res. 2018, 160, 60–76. [Google Scholar] [CrossRef]
- Xie, J.F.; Wang, S. Analysis of plant cell distortion and quantum potential field in electrostatic field. Chin. J. Electron. 2000, 9, 355–358. [Google Scholar]
- Hamada, S.; Ezaki, S.; Hayashi, K.; Toko, K.; Yamafuji, K. Electric current precedes emergence of a lateral root in higher plants. Plant Physiol. 1992, 100, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Kaimoyo, E.; Farag, M.A.; Sumner, L.W.; Wasmann, C.; Cuello, J.L.; VanEtten, H. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Biotechnol. Prog. 2008, 24, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 2015, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Vartapetian, A.B.; Tuzhikov, A.I.; Chichkova, N.V.; Taliansky, M.; Wolpert, T.J. A plant alternative to animal caspases: Subtilisin-like proteases. Cell Death Differ. 2011, 18, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Zasso Corporation. Vineyards/Orchards. Available online: https://zasso.com/portfolio/xps/ (accessed on 16 March 2023).
- International Electrotechnical Commission. Household and similar electrical appliances—Safety—Part. 2–76: Part. Requir. Electr. Fence Energizers 2002, 60335-2-76:2018, 43. Available online: https://webstore.iec.ch/publication/60232 (accessed on 16 March 2023).
- Gallagher Group. Electric Fencing 101: Electric Fencing Systems Design, Installation & Maintenance. 2018. Available online: https://am.gallagher.com/-/media/Bynder/Animal-Management/Document/All-GGL-Manuals/Electric-Fencing-101-Manual-NA-original.pdf (accessed on 16 March 2023).
Trial | Species | Mean Size | Treatments |
---|---|---|---|
1 | L. multiflorum | 1.63 tillers, 3.65 leaves, longest leaf 141 mm | Control plus nine treatments: 3 kV; 100 µs pulses; 50, 100, and 200 pulses applied to the leaves only or leaves pressed to a dry or wet soil surface |
2 | L. multiflorum | 1.91 tillers, 4.05 leaves, longest leaf 197 mm | Control plus 10 treatments: 100 × 200, 200 × 200, and 200 × 400 µs pulses at 3.5 kV applied to leaves only or leaves pressed to a dry soil surface; 100 × 100, 200, or 400 µs 4.5 kV pulses or 50 × 100 µs 4.5 kV pulses pressed to a dry soil surface |
3 | P. aviculare | 42 mm stem length, 1.0 mm stem basal diameter, 12.2 leaves | Control plus 10 treatments: 3.0 and 4.5 kV, pulse lengths 50–200 µs, 100–400 pulses, plate pressed to soil. One treatment of 4.5 kV 200 × 200 µs pulses was applied to the leaf only |
4 | A. powellii | 34.3 mm stem length, 1.6 mm stem basal diameter, 8.5 leaves, 3.5 side shoots | Control plus eight treatments with the electrode on leaves only or on leaves pressed to soil; 4.5 kV; 100 or 200 µs pulse length; 50, 100, and 200 pulses. 1 treatment with 10 × 1000 µs pulses |
5 | A. powellii | 64.3 mm stem length, 1.8 mm stem basal diameter, 9.8 leaves, 5.8 side shoots | Control plus 8 treatments: 4.5 kV, 25 and 50 × 100 µs pulses with electrode on leaves only or on leaves pressed to dry soil; 5 × 250, 500, or 1000 µs pulses or 1 × 5000 µs pulse pressed to dry soil |
6 | A. deflexus | 40.1 mm stem length, 1.4 mm stem basal diameter, 7.2 leaves, 4.6 side shoots | Control plus one treatment at 4.5 kV with 50 × 100 µs pulses applied to leaves pressed to a dry soil surface |
7 | S. nitidibaccatum | 63.0 mm stem length, 2.9 mm stem basal diameter, 27 leaves, 3.5 side shoots | Control plus eight treatments at 3.18 and 4.50 kV, 25 and 50 × 100 µs pulses with electrode on leaves only or on leaves pressed to dry soil and 1 × 5000 µs pulse at 3.18 kV to leaves pressed to dry soil |
Treatments | Mean Value | Pairwise Comparisons of Treatments | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatment 1 | Treatment 2 | Treat 1 | Treat 2 | Difference | Test Statistic | Std. Error | Std. Test Statistic | Sig. | Adj. Sig. |
Leaf-32-0100-25 | Soil-32-0100-25 | 2.573 | 5.491 | 2.134 | −12.333 | 10.078 | −1.224 | 0.221 | 1.000 |
Leaf-32-0100-50 | Soil-32-0100-50 | 4.505 | 10.720 | 2.380 | −24.000 | 10.078 | −2.381 | 0.017 | 0.776 |
Leaf-45-0100-25 | Soil-45-0100-25 | 5.493 | 9.127 | 1.662 | −12.667 | 10.078 | −1.257 | 0.209 | 1.000 |
Leaf-45-0100-50 | Soil-45-0100-50 | 12.535 | 16.010 | 1.277 | −5.500 | 10.078 | −0.546 | 0.585 | 1.000 |
Leaf-32-0100-50 | Leaf-45-0100-25 | 4.505 | 5.493 | 1.219 | 4.505 | 5.493 | 1.219 | 0.620 | 1.000 |
Soil-32-0100-50 | Soil-45-0100-25 | 10.720 | 9.127 | 0.851 | 10.720 | 9.127 | 0.851 | 0.530 | 1.000 |
Soil-32-0100-50 | Soil-32-5000-01 | 10.720 | 12.717 | 1.186 | −5.167 | 10.078 | −0.513 | 0.608 | 1.000 |
Soil-45-0100-25 | Soil-32-5000-01 | 9.127 | 12.717 | 1.393 | 11.500 | 10.078 | 1.141 | 0.254 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. The Electric Spatula: Killing Weeds with Pulsed Microshocks from a Flat-Plate Electrode. Agronomy 2023, 13, 2694. https://doi.org/10.3390/agronomy13112694
Bloomer DJ, Harrington KC, Ghanizadeh H, James TK. The Electric Spatula: Killing Weeds with Pulsed Microshocks from a Flat-Plate Electrode. Agronomy. 2023; 13(11):2694. https://doi.org/10.3390/agronomy13112694
Chicago/Turabian StyleBloomer, Daniel J., Kerry C. Harrington, Hossein Ghanizadeh, and Trevor K. James. 2023. "The Electric Spatula: Killing Weeds with Pulsed Microshocks from a Flat-Plate Electrode" Agronomy 13, no. 11: 2694. https://doi.org/10.3390/agronomy13112694
APA StyleBloomer, D. J., Harrington, K. C., Ghanizadeh, H., & James, T. K. (2023). The Electric Spatula: Killing Weeds with Pulsed Microshocks from a Flat-Plate Electrode. Agronomy, 13(11), 2694. https://doi.org/10.3390/agronomy13112694