Infection Risk-Based Application of Plant Resistance Inducers for the Control of Downy and Powdery Mildews in Vineyards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Characteristics, Experimental Design, and Treatments
2.2. Disease Assessments
2.3. Data Analysis
3. Results
3.1. Weather Conditions, Infection Risk, Treatments, and Disease Development
3.2. Treatments with PRIs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bois, B.; Zito, S.; Calonnec, A. Climate vs grapevine pests and diseases worldwide: The first results of a global survey. OENO One 2017, 51, 133–139. [Google Scholar] [CrossRef]
- Gadoury, D.M.; Cadle-Davidson, L.; Wilcox, W.F.; Dry, I.B.; Seem, R.C.; Milgroom, M.G. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology, and epidemiology of an obligate biotroph. Mol. Plant Pathol. 2012, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gessler, C.; Pertot, I.; Perazzolli, M. Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr. 2011, 50, 3–44. Available online: http://www.jstor.org/stable/26458675 (accessed on 16 August 2023).
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevines and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Siebrecht, N. Sustainable agriculture and its implementation gap—Overcoming obstacles to implementation. Sustainability 2020, 12, 3853. [Google Scholar] [CrossRef]
- Jacquet, F.; Jeuffroy, M.-H.; Jouan, J.; Le Cadre, E.; Litrico, I.; Malausa, T.; Reboud, X.; Huyghe, C. Pesticide-free agriculture as a new paradigm for research. Agron. Sustain. Dev. 2022, 42, 1–24. [Google Scholar] [CrossRef]
- Delaunois, B.; Farace, G.; Jeandet, P.; Clément, C.; Baillieul, F.; Dorey, S.; Cordelier, S. Elicitors as an alternative strategy to pesticides in grapevine? Current knowledge of their mode of action from controlled conditions to the vineyard. Environ. Sci. Pollut. Res. Int. 2014, 21, 4837–4846. [Google Scholar] [CrossRef]
- Sandroni, M.; Liljeroth, E.; Mulugeta, T.; Alexandersson, E. Plant resistance inducers (PRIs): Perspectives for future disease management in the field. CABI Rev. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Boutrot, F.; Zipfel, C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 2017, 55, 257–286. [Google Scholar] [CrossRef]
- Trdá, L.; Boutrot, F.; Claverie, J.; Brulé, D.; Dorey, S.; Poinssot, B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: Pattern recognition receptors in the frontline. Front. Plant Sci. 2015, 6, 219. [Google Scholar] [CrossRef]
- Gomès, E.; Coutos-Thévenot, P. Molecular Aspects of Grapevine-Pathogenic Fungi Interactions, Grapevine Molecular Physiology & Biotechnology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 407–428. [Google Scholar] [CrossRef]
- Bigeard, J.; Colcombet, J.; Hirt, H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 2015, 8, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Feng, B.; He, P.; Shan, L. From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 2017, 55, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Héloir, M.C.; Adrian, M.; Brulé, D.; Claverie, J.; Cordelier, S.; Daire, X.; Dorey, S.; Gauthier, A.; Lemaître-Guillier, C.; Negrel, J.; et al. Recognition of elicitors in grapevine: From MAMP and DAMP perception to induced resistance. Front. Plant Sci. 2019, 10, 1117. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Feechan, A.; Dry, I. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Hortic. Res. 2015, 2, 15020. [Google Scholar] [CrossRef] [PubMed]
- Urban, L.; Lauri, F.; Ben Hdech, D.; Aarrouf, J. Prospects for increasing the efficacy of plant resistance inducers stimulating salicylic acid. Agronomy 2022, 12, 3151. [Google Scholar] [CrossRef]
- De Miccolis Angelini, R.M.; Rotolo, C.; Gerin, D.; Abate, D.; Pollastro, S.; Faretra, F. Global transcriptome analysis and differentially expressed genes in grapevine after application of the yeast-derived defense inducer cerevisane. Pest Manag. Sci. 2019, 75, 2020–2033. [Google Scholar] [CrossRef]
- Pujos, P.; Martin, A.; Farabullini, F.; Pizzi, M. RomeoTM, cerevisane-based biofungicide against the main diseases of grapes and of other crops: General description. In Proceedings of the Atti, Giornate Fitopatologiche, Chianciano Terme, Siena, Italy, 18–21 March 2014; Volume 2, pp. 51–56. [Google Scholar]
- Calderone, F.; Vitale, A.; Panebianco, S.; Lombardo, M.F.; Cirvilleri, G. COS-OGA applications in organic vineyards manage major airborne diseases and maintain the postharvest quality of wine grapes. Plants 2022, 11, 1763. [Google Scholar] [CrossRef]
- van Aubel, G.; Buonatesta, R.; Van Cutsem, P. COS-OGA: A novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Prot. 2014, 65, 129–137. [Google Scholar] [CrossRef]
- Aziz, A.; Poinssot, B.; Daire, X.; Adrian, M.; Bézier, A.; Lambert, B.; Joubert, J.M.; Pugin, A. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 2003, 16, 1118–1128. [Google Scholar] [CrossRef]
- Pugliese, M.; Monchiero, M.; Gullino, M.L.; Garibaldi, A. Application of laminarin and calcium oxide for the control of grape powdery mildew on Vitis vinifera cv. Moscato. J. Plant Dis. Prot. 2018, 125, 477–482. [Google Scholar] [CrossRef]
- Gerbore, J.; Bruez, E.; Vallance, J.; Grizard, D.; Regnault-Roger, C.; Rey, P. Protection of Grapevines by Pythium oligandrum Strains Isolated from Bordeaux Vineyards against Powdery Mildew, Biocontrol of Major Grapevine Diseases: Leading Research; CABI: Wallingford, UK, 2016; pp. 117–124. [Google Scholar] [CrossRef]
- Manghi, M.C.; Masiol, M.; Calzavara, R.; Graziano, P.L.; Peruzzi, E.; Pavoni, B. The use of phosphonates in agriculture. Chemical, biological properties, and legislative issues. Chemosphere 2021, 283, 131187. [Google Scholar] [CrossRef]
- Dufour, M.-C.; Corio-Costet, M.-F. Variability in the sensitivity of biotrophic grapevine pathogens (Erysiphe necator and Plasmopara viticola) to acibenzolar-S methyl and two phosphonates. Eur. J. Plant Pathol. 2013, 136, 247–259. [Google Scholar] [CrossRef]
- Rienth, M.; Crovadore, J.; Ghaffari, S.; Lefort, F. Oregano essential oil vapor prevents Plasmopara viticola infection in grapevine (Vitis vinifera) and primes plant immunity mechanisms. PLoS ONE 2019, 14, e0222854. [Google Scholar] [CrossRef] [PubMed]
- Lakkis, S.; Trotel-Aziz, P.; Rabenoelina, F.; Schwarzenberg, A.; Nguema-Ona, E.; Clément, C.; Aziz, A. Strengthening grapevine resistance by Pseudomonas fluorescens PTA-CT2 relies on distinct defense pathways in susceptible and partially resistant genotypes to downy mildew and gray mold diseases. Front. Plant Sci. 2019, 10, 1112. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Fujita, Y.; Boschetto, F.; Zhu, W.; Marin, E.; Vandelle, E.; McEntire, B.J.; Bal, S.B.; Giarola, M.; Makimura, K. Activity and mechanism of action of the bioceramic silicon nitride as an environmentally friendly alternative for the control of the grapevine downy mildew pathogen Plasmopara viticola. Front. Microbiol. 2020, 11, 3080. [Google Scholar] [CrossRef] [PubMed]
- Taillis, D.; Pébarthé-Courrouilh, A.; Lepeltier, É.; Petit, E.; Palos-Pinto, A.; Gabaston, J.; Mérillon, J.-M.; Richard, T.; Cluzet, S. A grapevine by-product extract enriched in oligomerised stilbenes to control downy mildews: Focus on its modes of action towards Plasmopara viticola. OENO One 2022, 56, 55–68. [Google Scholar] [CrossRef]
- Marcianò, D.; Ricciardi, V.; Marone Fassolo, E.M.; Passera, A.; Bianco, P.A.; Failla, O.; Casati, P.; Maddalena, G.; De Lorenzis, G.; Toffolatti, S.L. RNAi of a putative grapevine susceptibility gene as a possible downy mildew control strategy. Front. Plant Sci. 2021, 12, 667319. [Google Scholar] [CrossRef]
- Harm, A.; Kassemeyer, H.-H.; Seibicke, T.; Regner, F. Evaluation of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine. Am. J. Enol. Vitic. 2011, 62, 184–192. [Google Scholar] [CrossRef]
- Krzyzaniak, Y.; Trouvelot, S.; Negrel, J.; Cluzet, S.; Valls, J.; Richard, T.; Bougaud, A.; Jacquens, L.; Klinguer, A.; Chiltz, A.; et al. A plant extract acts both as a resistance inducer and an oomycide against grapevine downy mildew. Front. Plant Sci. 2018, 9, 1085. [Google Scholar] [CrossRef]
- van Aubel, G.; Cambier, P.; Dieu, M.; Van Cutsem, P. Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid. Plant Sci. 2016, 247, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, A.; Gerbore, J.; Magnin, N.; Chambon, P.; Dufour, M.C.; Corio-Costet, M.F.; Guyoneaud, R.; Rey, P. Ability of Pythium oligandrum strains to protect Vitis vinifera L., by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in Esca, a grapevine trunk disease. Biol. Control. 2016, 92, 7–16. [Google Scholar] [CrossRef]
- Bleyer, G.; Lösch, F.; Schumacher, S.; Fuchs, R. Together for the better: Improvement of a model-based strategy for grapevine downy mildew control by addition of potassium phosphonates. Plants 2020, 9, 710. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Mancini, V.; Carrasco-Quiroz, M.; Servili, A.; Gutiérrez-Gamboa, G.; Foglia, R.; Pérez-Álvarez, E.P.; Romanazzi, G. Chitosan and laminarin as alternatives to copper for Plasmopara viticola control: Effect on the grape amino acid. J. Agric. Food Chem. 2017, 65, 7379–7386. [Google Scholar] [CrossRef]
- Romanazzi, G.; Mancini, V.; Feliziani, E.; Servili, A.; Endeshaw, S.; Neri, D. Impact of alternative fungicides on grape downy mildew control and vine growth and development. Plant Dis. 2016, 100, 739–748. [Google Scholar] [CrossRef]
- Sawant, I.S.; Wadkar, P.N.; Ghule, S.B.; Rajguru, Y.R.; Salunkhe, V.P.; Sawant, S.D. Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with sulfur. Biol. Control. 2017, 114, 133–143. [Google Scholar] [CrossRef]
- Sawant, I.S.; Wadkar, P.N.; Ghule, S.B.; Salunkhe, V.P.; Chavan, V.; Sawant, S.D. Induction of systemic resistance in grapevines against powdery mildew by Trichoderma asperelloides strains. Australas. Plant Pathol. 2020, 49, 107–117. [Google Scholar] [CrossRef]
- Taibi, O.; Salotti, I.; Rossi, V. Plant resistance inducers affect multiple epidemiological components of Plasmopara viticola on grapevine leaves. Plants 2023, 12, 2938. [Google Scholar] [CrossRef] [PubMed]
- Taibi, O.; Fedele, G.; Rossi, V. Pre-infection efficacy of resistance inducers against grapevine powdery mildew. 2023; submitted. [Google Scholar]
- Brischetto, C.; Bove, F.; Fedele, G.; Rossi, V. A weather-driven model for predicting infections of grapevines by sporangia of Plasmopara viticola. Front. Plant Sci. 2021, 12, 636607. [Google Scholar] [CrossRef] [PubMed]
- Caffi, T.; Legler, S.E.; Rossi, V.; Bugiani, R. Evaluation of a warning system for early-season control of grapevine powdery mildew. Plant Dis. 2012, 96, 104–110. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T. Effect of water on germination of Plasmopara viticola oospores. Plant Pathol. 2007, 56, 957–966. [Google Scholar] [CrossRef]
- Mariani, L.; Alilla, R.; Cola, G.; Monte, G.D.; Epifani, C.; Puppi, G.; Failla, O. IPHEN—A real-time network for phenological monitoring and modeling in Italy. Int. J. Biometeorol. 2013, 57, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Caffi, T.; Rossi, V.; Bugiani, R. Evaluation of a warning system for controlling primary infections of grapevine downy mildew. Plant Dis. 2010, 94, 709–716. [Google Scholar] [CrossRef]
- Caffi, T.; Rossi, V.; Legler, S.E.; Bugiani, R. A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathol. 2011, 60, 522–531. [Google Scholar] [CrossRef]
- Caffi, T.; Rossi, V. Fungicide models are key components of multiple modeling approaches for decision-making in crop protection. Phytopathol. Mediterr. 2018, 57, 153–169. [Google Scholar] [CrossRef]
- Rossi, V.; Salinari, F.; Poni, S.; Caffi, T.; Bettati, T. Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Comput. Electron. Agric. 2014, 100, 88–99. [Google Scholar] [CrossRef]
- EPPO. Grapevine Vigne PP 2/23(1). EPPO Bull. 2002, 32, 371–392. [Google Scholar] [CrossRef]
- Gadoury, D.M.; Seem, R.C.; Ficke, A.; Wilcox, W.F. Ontogenic resistance to powdery mildew in grape berries. Phytopathology 2003, 93, 547–555. [Google Scholar] [CrossRef]
- Kennelly, M.M.; Gadoury, D.M.; Wilcox, W.F.; Magarey, P.A.; Seem, R.C. Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises. Phytopathology 2005, 95, 1445–1452. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- EPPO. European and mediterranean plant protection organization. guidelines for the efficacy evaluation of fungicides: Plasmopara viticola. EPPO Bulletin 2001, 31, 313–317. [Google Scholar] [CrossRef]
- PP 1/4(4)-Uncinula Necator; EPPO Standards PP1, Efficacy Evaluation of Plant Protection Products. EPPO: Luxembourg, 2021.
- PP 1/31 (3)–Plasmopara viticola; EPPO Standards PP1, Efficacy Evaluation of Plant Protection Products. EPPO: Luxembourg, 2020.
- Nerva, L.; Pagliarani, C.; Pugliese, M.; Monchiero, M.; Gonthier, S.; Gullino, M.L.; Gambino, G.; Chitarra, W. Grapevine phyllosphere community analysis in response to elicitor application against powdery mildew. Microorganisms 2019, 7, 662. [Google Scholar] [CrossRef]
- Adrian, M.; Trouvelot, S.; Steimetz, E.; Chiltz, A.; Klinguer, A.; Bernaud, E.; Guillier, C.; Heloir, M.-C.; Poinssot, B.; Daire, X. Induced resistance as a strategy for vineyard protection. In Proceedings of the 3. International Symposium Ampelos Trends in World Viticulture Development, GRC, Santorini, Greece, 30–31 May 2013. [Google Scholar]
- Rantsiou, K.; Giacosa, S.; Pugliese, M.; Englezos, V.; Ferrocino, I.; Río Segade, S.; Monchiero, M.; Gribaudo, I.; Gambino, G.; Gullino, M.L.; et al. Impact of chemical and alternative fungicides applied to grapevine cv Nebbiolo on microbial ecology and chemical-physical grape characteristics at harvest. Front. Plant Sci. 2020, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Rosa, D.; Sánchez-Hernández, E.; Baquero-Foz, R.; Martín-Ramos, P.; Martín-Gil, J.; Torres-Sánchez, S.; Casanova-Gascón, J. Chitosan-based bioactive formulations for the control of powdery mildew in viticulture. Agronomy 2022, 12, 495. [Google Scholar] [CrossRef]
- Moine, A.; Pugliese, M.; Monchiero, M.; Gribaudo, I.; Gullino, M.L.; Pagliarani, C.; Gambino, G. Effects of fungicide application on physiological and molecular responses of grapevine (Vitis vinifera L.): A comparison between copper and sulfur fungicides applied alone and in combination with novel fungicides. Pest Manag. Sci. 2023, 79, 4569–4588. [Google Scholar] [CrossRef]
- Walters, D.; Walsh, D.; Newton, A.; Lyon, G. Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology 2005, 95, 1368–1373. [Google Scholar] [CrossRef]
- European Commission. The New Common Agricultural Policy: 2023–2027. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/new-cap-2023-27_ (accessed on 26 April 2023).
- Schäufele, I.; Hamm, U. Consumers’ perceptions, preferences and willingness-to-pay for wine with sustainability characteristics: A review. J. Clean. Prod. 2017, 147, 379–394. [Google Scholar] [CrossRef]
- Piazza, C. Bollettino Produzione Integrata e Biologica-Provincia di Piacenza. Available online: https://agricoltura.regione.emilia-romagna.it/fitosanitario/temi/difesa-sostenibile-delle-produzioni/bollettini/archivio-bollettini/bollettini-di-produzione-integrata-e-biologica-2020/piacenza (accessed on 16 August 2023).
- Piazza, C. Bollettino Produzione Integrata e Biologica-Provincia di Piacenza. Available online: https://agricoltura.regione.emilia-romagna.it/fitosanitario/temi/difesa-sostenibile-delle-produzioni/bollettini/archivio-bollettini/copy2_of_bollettini-di-produzione-integrata-e-biologica-2021/piacenza (accessed on 16 August 2023).
- Piazza, C. Bollettino Produzione Integrata e Biologica-Provincia di Piacenza. Available online: https://agricoltura.regione.emilia-romagna.it/fitosanitario/temi/difesa-sostenibile-delle-produzioni/bollettini/archivio-bollettini/interprovinciali-produzione-integrata-biologica-2022 (accessed on 16 August 2023).
- Scott, E.S. 2019 Daniel McAlpine memorial lecture. Grapevine powdery mildew: From fundamental plant pathology to new and future technologies. Australas. Plant Pathol. 2021, 50, 1–6. [Google Scholar] [CrossRef]
- Lázaro, E.; Makowski, D.; Vicent, A. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Commun. Earth Environ. 2021, 2, 224. [Google Scholar] [CrossRef]
- Seem, R.C. Disease incidence and severity relationships. Annu. Rev. Phytopathol. 1984, 22, 133–150. [Google Scholar] [CrossRef]
- Madden, L.V.; Hughes, G.; Van Den Bosch, F. The Study of Plant Disease Epidemics; APS Publications: St. Paul, MN, USA, 2007. [Google Scholar] [CrossRef]
- Savary, S.; Delbac, L.; Rochas, A.; Taisant, G.; Willocquet, L. Analysis of nonlinear relationships in dual epidemics, and its application to the management of grapevine downy and powdery mildew. Phytopathology 2009, 99, 930–942. [Google Scholar] [CrossRef]
- Nelson, T.E.; Lewis, B.A. Separation and characterization of the soluble and insoluble components of insoluble laminaran. Carbohydr. Res. 1974, 33, 63–74. [Google Scholar] [CrossRef]
- Taibi, O.; Bardelloni, V.; Bove, F.; Scaglia, F.; Caffi, T.; Rossi, V. Activity of resistance inducers against Plasmopara viticola in vineyard. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2022; p. 03003. [Google Scholar] [CrossRef]
- Pagliarani, C.; Moine, A.; Chitarra, W.; Meloni, G.R.; Abbà, S.; Nerva, L.; Pugliese, M.; Gullino, M.L.; Gambino, G. The molecular priming of defense responses is differently regulated in grapevine genotypes following elicitor application against powdery mildew. Int. J. Mol. Sci. 2020, 21, 6776. [Google Scholar] [CrossRef]
- Magarey, P.; Wachtel, M.; Newton, M. Evaluation of phosphonate, fosetyl-Al, and several phenylamide fungicides for post-infection control of grapevine downy mildew caused by Plasmopara viticola. Australas. Plant Pathol. 1991, 20, 34–40. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Cheng, Y.; Aslam, M.; Jakada, B.H.; Wai, M.H.; Ye, K.; He, X.; Luo, T.; Ye, L.; Dong, C.; et al. ROS and oxidative response systems in plants under biotic and abiotic stresses: Revisiting the crucial role of phosphite triggered plants defense response. Front. Microbiol. 2021, 12, 631318. [Google Scholar] [CrossRef]
- Singh, R.R.; Chinnasri, B.; De Smet, L.; Haeck, A.; Demeestere, K.; Van Cutsem, P.; Van Aubel, G.; Gheysen, G.; Kyndt, T. Systemic defense activation by COS-OGA in rice against root-knot nematodes depends on stimulation of the phenylpropanoid pathway. Plant Physiol. Biochem. 2019, 142, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Bělonožníková, K.; Hýsková, V.; Chmelík, J.; Kavan, D.; Čeřovská, N.; Ryšlavá, H. Pythium oligandrum in plant protection and growth promotion: Secretion of hydrolytic enzymes, elicitors, and tryptamine as auxin precursor. Microbiol. Res. 2022, 258, 126976. [Google Scholar] [CrossRef] [PubMed]
- Mojtahid, A. Polyversum La solution innovatrice de lutte contre les grandes maladies de la vigne. Agriculture du Maghreb. Société D’edition Agric. 2021, 58, 2021. [Google Scholar]
- Yacoub, A.; Haidar, R.; Gerbore, J.; Masson, C.; Dufour, M.-C.; Guyoneaud, R.; Patrice, R. Pythium oligandrum induces grapevine defense mechanisms against the trunk pathogen Neofusicoccum parvum. Phytopathol. Mediterr. 2020, 59, 565–580. [Google Scholar] [CrossRef]
- Nogueira Júnior, A.F.; Tränkner, M.; Ribeiro, R.V.; Von Tiedemann, A.; Amorim, L. Photosynthetic cost associated with induced defense to Plasmopara viticola in grapevine. Front. Plant Sci. 2020, 11, 235. [Google Scholar] [CrossRef] [PubMed]
Treatment | Active Ingredient | Trade Name and Producer | Concentration | Dose |
---|---|---|---|---|
CHEM | Tribasic copper sulfate | Cupravit Bioadvanced, BAYER | 30% | 1.4–1.8 1 |
Copper oxychloride | Verdram HI Bio, Belchim Crop Protection | 30% | 2–2.4 1 | |
Copper sulfate | Poltiglia Disperss, UPL | 20% | 2–6 1 | |
Sulfur | Microbagnabile, Green Ravenna s.r.l. | 80% | 100–200 2 | |
Tiogold disperss, UPL | 80% | 200–400 2 | ||
Thiopron, UPL | 57.3% | 2–4 3 | ||
CER | Cerevisane | ROMEO, SUMITOMO Chemical | 94.1% | 0.25 1 |
COS | Cos-oga | IBISCO, GOWAN | 12.5 g/L | 2.5 3 |
FOS | Fosetyl-Al | ALIETTE, BAYER | 80% | 2.5 1 |
LAM | Laminarin | VACCIPLANT, UPL | 45 g/L | 1.5 3 |
PHO | Potassium phosphonate | CENTURY, BASF | 755 g/L | 2 3 |
PYT | Pythium oligandrum | POLYVERSUM, GOWAN | 1 × 106 CFU/g | 0.3 1 |
Treatment | Date of Application | ||
---|---|---|---|
Year 2020 | Year 2021 | Year 2022 | |
Copper + sulfur (CHEM) | 17 and 27 April; 8, 18 and 28 May; 3 and 9 June; 1 and 16 July | 23 April; 7 and 13 May; 1 June; 17 July | 20 April; 4 and 24 May; 1 and 22 June; 12, 20 and 26 July |
Cerevisane (CER) | 17 and 27 April; 8, 18 and 28 May; 3 and 9 June; 1 and 16 July | 23 April; 7 and 13 May; 1 June | 4 and 24 May; 1 and 22 June |
Cos-oga (COS) | 17 and 27 April; 8, 18 and 28 May; 3 and 9 June; 1 and 16 July | 23 April; 7 and 13 May; 1 June; 17 July | 20 April; 4 and 24 May; 1 June |
Fosetyl-Al (FOS) | 8 and 28 May; 3 and 9 June | 13 May; 1 June; 17 July | 4 May; 1 and 22 June |
Laminarin (LAM) | 1 and 16 July | 1 June; 17 July | 22 June; 20 July |
Potassium phosphonate (PHO) | 17 and 27 April; 8 and 18 May | 23 May; 7 and 13 May; 1 June | 4 and 24 May; 1 and 22 June |
Pythium oligandrum (PYT) | 3 and 9 June; 16 July | 23 April; 7 and 13 May; 1 June; 17 July | 22 June; 12 and 26 July |
Source of Variation | df | Downy Mildew | Powdery Mildew | ||||||
---|---|---|---|---|---|---|---|---|---|
Incidence | Severity | Incidence | Severity | ||||||
p 1 | % 2 | p | % | p | % | p | % | ||
Leaves | |||||||||
Treatment (1) | 7 | <0.001 | 54.6 | <0.001 | 65.4 | 0.019 | 44.5 | 0.033 | 52.5 |
Year (2) | 2 | <0.001 | 35.1 | 0.004 | 18.9 | 0.003 | 31.0 | 0.09 | 13.8 |
Interaction (1 × 2) | 14 | 0.907 | 10.3 | 0.790 | 15.7 | 0.241 | 24.5 | 0.613 | 33.7 |
Bunches | |||||||||
Treatment (1) | 7 | 0.010 | 62.1 | 0.021 | 53.5 | 0.025 | 31.4 | 0.019 | 43.7 |
Year (2) | 2 | 0.145 | 9.1 | 0.049 | 16.3 | 0.001 | 51.1 | 0.031 | 26.0 |
Interaction (1 × 2) | 14 | 0.814 | 28.8 | 0.902 | 30.2 | 0.266 | 17.5 | 0.247 | 30.3 |
Overall 3 | |||||||||
Treatment (1) | 7 | <0.001 | 59.8 | 0.001 | 63.7 | 0.042 | 36.3 | 0.031 | 49.1 |
Year (2) | 2 | <0.001 | 30.8 | 0.010 | 17.6 | 0.001 | 43.3 | 0.029 | 20.2 |
Interaction (1 × 2) | 14 | 0.865 | 9.4 | 0.723 | 18.7 | 0.262 | 20.4 | 0.431 | 30.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taibi, O.; Fedele, G.; Salotti, I.; Rossi, V. Infection Risk-Based Application of Plant Resistance Inducers for the Control of Downy and Powdery Mildews in Vineyards. Agronomy 2023, 13, 2959. https://doi.org/10.3390/agronomy13122959
Taibi O, Fedele G, Salotti I, Rossi V. Infection Risk-Based Application of Plant Resistance Inducers for the Control of Downy and Powdery Mildews in Vineyards. Agronomy. 2023; 13(12):2959. https://doi.org/10.3390/agronomy13122959
Chicago/Turabian StyleTaibi, Othmane, Giorgia Fedele, Irene Salotti, and Vittorio Rossi. 2023. "Infection Risk-Based Application of Plant Resistance Inducers for the Control of Downy and Powdery Mildews in Vineyards" Agronomy 13, no. 12: 2959. https://doi.org/10.3390/agronomy13122959
APA StyleTaibi, O., Fedele, G., Salotti, I., & Rossi, V. (2023). Infection Risk-Based Application of Plant Resistance Inducers for the Control of Downy and Powdery Mildews in Vineyards. Agronomy, 13(12), 2959. https://doi.org/10.3390/agronomy13122959