Identification of Plant Disease Based on Multi-Task Continual Learning
Abstract
:1. Introduction
- (1)
- Used leaves captured and collected from the real environment as the experimental dataset;
- (2)
- Proposed a novel two-stage continual learning method that reduces redundant parameters within the model to train on new classes, allowing the model to learn new tasks on top of the existing ones;
- (3)
- Compared to traditional deep learning, the new two-stage continual learning method can detect plant diseases more rapidly and accurately.
2. Dataset and Methods
2.1. Dataset
2.2. Methods
2.2.1. Catastrophic Forgetting
2.2.2. Principles of Continual Learning
2.2.3. Neural Network Architecture for Continual Learning
3. Results
3.1. Experimental Setup and Implementation Details
3.2. Assessment on F1 Scores and Loss Values
4. Discussion
4.1. Challenges in Knowledge Transfer
4.2. Current Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vurro, M.; Bonciani, B.; Vannacci, G. Emerging infectious diseases of crop plants in developing countries: Impact on agriculture and socio-economic consequences. Food Secur. 2010, 2, 113–132. [Google Scholar] [CrossRef]
- Sehrawat, A.; Sindhu, S.S. Potential of biocontrol agents in plant disease control for improving food safety. Def. Life Sci. J. 2019, 4, 220–225. [Google Scholar] [CrossRef]
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tiedemann, A.; Teng, P.S. Climate change: Potential impact on plant diseases. Environ. Pollut. 2000, 108, 317–326. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Coakley, S.M.; Scherm, H.; Chakraborty, S. Climate change and plant disease management. Annu. Rev. Phytopathol. 1999, 37, 399–426. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease detection and classification by deep learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef]
- Vasavi, P.; Punitha, A.; Rao, T.V.N. Crop leaf disease detection and classification using machine learning and deep learning algorithms by visual symptoms: A review. Int. J. Electr. Comput. Eng. 2022, 12, 2079. [Google Scholar] [CrossRef]
- Arsenovic, M.; Karanovic, M.; Sladojevic, S.; Anderla, A.; Stefanovic, D. Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 2019, 11, 939. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access 2020, 9, 4843–4873. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Wang, B. Plant disease detection and classification by deep learning—A review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef]
- Ji, M.; Zhang, L.; Wu, Q. Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Inf. Process. Agric. 2020, 7, 418–426. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Yin, C.; Hu, X.; Zou, Y.; Xue, Z.; Wang, W. Plant disease identification based on deep learning algorithm in smart farming. Discret. Dyn. Nat. Soc. 2020, 2020, 2479172. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Rajput, D.S.; Reddy, M.P.K.; Lakshmanna, K.; Bhattacharya, S.; Singh, S.; Jolfaei, A.; Alazab, M. A novel PCA–whale optimization-based deep neural network model for classification of tomato plant diseases using GPU. J. Real-Time Image Process. 2021, 18, 1383–1396. [Google Scholar] [CrossRef]
- Nagaraju, M.; Chawla, P. Systematic review of deep learning techniques in plant disease detection. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 547–560. [Google Scholar] [CrossRef]
- Jasim, M.A.; Al-Tuwaijari, J.M. Plant leaf diseases detection and classification using image processing and deep learning techniques. In Proceedings of the 2020 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 16–18 April 2020; pp. 259–265. [Google Scholar]
- Brahimi, M.; Arsenovic, M.; Laraba, S.; Sladojevic, S.; Boukhalfa, K.; Moussaoui, A. Deep learning for plant diseases: Detection and saliency map visualisation. In Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent; Springer: Cham, Switzerland, 2018; pp. 93–117. [Google Scholar]
- Atila, Ü.; Uçar, M.; Akyol, K.; Uçar, E. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 2021, 61, 101182. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Ba, J.; Caruana, R. Do deep nets really need to be deep? In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; p. 27. [Google Scholar]
- Ju, C.; Bibaut, A.; van der Laan, M. The relative performance of ensemble methods with deep convolutional neural networks for image classification. J. Appl. Stat. 2018, 45, 2800–2818. [Google Scholar] [CrossRef]
- Philps, D.G. 1.8 Continual learning: The next generation of artificial intelligence. In Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning; Wiley: Hoboken, NJ, USA, 2021; p. 103. [Google Scholar]
- Abdelsalam, M.; Faramarzi, M.; Sodhani, S.; Chandar, S. Iirc: Incremental implicitly-refined classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11038–11047. [Google Scholar]
- Li, Z.; Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2935–2947. [Google Scholar] [CrossRef]
- Dhar, P.; Singh, R.V.; Peng, K.-C.; Wu, Z.; Chellappa, R. Learning without memorizing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5138–5146. [Google Scholar]
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526. [Google Scholar] [CrossRef]
- Zenke, F.; Poole, B.; Ganguli, S. Continual learning through synaptic intelligence. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 7–23 July 2022; pp. 3987–3995. [Google Scholar]
- Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; Lampert, C.H. iCaRL: Incremental classifier and representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2001–2010. [Google Scholar]
- Kemker, R.; McClure, M.; Abitino, A.; Hayes, T.; Kanan, C. Measuring catastrophic forgetting in neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- De Lange, M.; Aljundi, R.; Masana, M.; Parisot, S.; Jia, X.; Leonardis, A.; Slabaugh, G.; Tuytelaars, T. A continual learning survey: Defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3366–3385. [Google Scholar]
Original Dataset (Apple) | New Dataset 1 (Pear) | New Dataset 2 (Coffee) |
---|---|---|
Healthy | Healthy | Healthy |
Multiple-Disease | Rust | Rust |
Rust | Powdery | Red Spider Mite |
Scab | - | - |
Name | Number |
---|---|
Healthy (Apple) | 165 |
Multiple-Disease (Apple) | 174 |
Rust (Apple) | 188 |
Scab (Apple) | 183 |
Healthy (Pear) | 162 |
Rust (Pear) | 151 |
Powdery (Pear) | 154 |
Healthy (Coffee) | 159 |
Rust (Coffee) | 117 |
Red Spider Mite (Coffee) | 152 |
Algorithm Optimization | Learning Rate | Learning Rate Decay | Momentum | Weight Decay | Batch-Size | Epoch |
---|---|---|---|---|---|---|
SGD | 0.01 | 0.001 | 0.5 | 0.0005 | 32/16 | 60 |
Categories | Original Dataset (Apple) | New Dataset 1 (Pear) | New Dataset 2 (Coffee) | Average Accuracy | |
---|---|---|---|---|---|
General deep learning | VGG11 | - | - | - | 82.35 |
ResNet18 | - | - | - | 83.22 | |
DenseNet121 | - | - | - | 88.53 | |
Continual learning | VGG11 | 83.01 | 87.20 | 99.22 | 89.81 |
ResNet18 | 87.50 | 94.02 | 100 | 93.84 | |
DenseNet121 | 88.00 | 95.41 | 100 | 94.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Jiang, C.; Wang, D.; Liu, X.; Song, W.; Hu, J. Identification of Plant Disease Based on Multi-Task Continual Learning. Agronomy 2023, 13, 2863. https://doi.org/10.3390/agronomy13122863
Zhao Y, Jiang C, Wang D, Liu X, Song W, Hu J. Identification of Plant Disease Based on Multi-Task Continual Learning. Agronomy. 2023; 13(12):2863. https://doi.org/10.3390/agronomy13122863
Chicago/Turabian StyleZhao, Yafeng, Chenglong Jiang, Dongdong Wang, Xiaolu Liu, Wenhua Song, and Junfeng Hu. 2023. "Identification of Plant Disease Based on Multi-Task Continual Learning" Agronomy 13, no. 12: 2863. https://doi.org/10.3390/agronomy13122863
APA StyleZhao, Y., Jiang, C., Wang, D., Liu, X., Song, W., & Hu, J. (2023). Identification of Plant Disease Based on Multi-Task Continual Learning. Agronomy, 13(12), 2863. https://doi.org/10.3390/agronomy13122863