Evaluating the Effects of Controlled Drainage on Nitrogen Uptake, Utilization, Leaching, and Loss in Farmland Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Tests
2.2. Test Design
2.3. Data Collection and Measurement Methods
2.3.1. Meteorological Data
2.3.2. Soil Water Content
2.3.3. Soil NO3-N Concentration
2.3.4. Plant Leaf Area, Height, and Yield of Oilseed Sunflower
2.4. HYDRUS Model Modeling and Input Parameters
2.4.1. Basic Principles of the Model
- for NH4-N:
2.4.2. Root Water Uptake
2.4.3. Initial and Boundary Conditions
2.4.4. Model Parameters
2.4.5. Evaluation of Model Properties
3. Results
3.1. Calibration, Validation, and Performance Evaluation of the Model
3.2. Effect of CD on the Dynamic Changes of Soil Nitrate
3.3. Effects of Drainage Methods on Soil Nitrate Distribution
3.4. Effects of Drainage Methods on Nitrogen Uptake, Leaching, and Loss in Farmland
3.5. Effects of Drainage Methods on Nitrogen Balance and Nitrogen Use Efficiency
4. Discussion
4.1. Performance of the HYDRUS-2D Model
4.2. Effects of CD on Soil NO3-N Content and Crop Uptake
4.3. Effect of CD on NO3-N Leaching and Loss
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, N.; Huang, J.; Huang, Z.; Xie, H.; Wu, M. Effects of controlled drainage and nitrogen fertilizer application on nitrogen migration and transformation in dryland. Trans. Chin. Soc. Agric. Eng. 2012, 28, 106–112. [Google Scholar] [CrossRef]
- Xiao, M.; Yu, S.; Zhang, Y. Changes of nitrogen concentration for surface and groundwater in flooding paddy field under controlled drainage. Trans. Chin. Soc. Agric. Eng. 2011, 27, 180–186. [Google Scholar] [CrossRef]
- Williams, M.R.; King, K.W.; Fausey, N.R. Drainage water management effects on tile discharge and water quality. Agric. Water Manag. 2015, 148, 43–51. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Brevé, M.A.; Gilliam, J.W. Hydrologic and water quality impacts of agricultural drainage. Crit. Rev. Environ. Sci. Technol. 2009, 24, 1–32. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, G.; Lu, J.; Zhang, K.; Gao, Y.; Ding, J. Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis. Agric. Water Manag. 2020, 239, 106253. [Google Scholar] [CrossRef]
- Singh, R.; Helmers, M.; Crumpton, W.G.; Lemke, D.W. Predicting effects of drainage water management in Iowa’s subsurface drained landscapes. Agric. Water Manag. 2007, 92, 162–170. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Yang, S.; Hong, D.; Xu, J. Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization. Agric. Water Manag. 2019, 221, 231–237. [Google Scholar] [CrossRef]
- Negm, L.M.; Youssef, M.A.; Jaynes, D.B. Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa. Agric. Water Manag. 2017, 187, 57–68. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Fausey, N.R.; Evans, R.O. Drainage water management. J. Soil Water Conserv. 2012, 67, 167A–172A. [Google Scholar] [CrossRef]
- Gunn, K.M.; Fausey, N.R.; Shang, Y.; Shedekar, V.S.; Ghane, E.; Wahl, M.D.; Brown, L.C. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA. Agric. Water Manag. 2015, 149, 131–142. [Google Scholar] [CrossRef]
- King, K.W.; Hanrahan, B.R.; Stinner, J.; Shedekar, V.S. Field scale discharge and water quality response, to drainage water management. Agric. Water Manag. 2022, 264, 107421. [Google Scholar] [CrossRef]
- Wang, S. Advancement of study on farmland drainage technology based on water environment protection. J. Hydraul. Eng. 2010, 41, 697–702. [Google Scholar] [CrossRef]
- Poole, C.A.; Skaggs, R.W.; Cheschier, G.M.; Youssef, M.A.; Crozier, C.R. Effects of drainage water management on crop yields in North Carolina. J. Soil Water Conserv. 2013, 68, 429–437. [Google Scholar] [CrossRef]
- Ayars, J.E.; Christen, E.W.; Hornbuckle, J.W. Controlled drainage for improved water management in and regions irrigated agriculture. Agric. Water Manag. 2006, 86, 128–139. [Google Scholar] [CrossRef]
- Youssef, M.A.; Abdelbaki, A.M.; Negm, L.M.; Skaggs, R.W.; Thorp, K.R.; Jaynes, D.B. DRAINMOD-simulated performance of controlled drainage across the US Midwest. Agric. Water Manag. 2018, 197, 54–66. [Google Scholar] [CrossRef]
- Luo, W.; Sands, G.R.; Youssef, M.; Strock, J.S.; Song, I.; Canelon, D. Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII. Agric. Water Manag. 2010, 97, 389–398. [Google Scholar] [CrossRef]
- Dou, X.; Shi, H.; Li, R.; Miao, Q.; Tian, F.; Yu, D.; Zhou, L.; Wang, B. Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District. Sustainability 2021, 13, 9835. [Google Scholar] [CrossRef]
- Wesstrom, I.; Joel, A.; Messing, I. Controlled drainage and subirrigation—A water management option to reduce non-point source pollution from agricultural land. Agric. Ecosyst. Environ. 2014, 198, 74–82. [Google Scholar] [CrossRef]
- Tolomio, M.; Borin, M. Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy. Agric. Water Manag. 2018, 201, 1–10. [Google Scholar] [CrossRef]
- Wesstrom, I.; Messing, I. Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops. Agric. Water Manag. 2007, 87, 229–240. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Ding, Z.; Peng, Z. Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field. Agric. Water Manag. 2019, 226, 105788. [Google Scholar] [CrossRef]
- Tafteh, A.; Sepaskhah, A.R. Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields. Agric. Water Manag. 2012, 113, 19–29. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS. Agric. Water Manag. 2017, 193, 174–190. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Zhang, Z.; Jing, L.; Ni, L. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agric. Water Manag. 2015, 148, 213–222. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, C.; Zeng, W.; Kumar Srivastava, A.; Gaiser, T.; Wu, J.; Huang, J. Simulating water and salt transport in subsurface pipe drainage systems with HYDRUS-2D. J. Hydrol. 2021, 592, 125823. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Šimůnek, J.; Shi, H.; Chen, N.; Hu, Q.; Tian, T. Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages. Agric. Water Manag. 2021, 244, 106601. [Google Scholar] [CrossRef]
- Rai, V.; Pramanik, P.; Das, T.K.; Aggarwal, P.; Bhattacharyya, R.; Krishnan, P.; Sehgal, V.K. Modelling soil hydrothermal regimes in pigeon pea under conservation agriculture using Hydrus-2D. Soil Tillage Res. 2019, 190, 92–108. [Google Scholar] [CrossRef]
- Bailey, R.T.; Bieger, K.; Flores, L.; Tomer, M. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling. Sci. Total Environ. 2022, 802, 149962. [Google Scholar] [CrossRef]
- Jiang, Q.; Qi, Z.; Lu, C.; Tan, C.S.; Zhang, T.; Prasher, S.O. Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario. Agric. Water Manag. 2020, 237, 106179. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Simunek, J.; Shi, H.; Hu, Q.; Zhang, Y. Evaluating soil nitrate dynamics in an intercropping dripped ecosystem using HYDRUS-2D. Sci. Total Environ. 2020, 718, 137314. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements-FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Campbell, G.S.; Norman, J.M. The description and measurement of plant canopy structure. In Plant Canopies; Cambridge University Press: Cambridge, UK, 1989; pp. 1–20. [Google Scholar]
- Šimůnek, J.; Genuchten, M.T.; Šejna, M. Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- Richards, L. Capillary conduction of liquids in soil through porous media. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Li, X.; Chen, N.; Shi, H.; Ding, Z.; Peng, Z. Soil moisture distribution characteristics simulation of maize-tomato intercropping field with drip-irrigated under plastic mulch. Trans. Chin. Soc. Agric. Eng. 2019, 35, 50–59. [Google Scholar] [CrossRef]
- Feddes, R.; Kowalik, P.; Zaradny, H. Simulation of Field Water Use and Crop Yield; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Šimůnek, J.; Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone J. 2016, 15, 1–25. [Google Scholar] [CrossRef]
- Radcliffe, E.D.; Šimůnek, J. Soil Physics with HYDRUS; Taylor Francis Inc.: Abingdon, UK, 2010. [Google Scholar]
- Ravikumar, V.; Vijayakumar, G.; Šimůnek, J.; Chellamuthu, S.; Santhi, R.; Appavu, K. Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model. Agric. Water Manag. 2011, 98, 1431–1440. [Google Scholar] [CrossRef]
- Ramos, T.B.; Šimůnek, J.; Gonçalves, M.C.; Martins, J.C.; Prazeres, A.; Pereira, L.S. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag. 2012, 111, 87–104. [Google Scholar] [CrossRef]
- Castanheira, P.J.N.; Serralheiro, R.P. Impact of mole drains on salinity of a vertisoil under irrigation. Biosyst. Eng. 2010, 105, 25–33. [Google Scholar] [CrossRef]
- Tao, Y.; Li, N.; Wang, S.; Chen, H.; Guan, X.; Ji, M. Simulation study on performance of nitrogen loss of an improved subsurface drainage system for one-time drainage using HYDRUS-2D. Agric. Water Manag. 2021, 246, 106698. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Yan, H.; Ullah, I.; Zuo, Z.; Li, L.; Yu, J. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 2020, 241, 106263. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, h.; Zhang, W.; Wang, W.; Su, Y.; Yan, Y. Evaluation of Organic-Inorganic Nitrogen Application on Maize Yield and Nitrogen Leaching by DNDC Model. Trans. Chin. Soc. Agric. Mach. 2021, 52, 291–301+249. [Google Scholar] [CrossRef]
- Jouni, H.J.; Liaghat, A.; Hassanoghli, A.; Henk, R. Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran. Agric. Water Manag. 2018, 208, 393–405. [Google Scholar] [CrossRef]
- Nash, P.R.; Singh, G.; Nelson, K.A. Nutrient loss from floodplain soil with controlled subsurface drainage under forage production. J. Environ. Qual. 2020, 49, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Saadat, S.; Bowling, L.; Frankenberger, J.; Kladivko, E. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage. Water Res. 2018, 142, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Sunohara, M.D.; Gottschall, N.; Craiovan, E.; Wilkes, G.; Topp, E.; Frey, S.K.; Lapen, D.R. Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water. Agric. Water Manag. 2016, 178, 159–170. [Google Scholar] [CrossRef]
Soils Layer (cm) | Sand (%) | Silt (%) | Clay (%) | Soil Bulk Density (g·cm−3) | Soil Field Capacity (cm3·cm−3) |
---|---|---|---|---|---|
0–20 | 4.72 | 84.84 | 10.44 | 1.444 | 31.77 |
20–40 | 9.99 | 79.36 | 10.65 | 1.47 | 35.13 |
40–60 | 5.68 | 84.15 | 10.17 | 1.473 | 35.65 |
60–80 | 7.44 | 85.23 | 7.33 | 1.485 | 34.75 |
80–100 | 3.16 | 87.18 | 9.66 | 1.487 | 35.69 |
100–120 | 2.03 | 92.75 | 5.22 | 1.489 | 35.91 |
Soils Layer (cm) | θr (cm3·cm−3) | θs (cm3·cm−3) | α (cm−1) | n (-) | Ks (cm·d−1) | l (−) |
---|---|---|---|---|---|---|
0–20 | 0.0815 | 0.4845 | 0.006 | 1.6429 | 3.40 | 0.5 |
20–40 | 0.0747 | 0.5072 | 0.0058 | 1.6493 | 3.28 | 0.5 |
40–60 | 0.0712 | 0.4922 | 0.0063 | 1.6327 | 1.07 | 0.5 |
60–80 | 0.0624 | 0.4716 | 0.0066 | 1.632 | 1.79 | 0.5 |
80–100 | 0.0748 | 0.4675 | 0.0065 | 1.6243 | 4.47 | 0.5 |
100–120 | 0.0741 | 0.4871 | 0.0075 | 1.6165 | 3.77 | 0.5 |
Treatment | Parameter | Error | 2020 (Calibration) | 2021 (Validation) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | 60–100 cm | 0–20 cm | 20–40 cm | 40–60 cm | 60–100 cm | |||
FD | SWC | MRE (%) | 9.84 | 8.45 | 8.75 | 9.15 | 9.15 | 8.45 | 9.12 | 8.44 |
RMSE (cm3·cm−3) | 0.05 | 0.05 | 0.04 | 0.03 | 0.04 | 0.06 | 0.03 | 0.05 | ||
R2 | 0.92 | 0.90 | 0.88 | 0.87 | 0.83 | 0.81 | 0.84 | 0.85 | ||
NC | MRE (%) | 12.24 | 11.24 | 10.08 | 11.72 | 10.25 | 12.19 | 13.38 | 12.75 | |
RMSE (mg·kg−1) | 11.52 | 10.02 | 10.52 | 11.11 | 10.52 | 10.65 | 10.14 | 11.11 | ||
R2 | 0.80 | 0.85 | 0.83 | 0.89 | 0.86 | 0.76 | 0.82 | 0.85 | ||
CWT1 | SWC | MRE (%) | 10.52 | 10.58 | 10.76 | 11.22 | 12.78 | 12.12 | 10.19 | 9.83 |
RMSE (cm3·cm−3) | 0.03 | 0.05 | 0.04 | 0.06 | 0.02 | 0.07 | 0.04 | 0.05 | ||
R2 | 0.86 | 0.84 | 0.89 | 0.82 | 0.80 | 0.82 | 0.85 | 0.81 | ||
NC | MRE (%) | 12.25 | 13.14 | 11.85 | 13.31 | 10.85 | 11.12 | 12.35 | 13.33 | |
RMSE (mg·kg−1) | 11.22 | 11.42 | 11.25 | 10.78 | 10.29 | 10.83 | 11.11 | 11.25 | ||
R2 | 0.79 | 0.81 | 0.82 | 0.79 | 0.74 | 0.75 | 0.82 | 0.77 | ||
CWT2 | SWC | MRE (%) | 10.44 | 9.63 | 9.82 | 9.85 | 10.81 | 10.93 | 11.82 | 11.53 |
RMSE (cm3·cm−3) | 0.04 | 0.05 | 0.04 | 0.06 | 0.07 | 0.04 | 0.04 | 0.02 | ||
R2 | 0.83 | 0.80 | 0.81 | 0.85 | 0.80 | 0.82 | 0.78 | 0.81 | ||
NC | MRE (%) | 12.24 | 11.58 | 12.54 | 13.14 | 14.25 | 12.48 | 12.11 | 13.29 | |
RMSE (mg·kg−1) | 11.06 | 10.83 | 10.42 | 10.58 | 10.65 | 11.82 | 11.64 | 11.87 | ||
R2 | 0.77 | 0.80 | 0.82 | 0.85 | 0.84 | 0.80 | 0.80 | 0.78 |
Year | Treatments | Components of N Balance (kg·ha−1) | Yield (kg·ha−1) | NUE (kg·ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Initial | Applied | Nitrification | Crop Uptake | Leaching | Drained | Residual | ||||
2020 | FD | 26.43 | 171.8 | 16.02 | 169.37 | 34.3 | 0.58 | 10 | 3562.10 | 21.03 |
CWT1 | 26.43 | 171.8 | 20.2 | 181.55 | 25.94 | 0.24 | 10.7 | 3836.11 | 21.13 | |
CWT2 | 26.43 | 171.8 | 18.28 | 175.43 | 30.39 | 0.29 | 10.4 | 3670.33 | 20.93 | |
2021 | FD | 30.24 | 171.8 | 18.33 | 175.49 | 33.45 | 0.6 | 10.83 | 3621.57 | 20.64 |
CWT1 | 30.24 | 171.8 | 23.32 | 186.25 | 27.26 | 0.33 | 11.52 | 3952.14 | 21.23 | |
CWT2 | 30.24 | 171.8 | 20.26 | 180.36 | 30.49 | 0.42 | 11.03 | 3768.28 | 20.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, X.; Shi, H.; Li, R.; Miao, Q.; Yan, J.; Tian, F. Evaluating the Effects of Controlled Drainage on Nitrogen Uptake, Utilization, Leaching, and Loss in Farmland Soil. Agronomy 2023, 13, 2936. https://doi.org/10.3390/agronomy13122936
Dou X, Shi H, Li R, Miao Q, Yan J, Tian F. Evaluating the Effects of Controlled Drainage on Nitrogen Uptake, Utilization, Leaching, and Loss in Farmland Soil. Agronomy. 2023; 13(12):2936. https://doi.org/10.3390/agronomy13122936
Chicago/Turabian StyleDou, Xu, Haibin Shi, Ruiping Li, Qingfeng Miao, Jianwen Yan, and Feng Tian. 2023. "Evaluating the Effects of Controlled Drainage on Nitrogen Uptake, Utilization, Leaching, and Loss in Farmland Soil" Agronomy 13, no. 12: 2936. https://doi.org/10.3390/agronomy13122936
APA StyleDou, X., Shi, H., Li, R., Miao, Q., Yan, J., & Tian, F. (2023). Evaluating the Effects of Controlled Drainage on Nitrogen Uptake, Utilization, Leaching, and Loss in Farmland Soil. Agronomy, 13(12), 2936. https://doi.org/10.3390/agronomy13122936