Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review
Abstract
:1. Introduction
2. Insights into the Use of Remote Sensing Data for Crop Classification and Management
2.1. From Spectral Data to Crop Data
2.2. Vegetation Indices Commonly Used for Crop Classification and Management
3. The Current Status and Limitations of the Use of VIs for Crop Classification and Monitoring
3.1. General Remarks
3.2. Crop-Specific Analysis
3.2.1. Maize Crop
Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|
Syria | - | FieldSPEC (Analytical Spectral DevicesTM, Lake Grove, NY, USA) | 1997 | NDVI | [55] |
Mexico | NOAA-AVHRR | - | May–October 1997 | NDVI, LAI | [51] |
USA | - | AccuPAR Ceptometer (Decagon Devices, Pullman, Washington, USA) ASD FieldSpec Pro FR (Analytical Spectral Devices, Boulder, CO, USA) | 1999 | TGI, MCARI, CVI, NDVI, TCARI | [56] |
USA, Illinois | MODIS MCD43A4 | - | 2002–2017 | NDVI | [57] |
USA | - | ASD FieldSpec Pro FR spec- trometer (Analytical Spectral Devices, Inc., Boulder, CO, USA), LI-COR (Lincoln, NE, USA) LI 1800-12 light integrating sphere | 2003 | CVI, MCARI, GNDVI | [53] |
Spain, Germany, France | Sentinel-2 | LI-COR LAI-2000 SPAD-502 (Seedburo Equipment Company, Des Plaines, IL, USA) | 2003–2007 | LAI, Chlorophyll Content | [58] |
China | HJ-1A/1B satelit chinezesc | 2009–2015 | NDVI | [59] | |
China | Sentinel-2 | - | 2012–2013 | LAI, S-WI I, S-WI II, S-NDII, S-TBWI, EVI, TCARI, S-OSAVI, S-TCARI/OSAVI, S-MTCI, S-CI, S-NDVI, S-DCNI I, S-OSAVI × CIred edge | [6] |
France | Sentinel-1 | LI-COR 3100 planimeter (LI-COR Biosciences, Lincoln Inc., Lincoln, NE, USA) | 2014 | NDVI | [60] |
Japan | Sentinel-2A | - | 2016 | 82 indices, among which: ARVI, CARI, CCCI, CRI 550, NDVI, GDVI, GNDVI, GVMI, REIP, SLAVI | [45] |
Czech Republic | - | eBee UAV, with multispectral and thermal sensors (senseFly, Cheseaux-sur-Lausanne, Switzerland) | 2016–2017 | NDVI, GNDVI, NDRE | [61] |
Italy | Sentinel-2 | Grain yield monitor (model and manufacturer are not specified) | 2016–2018 | NDVI, NDRE1, NDRE2, GNDVI, GARVI, EVI, WDRVI, WDRVI, GCVI | [50] |
USA, Mississippi | - | MicaSense RedEdge™ multispectral band sensor (MicaSense, Inc., Seattle, WA, USA) mounted on a UAS (manufacturer not specified) | 2017–2019 | DVI, DVI, RDVI, TDVI, NDVI, GNDVI, NDRE, SCCCI, EVI, TVI, VARIgreen, GARI, GCI, GLI, TGI, NLI, MNLI, SAVI, GSAVI, GSAVI, GOSAVI, MSAVI2, MSR, GRVI, WDRVI, SR | [49] |
Belgium | Sentinel-1 Sentinel-2 | - | March–August 2017 | NDVI | [46] |
Saudi Arabia | CubeSat, Landsat 8, MODIS | - | April–October 2017 | NIR, LAI, REGFLEC-based LAI | [62] |
Brazil | - | DJI Matrice 200 RPA (DJI, Shenzhen, China) with an embedded multispectral camera (Micasense, model RedEdge-M) | 2018–2019 | NDVI, NDRE | [48] |
Brazil | Sentinel-2 | - | 2019–2020 | NDVI | [63] |
USA | PlanetScope | Minolta SPAD-502 meter (Konika Minolta Business Solutions, Osaka, Japan), LI-COR LAI-2000 ((LI-COR Biosciences, Lincoln Inc., Lincoln, NE, USA) | 2018 | EVI, EVI2, GCI, NDVI, MSAVI2, SAVI, | [64] |
Mexico | - | Parrot Sequoia camera attached to a 3 DR SOLO quadcopter (3D Robotics, Berkeley, CA, USA), DJI RGB sensor integrated into a DJI Phantom 4 quadcopter (DJI, Shenzhen, China) | 2018 | TGI, VARI, NDVI, NDRE, WDRVI | [52] |
China | Sentinel-2 | - | 2019–2020 | NDVI GBDT and RF B12, NDTI, LSWI, NDSV B12, B11, B8, LSWI, NRED2 | [47] |
3.2.2. Wheat Crop
Wheat Variety | Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|---|
Autumn wheat | Japan | Sentinel-2A | - | 2016 | 82 VIs, among which, ARVI, CARI, CCCI, CRI 550, NDVI, GDVI, GNDVI, GVMI, SLAVI, etc. | [45] |
Wheat | Bulgaria | Sentinel-2 | - | 2016–2018 | 36 VIs, among which, REP, MTCI, NDRE, CCCI, NDVI, SR, VAR1, WDRVI, VI, NDI, GBM, TCARI, MCARI, gNDVI, etc. | [70] |
Autumn wheat | Bulgaria | Sentinel-2 | - | 2016–2018 | 40 VIs, among which, CCCI, Clg7, Clg8, DVI, EVI, GIPVI, gNDVI, MCARI, MTCI, NDI, NDRE, NPCI, OSAVI, NDVI, REP, TCI, SR, SR1, SR2, SR3, SR4, TCARI, TSAVI, VARI, WDRVI, NPCI, SAVI2, etc. | [66] |
Wheat | France | Sentinel-1 and 2 | - | January–July 2017 | NDVI, S2REP, MCARI, WDVI and LAI | [43] |
Wheat | France | Sentinel-1 and 2 | - | January–July 2017 | ID DOY LAI VV GNDVI IRECI, NDI, NDVI, GNDVI, PSSRa, REIP, SAVI etc. | [5] |
Spring wheat | Finland | Sentinel-2 | - | April 2016–October 2017 | NDVI | [71] |
Wheat | Spain, Germany, France | Sentinel-2 | LI-COR LAI-2000 SPAD-502 (Seedburo Equipment Company, Des Plaines, IL, USA) | 2003–2004, 2006, 2007 | LAI, Chlorophyll Content | [58] |
Cereals, including wheat | Norway | Sentinel-2 | - | May–October 2019 | SAVI | [72] |
Cereals, including wheat | Austria, Germany | Sentinel-2 | - | 2015 | Spectral signatures and classification margins | [73] |
Cereals, including wheat | UE | Sentinel-1 | - | 2018 | Crop type mapping | [74] |
Wheat | Belgium | Sentinel-1 Sentinel-2 | - | 2018 | NDVI | [46] |
Autumn wheat | China | Sentinel-2 | - | 2016 | LAI, LCC, CCC | [75] |
Wheat | France | Sentinel-1 | LI-COR 3100 planimeter (LI-COR Biosciences, Lincoln Inc., Lincoln, NE, USA) | 2014 | NDVI | [60] |
Wheat | Australia | - | FieldSpec spectrometer (Analytical Spectral Devices, Boulder, CO, USA) | 2004–2006 | nitrogen nutrition index/canopy chlorophyll content index (CCCI) | [76] |
Wheat | USA | - | - | 2004 | CVI, Mcari, gNDVI | [53] |
Wheat | India | Sentinel-2A and 2B | - | 2019 | NDVI, SAVI, SR, CI | [77] |
Wheat | China | MODIS | - | 2014–2017 | NDVI | [78] |
Wheat | China | Sentinel-2A and 2B | - | September 2017–June 2018 | NDPI | [79] |
Wheat | Poland | - | - | 2013–2014 | NDVI | [63] |
Wheat | USA | - | Green Seeker Model 505 (Trimble Navigation Limited, Sunnyvale, CA, USA) | NDVI | [68] |
3.2.3. Sunflower Crop
3.2.4. Soybean Crop
Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|
Syria | - | FieldSPEC (Analytical Spectral DevicesTM, Lake Grove, NY, USA) | 1997 | NDVI | [55] |
USA, Illinois | MODIS MCD43A4 | - | 2002–2017 | NDVI | [57] |
France | Sentinel-1 | LI-COR 3100 planimeter (LI-COR Biosciences, Lincoln Inc., Lincoln, NE, USA) | 2014 | NDVI, SAR | [60] |
China | Sentinel-2A/B | - | 2015–2020 | OSAVI, SIWSI, TCARI | [83] |
China | Sentinel-2 | - | 2017–2018 | NDVI, EVI, GCVI, NDWI, EVI, LSWI | [85] |
Northeast China, Missouri, Illinois, Indiana, Ohio | Sentinel-2A/B | - | 2017–2021 | OSAVI, SIWSI, TCARI | [83] |
Brazil | Sentinel-2 | - | 2019–2020 | BNDVI, EVI, EVI 2, GNDVI, NDVI, NDRE, NDII, NDII 2 | [86] |
China | Sentinel-2 | - | 2019–2020 | B8, B11, B12, GBDT, LSWI, NDVI, NDTI, NDSV, NRED2 RF | [47] |
Brazil | Sentinel-2 | - | 2020 | NDVI | [63] |
3.2.5. Rapeseed Crop
Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|
Spain, Germany, France | Sentinel-2 | LI-COR LAI-2000 SPAD-502 (Seedburo Equipment Company, Des Plaines, IL, USA) | 2003–2004; 2006; 2007 | LAI, Chlorophyll Content | [58] |
France | Sentinel-1 | LI-COR 3100 planimeter (LI-COR Biosciences, Lincoln Inc., Lincoln, NE, USA) | 2014 | NDVI | [60] |
Finland | Sentinel-2 | - | April–October 2016–2017 | NDVI | [71] |
France | Sentinel-1 and 2 | - | January–July 2017 | LAI, MCARI, NDVI, S2REP, WDVI | [42] |
France | Sentinel-1 and 2 | - | January–July 2017 | DOY, ID, IRECI, GNDVI, LAI, VV NDI, NDVI, PSSRa, REIP, SAVI etc. | [5] |
Germany | Sentinel-1 and 2 LUCAS | - | 21 April–19 May 2018 | NDYI | [74] |
Germany | Landsat 8, OLI and Sentinel | - | 2018 | NDVI, NDYI | [88] |
Belgium | Sentinel-1 Sentinel-2 | - | 2018 | NDVI | [46] |
Germany | - | UAV-octocopter (CiS GmbH, Rostock, Germany) | 2019–2021 | NDVI, NDYI | [87] |
3.2.6. Potato Crop
Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|
Syria | - | FieldSPEC (manufactured by Analytical Spectral DevicesTM, Lake Grove, NY, USA) | 1997 | NDVI | [55] |
Romania | - | SPAD-502 (Seedburo Equipment Company, Des Plaines, IL, USA), CropScan multispectral radiometer (CROPSCAN, Inc., Rochester, NY, USA) | 2011 | NDVI | [92] |
Switzerland | - | eBee UAV (senseFly, Cheseaux-sur-Lausanne, Switzerland), HandySpec Field (tec5, Steinbach, Germany) | 2015 | NDVI | [90] |
Japan | Sentinel-2A | - | 2016 | 82 indices: ARVI, CARI, CCCI, CRI 550, GDVI, GNDVI, GVMI, NDVI, SLAVI, etc. | [45] |
The Netherlands | Sentinel-2 | - | 2016 | CCC, LAI, LCC, WDVI | [91] |
Finland | Sentinel-2 | - | April to October 2016–2017 | NDVI | [71] |
Belgium | Sentinel-2 | - | 2016–2018 | NDVI | [89] |
UE | Sentinel-1 | - | 2018 | NDYI | [72] |
Belgium | Sentinel-1 Sentinel-2 | - | 2018 | NDVI | [46] |
India | Sentinel-1 and 2 | - | 2019–2020 | NDVI | [93] |
3.2.7. Forage Crop
Type of Meadows and Pastures, as Reported | Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|---|
Alfalfa | Spain, Germany, France | Sentinel-2 | LI-COR LAI-2000 SPAD-502 (Seedburo Equipment Company, Des Plaines, IL, USA) | 2003–2004, 2006, 2007 | LAI, Chlorophyll Content | [58] |
Alfalfa | Saudi Arabia | Landsat-8 | Large rectangular baler—CLAAS model Quadrant 3200 (CLAAS, Harsewinkel, Germany), equipped with a Hay yield monitor data (model 500 of Harvest Tec, Hudson, NY, USA) | October 2013–May 2014 | EVI, GRVI, GNDVI, LSWI, NDVI, SAVI, SR | [95] |
Alfalfa | Saudi Arabia | CubeSat, Landsat-8, MODIS | - | 2017 | LAI, NIR, REGFLEC-based LAI | [63] |
Forage crops | Italy | Sentinel-2 | - | 28 February–30 June 2021 | NDVI | [96] |
3.2.8. Meadows and Pastures
Type of Agricultural Land: Meadows or Pastures, as Reported | Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|---|
Pastures and arable land | France | SPOT-5, Landsat and RADARSAT-2 | - | 2010 | NDVI, LAI, fCOVER | [106] |
Pastures | Czech Republic | MODIS | - | 2010–2011 | NDVI, PSRI | [104] |
Meadows | France | MODIS | - | 2012–2014 | NDVI | [103] |
Pastures and arable land | Czech Republic | Landsat-8, Land Parcel Identification System (LPIS) | - | 2013–2016 | NDVI, SR, SGI | [102] |
Pastures | China | Landsat-7 ETM + , Landsat-8 OLI, Sentinel-2A MSI, MODIS | - | 2014–2015 June–August | LAI | [107] |
Pastures | Australia | Sentinel-2 | - | 2019–2020 | NDVI | [100] |
Pastures | Belgium | Sentinel-1 A and B | - | April–July 2019 | SAR | [108] |
Meadows | Czech Republic | Sentinel-2 | - | 2015–2019 | FAPAR, FCOVER, LAI, CAB, CWC, NDVI | [101] |
Meadows | Belgium | Sentinel-1 and 2 | - | 2018 | NDVI | [46] |
Meadows | Italy | Sentinel-2 | - | 28 February– 30 June 2021 | NDVI | [96] |
Meadows | Norway | Sentinel-2 | - | May–October 2019 | SAVI | [72] |
Meadows | Germany | Sentinel-2, Landsat-8, PlanetScope | - | 2017–2020 | EVI | [109] |
Meadows | Switzerland | Sentinel-2 | - | 2017–2019 | NDVI, EVI | [3] |
Pastures | Ethiopia | Sentinel-2 | - | 2018 | NDVI, EVI | [106] |
Meadows | Italy | Landsat-8, Sentinel-2, PlanetScope | - | 2021 | EVI, GNDVI, GVMI, MSAVI, NBR, NDGI, NDMI, NDII, NDREI, NDVI, PSRI, RECI, RENDVI, RESI, RVI, SAVI, VARI, WDRVI | [99] |
4. Road Mapping Future Research Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, A.Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Mălinaş, A.; Vidican, R.; Rotar, I.; Mălinaş, C.; Moldovan, C.M.; Proorocu, M. Current Status and future prospective for Nitrogen Use Efficiency in Wheat (Triticum aestivum L.). Plants 2022, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Pazúr, R.; Huber, N.; Weber, D.; Ginzler, C.; Price, B. A national extent map of cropland and grassland for Switzerland based on Sentinel-2 data. Earth Syst. Sci. Data 2022, 14, 295–305. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1—Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018; pp. 10–19. [Google Scholar]
- Mercier, A.; Betbeder, J.; Denize, J.; Roger, J.L.; Spicher, F.; Lacoux, J.; Roger, D.; Baudry, J.; Hubert-Moy, L. Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data. Data Brief 2021, 38, 107408. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2a vegetation indices and leaf area index. Crop J. 2020, 8, 87–97. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Pinter, P.J. Remote Sensing for Crop Protection. Crop Prot. 1993, 12, 403–413. [Google Scholar] [CrossRef]
- Bouchet, A.-S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed. A review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Duchemin, B.; Fieuzal, R.; Rivera, M.A.; Ezzahar, J.; Jarlan, L.; Rodriguez, J.C.; Hagolle, O.; Watts, C. Impact of sowing date on yield and water use efficiency of wheat analyzed through Spatial Modeling and FORMOSAT-2 Images. Remote Sens. 2015, 7, 5951–5979. [Google Scholar] [CrossRef]
- Debats, S.R.; Luo, D.; Estes, L.D.; Fuchs, T.J.; Caylor, K.K. A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sens. Environ. 2016, 179, 210–221. [Google Scholar] [CrossRef]
- Dutrieux, L.P.; Jakovac, C.C.; Latifah, S.H.; Kooistra, L. Reconstructing land use history from Landsat time-series: Case study of a swidden agriculture system in Brazil. Int. J. Appl. Earth Obs. 2016, 47, 112–124. [Google Scholar]
- Li, P.; Yang, Y. Swidden Agriculture Landscape Mapping Using MODIS Vegetation Index Time Series and Its Spatio-Temporal Dynamics in Northern Laos. Remote Sens. 2022, 14, 6173. [Google Scholar] [CrossRef]
- Ali, A.; Martelli, R.; Lupia, F.; Barbanti, L. Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sens. 2019, 11, 2384. [Google Scholar] [CrossRef]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A technical study on UAV characteristics for Precision Agriculture applications and associated practical challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of major vegetation indices in Precision Agriculture studies indexed in Web of Science: A review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of optical and Synthetic Aperture Radar imagery for improving crop mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef]
- Pohl, C.; Van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef]
- Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency assessment of multitemporal C-Band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3712–3719. [Google Scholar] [CrossRef]
- Villa, P.; Stroppiana, D.; Fontanelli, G.; Azar, R.; Brivio, P.A. In-Season Mapping of crop type with Optical and X-Band SAR data: A classification tree approach using synoptic seasonal features. Remote Sens. 2015, 7, 12859–12886. [Google Scholar] [CrossRef]
- Sun, C.; Bian, Y.; Zhou, T.; Pan, J. Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the Subtropical Agriculture Region. Sensors 2019, 19, 2401. [Google Scholar] [CrossRef]
- Waldner, F.; Lambert, M.J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais-Sicre, C.; Hagolle, O.; Baret, F.; Defourny, P. Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series. Remote Sens. 2015, 7, 10400–10424. [Google Scholar] [CrossRef]
- Nicola, C.; Calderon, C.; Posada, J. Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar]
- Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of using Sentinel-1 and -2 Time-Series to identify winter land use in agricultural landscapes. Remote Sens. 2018, 11, 37. [Google Scholar] [CrossRef]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Foerster, M. Grassland habitat mapping by intra-annual time series analysis-comparison of rapideye and terraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinfor. 2015, 34, 25–34. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- El-Shikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Haberland, J.A.; Pinter, P.J., Jr.; Waller, P.M.; Thompson, T.L. Remote sensing of cotton nitrogen status using the Canopy Chlorophyll Content Index (CCCI). Trans. ASABE 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the potentiality of UAV Multispectral Imagery to detect flavescence dorée and grapevine trunk diseases. Remote Sens. 2019, 11, 23. [Google Scholar] [CrossRef]
- EOS Data Analytics. Available online: https://eos.com/blog/vegetation-indices/#ref-1 (accessed on 12 September 2023).
- Kandylakis, Z.; Karantzalos, K. Precision viticulture from multitemporal, multispectral very high resolution satellite data. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Novello, V.; Lessio, A.; de Palma, L. Describing the spatio-temporal variability of vines and soil by satellite-based spectral indices: A case study in Apulia (South Italy). Int. J. Appl. Earth Obs. Geoinform. 2018, 68, 42–50. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Wu, J.; Tang, Y.; Shi, P.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [Google Scholar] [CrossRef]
- Rey-Caramés, C.; Diago, P.M.; Pilar, M.M.; Lobo, A.; Tardaguila, J. Using RPAS multi-spectral imagery to characterise vigour, leaf development, yield components and berry composition variability within a vineyard. Remote Sens. 2015, 7, 14458–14481. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Soubry, I.; Patias, P.; Tsioukas, V. Monitoring vineyards with UAV and multi-sensors for the assessment of water stress and grape maturity. J. Unmanned Veh. Syst. 2017, 5, 37–50. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J. Photogramm. Remote Sens. 2020, 163, 231–256. [Google Scholar] [CrossRef]
- Lessio, A.; Fissore, V.; Borgogno-Mondino, E. Preliminary tests and results concerning integration of Sentinel-2 and Landsat-8 OLI for crop monitoring. J. Imaging 2017, 3, 49. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/3/cc3751en/cc3751en.pdf (accessed on 15 August 2023).
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.-I. Crop classification from Sentinel-2-derived vegetation indices using ensemble learning. J. Appl. Remote Sens. 2018, 12, 026019. [Google Scholar] [CrossRef]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar Sentinel-1 and Optical Sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef]
- Wei, M.; Wang, H.; Zhang, Y.; Li, Q.; Du, X.; Shi, G.; Ren, Y. Investigating the potential of Sentinel-2 MSI in early crop identification in Northeast China. Remote Sens. 2022, 14, 1928. [Google Scholar] [CrossRef]
- Hoss, D.F.; Luz, G.L.D.; Lajús, C.R.; Moretto, M.A.; Tremea, G.A. Multispectral aerial images for the evaluation of maize crops. Cienc. E Agrotecnologia 2020, 44, e004920. [Google Scholar] [CrossRef]
- Barzin, R.; Pathak, R.; Lotfi, H.; Varco, J.; Bora, G.C. Use of uas multispectral imagery at different physiological stages for yield prediction and input resource optimization in corn. Remote Sens. 2020, 12, 2392. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring within-field variability of corn yield using Sentinel-2 and machine learning techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef]
- Soria Ruiz, J.; Ordóñez, F.; Granados, Y.; Ramírez, R. Methodology for prediction of corn yield using remote sensing satellite data in Central Mexico. Investig. Geográficas 2004, 55, 61–78. [Google Scholar] [CrossRef]
- García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.; Vázquez-Peña, M.A. Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Cheng, T.; Yang, Z.W.; Inoue, Y.; Zhu, Y.; Cao, W.X. Preface: Recent advances in Remote Sensing for crop growth monitoring. Remote Sens. 2016, 8, 116. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. Available online: https://digitalcommons.unl.edu/usdaarsfacpub/1156 (accessed on 12 September 2023). [CrossRef]
- Diao, C. Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages. Remote Sens. Environ. 2020, 248, 11960. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S. Multi-Year mapping of maize and sunflower in Hetao Irrigation District of China with high spatial and temporal resolution vegetation index series. Remote Sens. 2017, 9, 855. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Raeva, P.L.; Šedina, J.; Dlesk, A. Monitoring of crop fields using multispectral and thermal imagery from UAV. Eur. J. Remote Sens. 2018, 52 (Suppl. S1), 192–201. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. Daily retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef]
- Oldoni, L.V.; Sanches, I.D.A.; Picoli, M.C.A.; Covre, R.M.; Fronza, J.G. LEM+ dataset: For agricultural remote sensing applications. Data Brief 2020, 33, 106553. [Google Scholar] [CrossRef]
- Myers, E.; Kerekes, J.; Daughtry, C.; Russ, A. Assessing the impact of satellite revisit rate on estimation of corn phenological transition timing through Shape Model Fitting. Remote Sens. 2019, 11, 2558. [Google Scholar] [CrossRef]
- EUROSTAT—Key Figures on Europe. Available online: https://ec.europa.eu/eurostat/documents/15216629/17706595/KS-EI-23-001-EN-N.pdf/5df7a393-8461-9270-7eaa-91a4b1c2acc6?version=3.0&t=1697616189434 (accessed on 7 November 2023).
- Kamenova, I.; Dimitrov, P. Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCOVER of winter wheat in Bulgaria. Eur. J. Remote Sens. 2020, 54 (Suppl. S1), 89–108. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Shen, M.; Shi, T.; Liu, L.; Zhang, L.; Dong, Q.; Wang, C. Characterizing spatiotemporal patterns of winter wheat phenology from 1981 to 2016 in North China by improving phenology estimation. Remote Sens. 2022, 14, 4930. [Google Scholar] [CrossRef]
- Naser, M.A.; Khosla, R.; Longchamps, L.; Dahal, S. Using NDVI to differentiate wheat genotypes productivity under dryland and irrigated conditions. Remote Sens. 2020, 12, 824. [Google Scholar] [CrossRef]
- Gozdowski, D.; Stępień, M.; Panek, E.; Varghese, J.; Bodecka, E.; Rozbicki, J.; Samborski, S. Comparison of winter wheat NDVI data derived from Landsat 8 and active optical sensor at field scale. Remote Sens. Appl. Soc. Environ. 2020, 20, 100409. [Google Scholar] [CrossRef]
- Dimitrov, P.; Kamenova, I.; Roumenina, E.; Filchev, L.; Ilieva, I.; Jelev, G.; Gikov, A.; Banov, M.; Krasteva, V.; Kolchakov, V. Estimation of biophysical and biochemical variables of winter wheat through sentinel-2 vegetation indices. Bulg. J. Agric Sci. 2019, 25, 819–832. [Google Scholar]
- Peltonen-Sainio, P.; Jauhiainen, L.; Honkavaara, E.; Wittke, S.; Karjalainen, M.; Puttonen, E. Pre-crop values from satellite images for various previous and subsequent crop combinations. Front. Plant Sci. 2019, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Debella-Gilo, M.; Gjertsen, A.K. Mapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series. Remote Sens. 2021, 13, 289. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; van der Velde, M. From parcel to continental scale—A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens. Environ. 2021, 266, 112708. [Google Scholar] [CrossRef]
- Qiaoyun, X.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Vincent, A.; Kumar, A.; Upadhyay, P. Effect of Red-Edge Region in Fuzzy Classification: A case study of sunflower. Crop. J. Indian Soc. Remote Sens. 2020, 48, 645–657. [Google Scholar] [CrossRef]
- Congcong, L.; Hongjun, L.; Jiazhen, L.; Yuping, L.; Chunqiang, L.; Kiril, M.; Yanjun, S. Using NDVI percentiles to monitor real-time crop growth. Comput. Electron. Agric. 2019, 162, 357–363. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping winter wheat in North China using Sentinel 2A/B Data: A method based on phenology-time weighted dynamic time warping. Remote Sens. 2020, 12, 1274. [Google Scholar] [CrossRef]
- Kussul, N.; Deininger, K.; Shumilo, L.; Lavreniuk, M.; Ali, D.A.; Nivievskyi, O. Biophysical impact of sunflower crop rotation on agricultural fields. Sustainability 2022, 14, 3965. [Google Scholar] [CrossRef]
- Lykhovyd, P. Seasonal dynamics of Normalized Difference Vegetation Index in some winter and spring crops in the South of Ukraine. Agrology 2021, 4, 187–193. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, X.; Chen, Z.; Bai, Y. Crop Identification and analysis in typical cultivated areas of Inner Mongolia with single-phase Sentinel-2 images. Sustainability 2022, 14, 12789. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, B.; Chen, C.; Zhu, X.; Wu, W.; Jiang, F.; Lin, D.; Peng, Y. Automated soybean mapping based on canopy water content and chlorophyll content using Sentinel-2 images. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 108201. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Yang, Z. Mapping corn and soybean phenometrics at field scales over the United States Corn Belt by fusing time series of Landsat 8 and Sentinel-2 data with VIIRS data. ISPRS J. Photogramm. Remote Sens. 2022, 186, 55–69. [Google Scholar] [CrossRef]
- Zhi, F.; Dong, Z.; Guga, S.; Bao, Y.; Han, A.; Zhang, J.; Bao, Y. Rapid and automated mapping of crop type in Jilin Province using historical crop labels and the Google Earth Engine. Remote Sens. 2022, 14, 4028. [Google Scholar] [CrossRef]
- Crusiol, L.G.; Carvalho, J.D.; Sibaldelli, R.N.; Neiverth, W.; do Rio, A.; Ferreira, L.C.; Procópio, S.D.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precis. Agric. 2017, 18, 470–490. [Google Scholar] [CrossRef]
- Zamani-Noor, N.; Feistkorn, D. Monitoring growth status of winter oilseed rape by NDVI and NDYI derived from UAV-based Red–Green–Blue imagery. Agronomy 2022, 12, 2212. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J. Developing a new method to identify flowering dynamics of rapeseed Using Landsat 8 and Sentinel-1/2. Remote Sens. 2021, 13, 105. [Google Scholar] [CrossRef]
- Vannoppen, A.; Gobin, A. Estimating yield from NDVI, weather data, and soil water depletion for sugar beet and potato in Northern Belgium. Water 2022, 14, 1188. [Google Scholar] [CrossRef]
- Nebiker, S.; Lack, N.; Abächerli, M.; Läderach, S. Light-weight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 963–970. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Van Den Brande, M. Using sentinel-2 data for retrieving lai and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Puiu, I.; Olteanu, T.; Morar, G.G.; Ianoşi, M. Monitoring the vegetation status of potato. Agric. Sci. Pract. J. 2012, 1–2, 39–43. [Google Scholar]
- Singha, C.; Swain, K.; Jayasuriya, H. Growth and yield monitoring of potato crop using Sentinel-1 data through cloud computing. Arab. J. Geosci. 2022, 15, 1567. [Google Scholar] [CrossRef]
- Carlier, L.; Rotar, I.; Vlahova, M.; Vidican, R. Importance and functions of grasslands. Not. Bot. Horti Agrobot. 2009, 37, 25–30. [Google Scholar]
- Kayad, A.G.; Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Kalaitzidis, C. Assessing the spatial variability of alfalfa yield using satellite imagery and ground-based data. PLoS ONE 2016, 11, e0157166. [Google Scholar] [CrossRef]
- Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Mapping Ecological focus areas within the EU CAP controls framework by Copernicus Sentinel-2 Data. Agronomy 2022, 12, 406. [Google Scholar] [CrossRef]
- Letter from the Farm—Welcome to Ciasnocha Family Farm. Available online: https://www.arc2020.eu/letter-from-the-farm-welcome-to-ciasnocha-family-farm/ (accessed on 16 September 2023).
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Andreatta, D.; Gianelle, D.; Scotton, M.; Dalponte, M. Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery. Ecol. Indic. 2022, 141, 109102. [Google Scholar] [CrossRef]
- Ara, I.; Harrison, M.T.; Whitehead, J.; Waldner, F.; Bridle, K.; Gilfedder, L.; Marques Da Silva, J.; Marques, F.; Rawnsley, R.; Long, S. Modelling seasonal pasture growth and botanical composition at the paddock scale with satellite imagery. Plants 2021, 3, diaa013. [Google Scholar] [CrossRef]
- Šandera, J.; Štych, P. Selecting relevant biological variables derived from Sentinel-2 Data for mapping changes from grassland to arable land using Random Forest classifier. Land 2020, 9, 420. [Google Scholar] [CrossRef]
- Klouček, T.; Moravec, D.; Komárek, J.; Lagner, O.; Stych, P. Selecting appropriate variables for detecting grassland to cropland changes using high resolution satellite data. PeerJ 2018, 6, e5487. [Google Scholar] [CrossRef]
- Lopes, M.; Fauvel, M.; Girard, S.; Sheeren, D. Object-based classification of grasslands from high resolution satellite image time series using gaussian mean map kernels. Remote Sens. 2017, 9, 688. [Google Scholar] [CrossRef]
- Ren, S.; Chen, X.; An, S. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. Int. J. Biometeorol. 2017, 61, 601–612. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Ahmed, M.M.; Abdi, D.Y.; Haregeweyn, N. Prediction of grass biomass from satellite imagery in Somali regional state, eastern Ethiopia. Heliyon 2020, 16, e05272. [Google Scholar] [CrossRef]
- Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined use of multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Zhu, Z.; Gao, F.; Tang, H.; Xin, X.; Ding, L.; Shen, B.; Liu, J.; Chen, B.; et al. Mapping daily leaf area index at 30 m resolution over a meadow steppe area by fusing Landsat, Sentinel-2A and MODIS data. Int. J. Remote Sens. 2018, 39, 9025–9053. [Google Scholar] [CrossRef]
- De Vroey, M.; Radoux, J.; Defourn, P. Grassland mowing detection using Sentinel-1 time series: Potential and limitations. Remote Sens. 2021, 13, 348. [Google Scholar] [CrossRef]
- Schwieder, M.; Wesemeyer, M.; Frantz, D.; Pfoch, K.; Erasmi, S.; Pickert, J.; Nendel, C.; Hostert, P. Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sens. Environ. 2022, 269, 112795. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 427–439. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
Vegetation Indices | Equation | Definition | References |
---|---|---|---|
Vegetation Indices Considering Atmospheric Effects | ARVI = (RNIR − RRB)/(RNIR + RRB) | Used to measure and monitor the health and condition of vegetation while minimizing the impact of atmospheric influences on satellite imagery | [26] |
Canopy Chlorophyll Content Index | CCC(I) = [(RNIR − RREDEDGE)/(RNIR + RREDEDGE)]/[(RNIR − RRED)/(RNIR + RRED)] | An indication of stresses related to plant diseases, nutritional deficiencies, and environmental factors | [27] |
Enhanced Vegetation Index | EVI = 2.5(RNIR − RRED)/(RNIR + 6RRED − 7.5RBLUE + 1) | Used to evaluate the vitality and health of plants It refines NDVI by accounting for atmospheric conditions and soil background, offering a more precise depiction of plant growth. | [28] |
Green Normalized Difference Vegetation Index | GNDVI = (RNIR − RGREEN)/(RNIR + RGREEN) | An index of photosynthetic activity, particularly effective in crops with dense canopies or in more advanced developmental stages | [29] |
Leaf Area Vegetation Index | LAI = leaf area (m2)/ground area (m2) | Holds significance in monitoring the health of crops and forests, as well as assessing environmental and climatic conditions | [30] |
Modified Chlorophyll and Reflectance Index | MCARI = [(R700 − R670) − 0.2 × (R700 − R550)] × (R700/R670) | Useful in assessing the chlorophyll content of plants, offering insights into their physiological status and health | [31] |
NDVI (Normalized Difference Vegetation Index) | NDVI = (RNIR − RRED)/(RNIR + RRED) | Quantifies photosynthetically active biomass in plants. Although it is one of the most suitable and used VI for crop monitoring, this index is notably sensitive to variations in soil brightness and atmospheric conditions. | [32] |
Normalized Difference Water Content | NDWI = (R800 − R680)/(R800 + R680) | Quantifies and assesses the water content in vegetation, providing insights into the hydration status of plants | [33] |
Normalized Difference Phenology Index | NDPI = ( − )/( + ) | Enables more precise monitoring of spring phenology in regions with snow cover thanks to its robustness against snowmelt | [34] |
Optimized Soil Adjusted Vegetation Index | OSAVI = (1 + 0.16) (RNIR − RRED)/(RNIR + RRED + 0.16) | It is employed for monitoring regions characterized by sparse vegetation and bare soil areas within the canopy | [35] |
Plant Senescence Reflectance Index | PSRI = (R680 − R500)/R750 | Assesses and quantifies the process of plant senescence, providing insights into the aging and declining health of plants | [36] |
Red Edge Chlorophyll Index | RECI = (RNIR − RREDEDGE) − 1 | Indicates the photosynthetic activity of the canopy cover, being very useful in identifying areas with yellow or shed foliage | [37,38] |
Renormalized difference vegetation index | RDVI = (RNIR − RRED)/√(RNIR + RRED) | Makes use of the variance between near-infrared (NIR) and red wavelengths in conjunction with NDVI, being able to accentuate thriving vegetation while remaining unaffected by soil and sun viewing geometry influences | [39] |
Soil Adjusted Vegetation Index | SAVI = [(RNIR − RRED)/(RNIR + RRED + L)] × 1 + L | Integrates a soil adjustment factor into its calculation, being very useful in regions with sparse vegetation or significant soil influences that may complicate vegetation monitoring | [40] |
Simple Ratio Index | SR = RNIR/RRED | Easily comprehensible and effective across diverse conditions It may saturate in areas of dense vegetation, particularly when LAI reaches very high levels. | [41] |
Transformed chlorophyll absorption ratio | TCARI = 3 × {[(RREDEDGE − RRED) − 0.2 × (RREDEDGE − RGREEN)] × (RREDEDGE/RRED) | Offers enhanced precision in estimating chlorophyll content | [31] |
Country/Region | Satellite Data Used | Remote Sensors Used (If Applicable) | Time Span of the Study | Computed Indices | References |
---|---|---|---|---|---|
Syria | - | FieldSPEC (Analytical Spectral DevicesTM, Lake Grove, NY, USA) | 1997 | NDVI | [55] |
Spain, Germany, France | Sentinel-2 | LI-COR LAI-2000 SPAD-502 (Seedburo Equipment Company, Des Plaines, IL, USA) | 2003–2004, 2006, 2007 | LAI, Chlorophyll Content | [58] |
China | HJ-1A/1B (Chinese satellite) | - | 2009–2015 | NDVI | [59] |
Ukraine | MODIS | - | 2012–2019 | NDVI | [80] |
Ukraine | MODIS | - | 2016–2020 | EVI, FAPAR, LAI, LSWI, NDVI | [81] |
Ukraine | Sentinel-1 and 2 | - | 2016–2021 | NDVI | [80] |
France | Sentinel-1 | LI-COR 3100 planimeter (LI-COR Biosciences, Lincoln Inc., Lincoln, NE, USA) | 2014 | NDVI | [60] |
India | Sentinel-2A and 2B | - | 2019 | NDVI, SAVI, SR, CI | [77] |
China | Sentinel-2 | - | 2019–2020 | NDVI | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidican, R.; Mălinaș, A.; Ranta, O.; Moldovan, C.; Marian, O.; Ghețe, A.; Ghișe, C.R.; Popovici, F.; Cătunescu, G.M. Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review. Agronomy 2023, 13, 3040. https://doi.org/10.3390/agronomy13123040
Vidican R, Mălinaș A, Ranta O, Moldovan C, Marian O, Ghețe A, Ghișe CR, Popovici F, Cătunescu GM. Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review. Agronomy. 2023; 13(12):3040. https://doi.org/10.3390/agronomy13123040
Chicago/Turabian StyleVidican, Roxana, Anamaria Mălinaș, Ovidiu Ranta, Cristina Moldovan, Ovidiu Marian, Alexandru Ghețe, Ciprian Radu Ghișe, Flavia Popovici, and Giorgiana M. Cătunescu. 2023. "Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review" Agronomy 13, no. 12: 3040. https://doi.org/10.3390/agronomy13123040
APA StyleVidican, R., Mălinaș, A., Ranta, O., Moldovan, C., Marian, O., Ghețe, A., Ghișe, C. R., Popovici, F., & Cătunescu, G. M. (2023). Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review. Agronomy, 13(12), 3040. https://doi.org/10.3390/agronomy13123040