Inhibition of Citrus Huanglongbing Disease by Paenibacillus polymyx KN-03 and Analysis with Transcriptome and Microflora
Abstract
:1. Introduction
1.1. Paenibacillus polymyxa Review
1.2. Research Idea on the Prevention and Control of Citrus HLB with P. polymyxa Plant-Growth-Promoting Bacterium
2. Materials and Methods
2.1. Plant Materials and Bacteriotics
2.2. Treatment Method of P. polymyx KN-03
2.3. Detection of CLas before and after Treatment with KN-03
2.4. Determination Method of Morphology and Biochemistry
2.4.1. Determination of the Morphological Index
2.4.2. Detection of ROS
2.4.3. Assays of Malondialdehyde (MDA) Content and Defense Enzyme Activity
2.4.4. Detection of Phenol Oxidase Activity
2.4.5. Detection of Peroxidase (POD)
2.5. Transcriptome Analysis Methods
2.5.1. Sample Preparation, Library Construction, and Sequencing
2.5.2. Library Preparation and Illumina NovaSeq 6000 Sequencing
2.5.3. Bioinformatics Analysis
2.6. Prediction and Analysis of BugBase Phenotypes
2.6.1. Library Construction and Sequencing
2.6.2. BugBase Phenotype Prediction
3. Results
3.1. Effects of P. polymyx KN-03 on Plant Morphological Indices
3.2. Changes in HLB Disease before and after Treatment with KN-03
3.3. Effects of P. polymyxomyces KN-03 on Biochemical Indices
3.4. Transcriptomic Analysis of RNA-Seq
3.4.1. Transcriptome Data Meet Quality Standards
3.4.2. Differential Expression Gene and KEGG Cluster Analysis
3.5. Microflora Analysis and BugBase Phenotypic Prediction
4. Discussion
4.1. P. polymyxoides KN-30 May Trigger Citrus Autoimmunity
4.2. Influence of KN-30 Treatment on HLB Disease
4.3. Transcriptome Analysis Revealed a Significant KEGG Upregulation Pathway Induced by KN-30
4.4. KN-03 Treatment Increased Microbial Diversity and the Abundance of Beneficial Microorganisms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | Aqueous suspension |
CLas | Candidatus Liberibacter asiaticus |
COG | Cluster of Orthologous Groups of proteins |
COX | cytochrome oxidase |
DAB | (3,3-diaminobenzidine) |
DEG | Differentially expressed genes |
EPS | Exo-polysaccharides |
HLB | Huanglongbing |
ISR | Induced systemic resistance |
IAA | Indole-3-acetic acid |
MDA | Malondialdehyde |
PCR | Polymerase chain reaction |
PGPB | Plant-growth-promoting bacteria |
PHO | Phenoloxidase |
PPO | Polyphenol oxidase |
qPCR | Quantitative polymerase reaction |
RNR | Ribonucleotide reductase |
ROS | Rate of oxidation |
References
- Singerman, A.; Burani-Arouca, M.; Futch, S.H. The profitability of new citrus plantings in Florida in the era of huanglongbing. HortScience 2018, 53, 1655–1663. [Google Scholar] [CrossRef]
- Jagoueix, S.; Bové, J.M.; Garnier, M. The phloem-limited bacterium of greening disease of citrus is amember of the a subdivision of the proteo bacteria. Int. J. Syst. Bacteriol. 1994, 44, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, T.R.; Graham, J.H.; Irey, M.S.; McCollum, T.G.; Wood, B.W. Inconsequential effect of nutritional treatments on huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Prot. 2012, 36, 73–82. [Google Scholar] [CrossRef]
- Graham, J.H.; Johnson, E.G.; Gottwald, T.R.; Irey, M.S. Presymptomatic fibrous root decline in citrus trees caused by huanglongbing and potential interaction with Phytophthora spp. Plant Dis. 2013, 97, 1195–1199. [Google Scholar] [CrossRef]
- de Souza, R.; Meyer, J.; Schoenfeld, R.; da Costa, P.B.; Passaglia, L.M. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol. 2015, 65, 951–964. [Google Scholar] [CrossRef]
- Ali, M.A.; Lou, Y.; Hafeez, R.; Li, X.; Hossain, A.; Xie, T.; Lin, L.; Li, B.; Yin, Y.; Yan, J.; et al. Functional analysis and genome mining reveal high potential of biocontrol and plant growth promotion in nodule-inhabiting bacteria within Paenibacillus polymyxa complex. Front. Microbiol. 2021, 11, 618601. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, T.; Tang, S.; Fu, X.; Yu, S. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol. Anton Leeuwe 2020, 113, 1539–1558. [Google Scholar] [CrossRef]
- Sui, J.; Ji, C.; Wang, X.; Liu, Z.; Sa, R.; Hu, Y.; Wang, C.; Li, Q.; Liu, X. A plant growth-promoting bacterium alters the microbial community of continuous cropping poplar trees’ rhizosphere. J. Appl. Microbiol. 2019, 126, 1209–1220. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, S.K.; Ryu, C.M.; Park, S.H. Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health. Front. Microbiol. 2019, 10, 467. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef]
- Qian, C. Analysis of Infection Ability of Different Strains of Cotton Verticillium Wilt and Screening of Antibacterial Agents. Ph.D. Dissertation, Shihezi University, Shihezi, China, 2022. [Google Scholar] [CrossRef]
- Liu, S.; Liu, H.; Zhou, L.; Cheng, Z.; Wan, J.; Pan, Y.; Xu, G.; Huang, F.; Wang, M.; Xiong, Y.; et al. Enhancement of antibacterial and growth-promoting effects of Paenibacillus polymyxa by optimizing its fermentation process. J Appl Microbiol. 2022, 133, 2954–2965. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.D. Research Methods of Plant Diseases, 2nd ed.; China Agriculture Press: Beijing, China, 1980. [Google Scholar]
- Zhang, M.; Powell, C.A.; Zhou, L.; He, Z.; Stover, E.; Duan, Y. Chemical compounds effective against the citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology 2011, 101, 1097–1103. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, J.; Wang, N. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, F.A.; Gardner, C.L.; Bojilova, L.; Sarnegrim, A.; Tamayo, C.; Potts, A.H.; Teplitski, M.; Folimonova, S.Y.; Gonzalez, C.F.; Lorca, G.L. The transcriptional activator LdtR from ‘Candidatus Liberibacter asiaticus’ mediates osmotic stress tolerance. PLoS Pathog. 2014, 10, e1004101. [Google Scholar] [CrossRef]
- Huang, C.Y.; Araujo, K.; Sánchez, J.N.; Kund, G.; Trumble, J.; Roper, C.; Godfrey, K.E.; Jin, H. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proc. Nat. Acad. Sci. USA 2021, 118, e2019628118. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.P.; Zhou, L.J.; Hall, D.G.; Li, W.B.; Doddapaneni, H.; Lin, H.; Liu, L.; Vahling, C.M.; Gabriel, D.W.; Williams, K.P.; et al. Complete Genome Sequence of Citrus Huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. MPMI 2009, 22, 1011–1020. [Google Scholar] [CrossRef]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Meth. 2006, 66, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xu, M.; Bao, M.; Wu, F.; Chen, J.; Deng, X. Unusual five copies and dual forms of nrdB in “Candidatus Liberibacter asiaticus”: Biological implications and PCR detection application. Sci. Rep. 2016, 6, 39020. [Google Scholar] [CrossRef]
- Fallah, F.; Chenar, H.M.; Amiri, H.; Omodipour, S.; Ghods, F.S.; Kahrizi, D.; Sohrabi, M.; Ghorbani, T.; Kazemi, E. Comparison of two DNA extraction protocols from leave samples of Cotinus coggygria, Citrus sinensis and Genus juglans. Cell. Mol. Biol. 2017, 63, 76–78. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Rodriguez-serrano, M.; Corpas, F.J.; Sandalio, L.M. Cadmium-induced subcellular accumulation of O2− and H2O2 in pea leaves. Plant Cell Environ. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- You, J.; Fang, Y.J.; Xiong, L.Z. Reactive 0xygen Detection. Bio-101 2018, e1010170. [Google Scholar] [CrossRef]
- Azarabadi, S.; Abdollahi, H.; Torabi, M.; Salehi, Z.; Nasiri, J. ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L). Eur. J. Plant. Pathol. 2017, 147, 279–294. [Google Scholar] [CrossRef]
- Augusto, P.E.; Ibarz, R.; Garvín, A.; Ibarz, A. Peroxidase (POD) and polyphenol oxidase (PPO) photo-inactivation in a coconut water model solution using ultraviolet (UV). Food Res. Int. 2015, 74, 151–159. [Google Scholar] [CrossRef]
- Jabborova, D.; Ma, H.; Bellingrath-Kimura, S.D.; Wirth, S. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities. Sci. Hortic. 2021, 290, 110518. [Google Scholar] [CrossRef]
- Myszura, M.; Zukowska, G.; Kobytka, A.; Mazurkiewicz, J. Enzymatic Activity of Soils Forming on an Afforested Heap from an Opencast Sulphur Mine. Forests 2021, 12, 1469. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Florea, L.; Song, L.; Salzberg, S.L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Research 2013, 2, 188. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Ward, T.; Larson, J.; Meulemans, J.; Hillmann, B.; Lynch, J.; Sidiropoulos, D.; Spear, J.R.; Caporaso, G.; Blekhman, R.; Knight, R.; et al. BugBase predicts organism-level microbiome phenotypes. BioRxiv 2017. [Google Scholar] [CrossRef]
- Rebello, S.; Nathan, V.K.; Sindhu, R.; Binod, P.; Awasthi, M.K.; Pandey, A. Bioengineered microbes for soil health restoration: Present status and future. Bioengineered 2021, 12, 12839–12853. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, X.; Yu, G.; Zhang, X.; Liu, J. Different effects of taproot and fibrous root crops on pore structure and microbial network in reclaimed soil. Sci. Total Environ. 2023, 901, 165996. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Tambadou, F.; Caradec, T.; Gagez, A.L.; Bonnet, A.; Sopéna, V.; Bridiau, N.; Thiéry, V.; Didelot, S.; Barthélémy, C.; Chevrot, R. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch. Microbiol. 2015, 197, 521–532. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef]
- Lee, B.; Farag, M.A.; Park, H.B.; Kloepper, J.W.; Lee, S.H.; Ryu, C.M. Induced resistance by a long-chain bacterial volatile: Elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE 2012, 7, e48744. [Google Scholar] [CrossRef]
- Sang, M.K.; Kim, E.N.; Han, G.D.; Kwack, M.S.; Jeun, Y.C.; Kim, K.D. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 2014, 104, 834–842. [Google Scholar] [CrossRef]
- Khan, Z.; Son, S.H.; Akhtar, J.; Gautam, N.K.; Kim, Y.H. Plant Growth-Promoting Rhizobacterium, Paenibacillus polymyxa Induced Systemic Resistance in Tomato (Lycopersicon esculentum) against Root-Knot Nematode (Meloidogyne incognita). Indian J. Agric. Sci. 2012, 82, 603–607. [Google Scholar]
- Weselowski, B.; Nathoo, N.; Eastman, A.W.; MacDonald, J.; Yuan, Z.C. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 2016, 16, 244. [Google Scholar] [CrossRef]
- Mageshwaran, V.; Walia, S.; Annapurna, K. Isolation and partial characterization of antibacterial lipopeptide produced by Paenibacillus polymyxa HKA-15 against phytopathogen Xanthomonas campestris pv. phaseoli M-5. World J. Microbiol. Biotechnol. 2012, 28, 909–917. [Google Scholar] [CrossRef]
- Khan, Z.; Kim, S.G.; Jeon, Y.H.; Khan, H.U.; Son, S.H.; Kim, Y.H. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour. Technol. 2008, 99, 3016–3023. [Google Scholar] [CrossRef]
- Raza, W.; Yang, W.; Shen, Q.R. Paenibacillus polymyxa: Antibiotics, hydrolytic enzymes and hazard assessment. J. Plant Pathol. 2008, 90, 419–430. [Google Scholar]
- Tang, J.; Ding, Y.; Nan, J.; Yang, X.; Sun, L.; Zhao, X.; Jiang, L. Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS ONE 2018, 13, e0200427. [Google Scholar] [CrossRef]
- Li, J.; He, P.; He, P.; Li, Y.; Wu, Y.; Lu, Z.; Li, X.; Yang, Y.; Wang, Y.; Guo, J.; et al. Potential of citrus endophyte Bacillus subtilis L1-21 in the control of Candidatus Liberibacter asiaticus in Asian citrus psyllid, Diaphorina citri. Pest Manag. Sci. 2022, 78, 5164–5171. [Google Scholar] [CrossRef]
- Fregno, I.; Molinari, M. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Crit. Rev. Biochem. Mol. 2019, 54, 153–163. [Google Scholar] [CrossRef]
- Xu, C.W.; Qian, H.P.; Luo, P.Y.; Yu, M.; Xing, J.J.; Zhang, L.; Zhang, X.; Cui, Y.N.; Lin, J.X. Advances invesicle trafficking of membrane proteins and their regulatory mechanisms. Chin. Sci. Bull. 2023, 7, 762–778. [Google Scholar] [CrossRef]
- Xiong, X.; He, Y.; Liu, H.H.; Liu, Z.E.; Tian, Z.H. Identification and analysis of variable spliceosome of rice polyembryonic candidate gene OSPE. J. North China Agric. Sci. 2023, 38, 55–60. [Google Scholar] [CrossRef]
- Kuang, X.; Yang, J.Y.; Cai, J.; Liao, Q.Y.; Liao, S.; Zhou, X.M. Study on the chemical constituents of phenylpropanoids in palm flower buds. Chin. Mater. Med. 2019, 42, 2557–2560. [Google Scholar] [CrossRef]
- Bai, Q.; Duan, B.; Ma, J.; Fen, Y.; Sun, S.; Long, Q.; Lv, J.; Wan, D. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content. Front. Plant Sci. 2020, 10, 1772. [Google Scholar] [CrossRef]
- Du, Y.; Chu, H.; Wang, M.; Chu, I.K.; Lo, C. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. J. Exp. Bot. 2010, 61, 983–994. [Google Scholar] [CrossRef]
- Boyd, E.S.; Peters, J.W. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 2013, 4, 201. [Google Scholar] [CrossRef]
- Haggag, W.M.; Timmusk, S. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 2008, 104, 961–969. [Google Scholar] [CrossRef]
- Chaudhary, P.; Agri, U.; Chaudhary, A.; Kumar, A.; Kumar, G. Endophytes and their potential in biotic stress management and crop production. Front. Microbiol. 2022, 13, 933017. [Google Scholar] [CrossRef]
- Lin, Z.; Pang, S.; Zhou, Z.; Wu, X.; Li, J.; Huang, Y.; Zhang, W.; Lei, Q.; Bhatt, P.; Mishra, S.; et al. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. J. Hazard. Mater. 2022, 426, 127841. [Google Scholar] [CrossRef]
- Matsumoto, H.; Fan, X.; Wang, Y.; Kusstatscher, P.; Duan, J.; Wu, S.; Chen, S.; Qiao, K.; Wang, Y.; Ma, B.; et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 2021, 7, 60–72. [Google Scholar] [CrossRef]
- Wilhelm, R.C.; DeRito, C.M.; Shapleigh, J.P.; Madsen, E.L.; Buckley, D.H. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil. ISME Commun. 2021, 1, 4. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, S.; Sun, Y.; Yang, S.; Tan, H. Effect of Intercropping with Different Legume Crops on Endophytic Bacterial Diversity of Sugarcanes. Chin. J. Trop. Crops 2021, 42, 3188–3198. (In Chinese) [Google Scholar] [CrossRef]
Primers | Nucleic Acid Sequence (5′–3′) | Fragment Size (bp) | GenBank Number | Sources |
---|---|---|---|---|
COX+ | GTATGCCACGTCGCATTCCAGA | 68 | CX297817 72-93 | Li et al., 2006 [19] |
COX− | GCCAAAACTGCTAAGGGCATTC | CX297817 118-139 | ||
RNRf | CATGCTCCATGAAGCTACCC | 80 | CP010804.1 5434-5455 | Zheng et al., 2016 [20] |
RNRr | GGAGCATTTAACCCCACGAA | CP010804.1 5493-5514 | ||
OI1 | GCGCGTATGCAATACGAGCGGCA | 1167 | CP001677.5 786316-786339 | Jagoueix et al., 1994 [2] |
OI2c | GCCTCGCGACTTCGCAACCCAT | CP001677.5 787462-787483 |
Before Treatment 1 | After 12 Times Treatment 2 | After 24 Times Treatment 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Number | Results of qPCR* | PCR Result | Evaluation | Negative Rate % | Results of qPCR | PCR Result | Evaluation | Negative Rate % | Results of qPCR | PCR Result | Evaluation | Negative Rate % | |
KN-03 viable bacteria | YL48 | 5.03 ± 0.04 (+) | + | + | 0 | 8.69 ± 1.96 (+) | + | + | 0 | 0.24 ± 0.01 (−) | − | − | 50 |
YL39 | 15.61 ± 0.13 (+) | + | + | 8.55 ± 0.02 (+) | − | + | 0.99 ± 0.01 (−) | − | − | ||||
YL20 | 127.15 ± 3.99 (+) | + | + | 72.03 ± 3.22 (+) | + | + | 59.14 ± 0.53 (+) | + | + | ||||
YL32 | 35.03 ± 1.55 (+) | + | + | 4.68 ± 0.07 (+) | − | + | 8.16 ± 0.84 (+) | − | + | ||||
Inactivated bacteria | YL35 | 29.75 ± 0.47 (+) | + | + | 0 | 21.71 ± 1.09 (+) | + | + | 0 | 3.27 ± 0.17 (+) | − | + | 0 |
YL16 | 33.94 ± 4.18 (+) | + | + | 55.30 ± 4.06 (+) | − | + | 9.62 ± 1.64 (+) | − | + | ||||
YL15 | 756.04 ± 1.76 (+) | + | + | 4.83 ± 2.76 (+) | + | + | 15.37 ± 1.12 (+) | + | + | ||||
YL14 | 26.42 ± 0.19 (+) | + | + | 3.36 ± 0.02 (+) | − | + | 2.19 ± 0.21 (+) | + | + | ||||
CK | YL18 | 54.61 ± 2.94 (+) | + | + | 0 | 2.73 ± 0.43 (+) | + | + | 0 | 33.46 ± 1.25 (+) | + | + | 0 |
YL10 | 2.22 ± 0.27 (+) | + | + | 114.46 ± 5.85 (+) | + | + | 29.42 ± 3.62 (+) | + | + | ||||
YL17 | 5.03 ± 0.92 (+) | + | + | 11.67 ± 3.57 (+) | − | + | 6.43 ± 0.61 (+) | − | + | ||||
YL45 | 36.76 ± 1.13 (+) | + | + | 16.64 ± 0.63 (+) | + | + | 7.71 ± 0.56 (+) | + | + |
Treatment | Pathogen Content of Roots 1 | Pathogen Content of Buds 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample Number | Results of qPCR | PCR Result | Evaluation | Negative Rate % | Results of qPCR* | PCR Result | Evaluation | Negative Rate % | |
KN-03 viable bacteria | YL48 | 4.59 ± 0.94 (+) | + | + | 0 | 1.27 ± 0.75 (+) | − | + | 50 |
YL39 | 4.11 ± 0.81 (+) | − | + | 1.84 ± 0.17 (+) | + | + | |||
YL20 | 12.18 ± 1.59 (+) | + | + | 0.85 ± 0.02 (−) | − | − | |||
YL32 | 9.33 ± 0.15 (+) | − | + | 0.27 ± 0.01 (−) | − | − | |||
Inactivated bacteria | YL35 | 4.31 ± 0.37 (+) | − | + | 0 | 7.11 ± 1.37 (+) | − | + | 25 |
YL16 | 6.03 ± 0.48 (+) | − | + | 2.11 ± 0.42 (+) | + | + | |||
YL15 | 2.45 ± 0.02 (+) | + | + | 0.05 ± 0.01 (−) | − | − | |||
YL14 | 60.46 ± 6.56 (+) | + | + | 13.71 ± 5.25 (+) | − | + | |||
CK | YL18 | 3.59 ± 0.26 (+) | + | + | 25 | 345.07 ± 11.40 (+) | + | + | 0 |
YL10 | 0.66 ± 0.17 (−) | − | − | 5.05 ± 0.91 (+) | + | + | |||
YL17 | 3.60 ± 0.26 (+) | + | + | 4.84 ± 0.16 (+) | − | + | |||
YL45 | 1.62 ± 0.23 (+) | − | + | 0.67 ± 0.32 (−) | + | + |
Materials | Phenotype | ||||||||
---|---|---|---|---|---|---|---|---|---|
Number of Treatments and Genera | Aerobic | Anaerobic | Contains_Mobile_Elements | Facultatively_Anaerobic | Forms_Biofilms | Gram_Negative | Gram_Positive | Potentially_Pathogenic | Stress_Tolerant |
SA +5 | 9D | 3 | 29U | 7 | 16U | 16U | 5D | 14U | 13U |
SACK | 10 | 3 | 27 | 7 | 15 | 15 | 8 | 12 | 10 |
SB −1 | 9D | 4 | 29U | 7 | 14D | 15 | 6D | 15U | 9D |
SBCK | 10 | 4 | 27 | 7 | 15 | 15 | 8 | 12 | 11 |
RA +50 | 20U | 8 | 20U | 6D | 30U | 30U | 7D | 21U | 19U |
RACK | 11 | 15 | 11 | 7 | 20 | 21 | 14 | 11 | 11 |
RB −3 | 14U | 15D | 6U | 8 | 15D | 15D | 13D | 10D | 10D |
RBCK | 13 | 16 | 4 | 8 | 16 | 16 | 16 | 11 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, F.; Jiang, J.; Jiang, L. Inhibition of Citrus Huanglongbing Disease by Paenibacillus polymyx KN-03 and Analysis with Transcriptome and Microflora. Agronomy 2023, 13, 2958. https://doi.org/10.3390/agronomy13122958
Yang Y, Wang F, Jiang J, Jiang L. Inhibition of Citrus Huanglongbing Disease by Paenibacillus polymyx KN-03 and Analysis with Transcriptome and Microflora. Agronomy. 2023; 13(12):2958. https://doi.org/10.3390/agronomy13122958
Chicago/Turabian StyleYang, Yuehua, Fangkui Wang, Jialin Jiang, and Ling Jiang. 2023. "Inhibition of Citrus Huanglongbing Disease by Paenibacillus polymyx KN-03 and Analysis with Transcriptome and Microflora" Agronomy 13, no. 12: 2958. https://doi.org/10.3390/agronomy13122958
APA StyleYang, Y., Wang, F., Jiang, J., & Jiang, L. (2023). Inhibition of Citrus Huanglongbing Disease by Paenibacillus polymyx KN-03 and Analysis with Transcriptome and Microflora. Agronomy, 13(12), 2958. https://doi.org/10.3390/agronomy13122958