Development of a Set of Polymorphic DNA Markers for Soybean (Glycine max L.) Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm Resources
2.2. Sequencing Data, Mapping, and SNP Calling
2.3. Marker Design
2.4. PCR Verification of the DNA Markers
3. Results
3.1. Selecting and Validating SNP Markers with Widely Cultivated Chinese Soybean Cultivars
3.2. Selecting Trait-Associated Markers and Primer Design
3.3. Evaluation of the Selected Trait-Associated Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayer, P.E.; Valliyodan, B.; Hu, H.F.; Marsh, J.I.; Yuan, Y.X.; Vuong, T.D.; Patil, G.; Song, Q.J.; Batley, J.; Varshney, R.K.; et al. Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. Plant Genome 2022, 15, e20109. [Google Scholar] [CrossRef]
- Kajiya-Kanegae, H.; Nagasaki, H.; Kaga, A.; Hirano, K.; Ogiso-Tanaka, E.; Matsuoka, M.; Ishimori, M.; Ishimoto, M.; Hashiguchi, M.; Tanaka, H.; et al. Whole-genome sequence diversity and association analysis of 198 soybean accessions in mini-core collections. DNA Res. 2021, 28, dsaa032. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.M.; Xu, X.; Liu, X.; Chen, W.B.; Yang, G.H.; Wong, F.L.; Li, M.W.; He, W.M.; Qin, N.; Wang, B.; et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef]
- Liu, Y.C.; Du, H.L.; Li, P.C.; Shen, Y.T.; Peng, H.; Liu, S.L.; Zhou, G.A.; Zhang, H.K.; Liu, Z.; Shi, M.; et al. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020, 182, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.P.; Jiang, B.J.; Wu, T.T.; Sun, S.; Wang, C.J.; Song, W.W.; Wu, C.X.; Hou, W.S.; Song, Q.J.; Lam, H.M.; et al. Genomic dissection of widely planted soybean cultivars leads to a new breeding strategy of crops in the post-genomic era. Crop J. 2021, 9, 1079–1087. [Google Scholar] [CrossRef]
- Zhou, Z.K.; Jiang, Y.; Wang, Z.; Gou, Z.H.; Lyu, J.; Li, W.Y.; Yu, Y.J.; Shu, L.P.; Zhao, Y.J.; Ma, Y.M.; et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Vandelee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M.; et al. AFLP—A New Technique for DNA-Fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [PubMed]
- Maughan, P.J.; Maroof, M.A.S.; Buss, G.R.; Huestis, G.M. Amplified fragment length polymorphism (AFLP) in soybean: Species diversity, inheritance, and near-isogenic line analysis. Theor. Appl. Genet. 1996, 93, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, H.; Liu, B.; Abe, J.; Takahashi, R. AFLP mapping of soybean maturity gene E4. J. Hered. 2008, 99, 193–197. [Google Scholar] [CrossRef]
- Akkaya, M.S.; Bhagwat, A.A.; Cregan, P.B. Length Polymorphisms of Simple Sequence Repeat DNA in Soybean. Genetics 1992, 132, 1131–1139. [Google Scholar] [CrossRef]
- Cregan, P.B.; Jarvik, T.; Bush, A.L.; Shoemaker, R.C.; Lark, K.G.; Kahler, A.L.; Kaya, N.; VanToai, T.T.; Lohnes, D.G.; Chung, L.; et al. An integrated genetic linkage map of the soybean genome. Crop Sci. 1999, 39, 1464–1490. [Google Scholar] [CrossRef]
- Diwan, N.; Cregan, P.B. Automated sizing of fluorescent-labeled Simple Sequence Repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 1997, 95, 723–733. [Google Scholar] [CrossRef]
- Rongwen, J.; Akkaya, M.S.; Bhagwat, A.A.; Lavi, U.; Cregan, P.B. The Use of Microsatellite DNA Markers for Soybean Genotype Identification. Theor. Appl. Genet. 1995, 90, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.V.; Conners, S.I.; Huang, W.; Wilkey, A.P.; Grant, D.; Weeks, N.T.; Cannon, S.B.; Graham, M.A.; Nelson, R.T. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2021, 49, D1496–D1501. [Google Scholar] [CrossRef]
- Song, Q.J.; Jia, G.F.; Zhu, Y.L.; Grant, D.; Nelson, R.T.; Hwang, E.Y.; Hyten, D.L.; Cregan, P.B. Abundance of SSR Motifs and Development of Candidate Polymorphic SSR Markers (BARCSOYSSR_1.0) in Soybean. Crop Sci. 2010, 50, 1950–1960. [Google Scholar] [CrossRef]
- Song, X.F.; Wei, H.C.; Cheng, W.; Yang, S.X.; Zhao, Y.X.; Li, X.; Luo, D.; Zhang, H.; Feng, X.Z. Development of INDEL Markers for Genetic Mapping Based on Whole Genome Resequencing in Soybean. G3 Genes Genomes Genet. 2015, 5, 2793–2799. [Google Scholar] [CrossRef]
- Xia, Z.; Tsubokura, Y.; Hoshi, M.; Hanawa, M.; Yano, C.; Okamura, K.; Ahmed, T.A.; Anai, T.; Watanabe, S.; Hayashi, M.; et al. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res. 2007, 14, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Takada, Y.; Shimamura, S.; Hirata, K.; Sayama, T.; Taguchi-Shiobara, F.; Ishimoto, M.; Kikuchi, A.; Nishio, T. Transfer of the locus from ‘Harosoy’ for resistance to strains C and D in Japan. Breed. Sci. 2016, 66, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, C.; Taguchi-Shiobara, F.; Ikeda, C.; Iwahashi, M.; Matsui, T.; Yamashita, Y.; Ogura, R. Mapping soybean locus, which confers resistance to soybean cyst nematode race 1 in combination with and derived from PI 84751. Breed. Sci. 2020, 70, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.D.; Cheng, Y.B.; Xian, P.Q.; Ma, Q.B.; Wen, K.; Xia, Q.J.; Zhang, G.Y.; Nian, H. Acid phosphatase gene linked to low phosphorus tolerance in soybean, through fine mapping. Theor. Appl. Genet. 2018, 131, 1715–1728. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.P.; Li, M.W.; Xie, M.; Liu, X.; Ni, M.; Shao, G.H.; Song, C.; Yim, A.K.Y.; Tao, Y.; Wong, F.L.; et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat. Commun. 2014, 5, 4340. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.J.; Nan, H.Y.; Cao, D.; Li, Y.; Wu, F.F.; Wang, J.L.; Lu, S.J.; Yuan, X.H.; Cober, E.R.; Abe, J.; et al. A New Dominant Gene Conditions Early Flowering and Maturity in Soybean. Crop Sci. 2014, 54, 2529–2535. [Google Scholar] [CrossRef]
- Liu, B.; Kanazawa, A.; Matsumura, H.; Takahashi, R.; Harada, K.; Abe, J. Genetic Redundancy in Soybean Photoresponses Associated with Duplication of the Phytochrome A Gene. Genetics 2008, 180, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Dong, L.; Fang, C.; Liu, S.; Kong, L.; Cheng, Q.; Chen, L.; Su, T.; Nan, H.; Zhang, D.; et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat. Genet. 2020, 52, 428–436. [Google Scholar] [CrossRef]
- Lu, S.J.; Zhao, X.H.; Hu, Y.L.; Liu, S.L.; Nan, H.Y.; Li, X.M.; Fang, C.; Cao, D.; Shi, X.Y.; Kong, L.P.; et al. Natural variation at the soybean locus improves adaptation to the tropics and enhances yield. Nat. Genet. 2017, 49, 773–779. [Google Scholar] [CrossRef]
- Takeshima, R.; Hayashi, T.; Zhu, J.H.; Zhao, C.; Xu, M.L.; Yamaguchi, N.; Sayama, T.; Ishimoto, M.; Kong, L.P.; Shi, X.Y.; et al. A soybean quantitative trait locus that promotes flowering under long days is identified as FT5a, a FLOWERING LOCUS T ortholog. J. Exp. Bot. 2016, 67, 5247–5258. [Google Scholar] [CrossRef]
- Tsubokura, Y.; Watanabe, S.; Xia, Z.; Kanamori, H.; Yamagata, H.; Kaga, A.; Katayose, Y.; Abe, J.; Ishimoto, M.; Harada, K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann. Bot. 2014, 113, 429–441. [Google Scholar] [CrossRef]
- Watanabe, S.; Hideshima, R.; Xia, Z.J.; Tsubokura, Y.; Sato, S.; Nakamoto, Y.; Yamanaka, N.; Takahashi, R.; Ishimoto, M.; Anai, T.; et al. Map-Based Cloning of the Gene Associated With the Soybean Maturity Locus. Genetics 2009, 182, 1251–1262. [Google Scholar] [CrossRef]
- Zhu, J.H.; Takeshima, R.; Harigai, K.; Xu, M.L.; Kong, F.J.; Liu, B.H.; Kanazawa, A.; Yamada, T.; Abe, J. Loss of Function of the E1-Like-b Gene Associates With Early Flowering Under Long-Day Conditions in Soybean. Front. Plant Sci. 2019, 9, 1867. [Google Scholar] [CrossRef]
- Liu, B.H.; Watanabe, S.; Uchiyama, T.; Kong, F.J.; Kanazawa, A.; Xia, Z.J.; Nagamatsu, A.; Arai, M.; Yamada, T.; Kitamura, K.; et al. The Soybean Stem Growth Habit Gene Is an Ortholog of Arabidopsis. Plant Physiol. 2010, 153, 198–210. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Sayama, T.; Yamazaki, H.; Miyoshi, T.; Ishimoto, M.; Funatsuki, H. Quantitative trait loci associated with lodging tolerance in soybean cultivar ‘Toyoharuka’. Breed. Sci. 2014, 64, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.K.; Soo, C.M.; Ki, L.S.; Jung, S.M.; Ho, K.Y.; Sig, K.H. Development of low-Gly m Bd 30K(P34) allergen breeding lines using molecular marker in soybean. Planta Med. 2011, 77, 1284. [Google Scholar]
- Yan, L.; Di, R.; Wu, C.J.; Liu, Q.; Wei, Y.; Hou, W.H.; Zhao, Q.S.; Liu, B.Q.; Yang, C.Y.; Song, Q.J.; et al. Haplotype analysis of a major and stable QTL underlying soybean (Glycine max) seed oil content reveals footprint of artificial selection. Mol. Breed. 2019, 39, 57. [Google Scholar] [CrossRef]
- Shen, Y.T.; Du, H.L.; Liu, Y.C.; Ni, L.B.; Wang, Z.; Liang, C.Z.; Tian, Z.X. Update soybean Zhonghuang 13 genome to a golden reference. Sci. China Life Sci. 2019, 62, 1257–1260. [Google Scholar] [CrossRef]
- Xie, M.; Chung, C.Y.L.; Li, M.W.; Wong, F.L.; Wang, X.; Liu, A.L.; Wang, Z.L.; Leung, A.K.Y.; Wong, T.H.; Tong, S.W.; et al. A reference-grade wild soybean genome. Nat. Commun. 2019, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-W.; Wang, Z.; Jiang, B.; Kaga, A.; Wong, F.-L.; Zhang, G.; Han, T.; Chung, G.; Nguyen, H.; Lam, H.-M. Impacts of genomic research on soybean improvement in East Asia. Theor. Appl. Genet. 2020, 133, 1655–1678. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Medrano, R.F.V.; de Oliveira, C.A. Guidelines for the Tetra-Primer ARMS-PCR Technique Development. Mol. Biotechnol. 2014, 56, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Ke, X. Primer Design Web Service for Tetra-Primer ARMS-PCR. Open Bioinform. J. 2012, 6, 55–58. [Google Scholar] [CrossRef]
- Garg, V.; Khan, A.W.; Fengler, K.; Llaca, V.; Yuan, Y.; Vuong, T.D.; Harris, C.; Chan, T.-F.; Lam, H.M.; Varshney, R.K.; et al. Near-gapless genome assemblies of Williams 82 and Lee cultivars for accelerating global soybean research. Plant Genome 2023, e20382. [Google Scholar] [CrossRef] [PubMed]
- Anand, L.; Lopez, C.M.R. ChromoMap: An R package for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinform. 2022, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Qu, Y.; Guo, Y.; Yu, L.; Liu, Y.; Jiang, J.; Chen, J.; Ren, Y.; Liu, G.; Tian, L.; et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J. 2014, 80, 937–950. [Google Scholar] [CrossRef]
- Xu, M.; Yamagishi, N.; Zhao, C.; Takeshima, R.; Kasai, M.; Watanabe, S.; Kanazawa, A.; Yoshikawa, N.; Liu, B.; Yamada, T.; et al. The Soybean-Specific Maturity Gene E1 Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of FLOWERING LOCUS T Orthologs. Plant Physiol. 2015, 168, 1735–1746. [Google Scholar] [CrossRef]
- Li, M.W.; Liu, W.; Lam, H.M.; Gendron, J.M. Characterization of Two Growth Period QTLs Reveals Modification of PRR3 Genes During Soybean Domestication. Plant Cell Physiol. 2019, 60, 407–420. [Google Scholar] [CrossRef]
- Wang, M.; Li, W.; Fang, C.; Xu, F.; Liu, Y.; Wang, Z.; Yang, R.; Zhang, M.; Liu, S.; Lu, S.; et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 2018, 50, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Funatsuki, H.; Suzuki, M.; Hirose, A.; Inaba, H.; Yamada, T.; Hajika, M.; Komatsu, K.; Katayama, T.; Sayama, T.; Ishimoto, M.; et al. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. USA 2014, 111, 17797–17802. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Morita, Y.; Nakayama, M.; Kanazawa, A.; Abe, J. An Active CACTA-Family Transposable Element is Responsible for Flower Variegation in Wild Soybean Glycine soja. Plant Genome 2012, 5, 62–70. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.W.; Wong, F.L.; Luk, C.Y.; Chung, C.Y.; Yung, W.S.; Wang, Z.; Xie, M.; Song, S.; Chung, G.; et al. Increased copy number of gibberellin 2-oxidase 8 genes reduced trailing growth and shoot length during soybean domestication. Plant J. 2021, 107, 1739–1755. [Google Scholar] [CrossRef]
- Kasai, A.; Kasai, K.; Yumoto, S.; Senda, M. Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean: Implications for inducing endogenous RNA silencing of chalcone synthase genes. Plant Mol. Biol. 2007, 64, 467–479. [Google Scholar] [CrossRef]
- Fliege, C.E.; Ward, R.A.; Vogel, P.; Nguyen, H.; Quach, T.; Guo, M.; Viana, J.P.G.; Dos Santos, L.B.; Specht, J.E.; Clemente, T.E.; et al. Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20. Plant J. 2022, 110, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Goettel, W.; Zhang, H.; Li, Y.; Qiao, Z.; Jiang, H.; Hou, D.; Song, Q.; Pantalone, V.R.; Song, B.H.; Yu, D.; et al. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nat. Commun. 2022, 13, 3051. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.; Suh, S.J.; Kim, M.H.; Lee, S.; Moon, J.K.; Kim, H.S.; Jeong, S.C. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 2012, 24, 4807–4818. [Google Scholar] [CrossRef]
- Wetterstrand, K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: www.genome.gov/sequencingcostsdata (accessed on 13 September 2023).
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.X.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.J.; Thelen, J.J.; Cheng, J.L.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Q.; Cregan, P.B.; Jiang, G.L. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor. Appl. Genet. 2016, 129, 117–130. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, W.; Zhang, H.; Liu, X.; Cui, X.; Li, S.; Song, L.; Zhu, Y.; Chen, X.; Chen, H. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor. Appl. Genet. 2021, 134, 1329–1341. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Q.; Cregan, P.B.; Nelson, R.L.; Wang, X.; Wu, J.; Jiang, G.L. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genom. 2015, 16, 217. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, H.; Schapaugh, W.; Vuong, T.; Nguyen, H.T. Genome-wide association analysis identified consistent QTL for seed yield in a soybean diversity panel tested across multiple environments. Plant Genome 2022, 15, e20268. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, T.; Wang, F.; Liu, L.; Liu, B.; Zhang, K.; Qin, J.; Yang, C.; Qiao, Y. Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS. Front. Plant Sci. 2023, 14, 1190503. [Google Scholar] [CrossRef] [PubMed]
Accession | Description | Source/Reference |
---|---|---|
W01 | Wild soybean, China | [3] |
W02 | Wild soybean, China | [3] |
W03 | Wild soybean, China | [3] |
W04 | Wild soybean, China | [3] |
W05 | Wild soybean, China | [3] |
W06 | Wild soybean, China | [3] |
W07 | Wild soybean, China | [3] |
W08 | Wild soybean, China | [3] |
W09 | Wild soybean, China | [3] |
W10 | Wild soybean, China | [3] |
W11 | Wild soybean, China | [3] |
W12 | Wild soybean, China | [3] |
W13 | Wild soybean, China | [3] |
W14 | Wild soybean, China | [3] |
W15 | Wild soybean, China | [3] |
W16 | Wild soybean, China | [3] |
W17 | Wild soybean, China | [3] |
C01 | Cultivar, China | [3] |
C02 | Cultivar, China | [3] |
C08 | Cultivar, USA | [3] |
C12 | Cultivar, China | [3] |
C14 | Cultivar, Brazil | [3] |
C16 | Cultivar, Taiwan | [3] |
C17 | Cultivar, China | [3] |
C19 | Cultivar, China | [3] |
C24 | Cultivar, China | [3] |
C27 | Cultivar, China | [3] |
C30 | Cultivar, China | [3] |
C33 | Cultivar, China | [3] |
C34 | Cultivar, China | [3] |
C35 | Cultivar, China | [3] |
Zhonghuang13 (ZH13) | Cultivar, China | [34] |
JC01 | Cultivar, Japan | Gift from Prof Sachiko Isobe |
JC03 | Cultivar, Japan | Gift from Prof Sachiko Isobe |
KC08 | Cultivar, Japan | Chung’s Wild Legume Germplasm Collection |
KC09 | Cultivar, Japan | Chung’s Wild Legume Germplasm Collection |
KC11 | Cultivar, Republic of Korea | Chung’s Wild Legume Germplasm Collection |
KC12 | Cultivar, Republic of Korea | Chung’s Wild Legume Germplasm Collection |
KC13 | Cultivar, Republic of Korea | Chung’s Wild Legume Germplasm Collection |
DN50 | Cultivar, China | Gansu Academy of Agricultural Sciences |
JX6 | Cultivar, China | Lam HM’s laboratory soybean collections |
JX208 | Cultivar, China | Lam HM’s laboratory soybean collections |
JXHMD | Cultivar, China | Lam HM’s laboratory soybean collections |
LH1 | Cultivar, China | [36] |
LD78-1 | Cultivar, China | Gansu Academy of Agricultural Sciences |
QJD | Cultivar, China | Lam HM’s laboratory soybean collections |
SJD1 | Cultivar, China | Lam HM’s laboratory soybean collections |
SDD1 | Cultivar, China | Lam HM’s laboratory soybean collections |
Associated Phenotype | Associated Gene/ Polymorphism | References |
---|---|---|
Salt tolerance | GmCHX1/GmSALT3 | [21,43] |
Flowering and maturation time | E1 | [44] |
E2/GmGIa | [27] | |
GmPRR3b/Tof12 | [24,45] | |
Stay green/dormancy | G | [46] |
Pod shattering | Pdh1 | [47] |
Flower color | W1 | [48] |
Plant height and trailing habit | GA2ox8 | [49] |
Hilum color | GmIRCHS/I locus | [2,50] |
Protein/oil content | POWR1 | [51,52] |
Leaf shape and seed number | GmJAG1/Ln | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.-W.; Wang, X.; Sze, C.-C.; Yung, W.-S.; Wong, F.-L.; Zhang, G.; Chung, G.; Chan, T.-F.; Lam, H.-M. Development of a Set of Polymorphic DNA Markers for Soybean (Glycine max L.) Applications. Agronomy 2023, 13, 2708. https://doi.org/10.3390/agronomy13112708
Li M-W, Wang X, Sze C-C, Yung W-S, Wong F-L, Zhang G, Chung G, Chan T-F, Lam H-M. Development of a Set of Polymorphic DNA Markers for Soybean (Glycine max L.) Applications. Agronomy. 2023; 13(11):2708. https://doi.org/10.3390/agronomy13112708
Chicago/Turabian StyleLi, Man-Wah, Xin Wang, Ching-Ching Sze, Wai-Shing Yung, Fuk-Ling Wong, Guohong Zhang, Gyuhwa Chung, Ting-Fung Chan, and Hon-Ming Lam. 2023. "Development of a Set of Polymorphic DNA Markers for Soybean (Glycine max L.) Applications" Agronomy 13, no. 11: 2708. https://doi.org/10.3390/agronomy13112708
APA StyleLi, M. -W., Wang, X., Sze, C. -C., Yung, W. -S., Wong, F. -L., Zhang, G., Chung, G., Chan, T. -F., & Lam, H. -M. (2023). Development of a Set of Polymorphic DNA Markers for Soybean (Glycine max L.) Applications. Agronomy, 13(11), 2708. https://doi.org/10.3390/agronomy13112708