Investigating the Phytotoxic Potential of Helianthus annuus on Germination and Seedling Morphological Parameters of Two Target Poaceae Species: Spring Barley and Spring Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Materials
2.2. Details of the Laboratory Experiment
2.3. Germination and Biometric Parameters
2.4. Biologically Active Compounds
2.5. Allelopathic Potential Determination
2.6. Statistical Analysis
3. Results
3.1. Effect of Sunflower Extracts on Germination of Spring Barley and Spring Wheat at 5 DAS
3.1.1. Spring Barley
3.1.2. Spring Wheat
3.2. Effect of Sunflower Extracts on Morphological Parameters of Spring Barley and Spring Wheat at 8 DAS and 14 DAS
3.2.1. Root Length (RL) and Shoot Length (SL) of Spring Barley
3.2.2. Root Length (RL) and Shoot Length (SL) of Spring Wheat
3.2.3. Root Fresh Mass (RFM) and Shoot Fresh Mass (SFM) of Spring Barley and Spring Wheat
3.3. Allelopathic Effects of Sunflower Aqueous Extract on Spring Barley and Spring Wheat
3.4. The Amount of Biologically Active Compounds
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanase, C.; Bujor, O.C.; Popa, V.I. Phenolic natural compounds and their influence on physiological processes in plants. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–58. [Google Scholar]
- Amena, D.; Azra, B.H.; Nazneen, S. Evaluation of allelopathic effect of aqueous leaf extract of parthenium (Pathenium hysterophorus L.) on seed germination and seedling growth in sunflower (Helianthus annus L.), soybean (Glycine max L.) and green gram (Phaseolus mungo L.). Int. J. Appl. Sci. Eng. Tech. 2019, 7, 429–438. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Behera, B.; Paikaray, R.K.; Garnayak, L.M.; Sethi, D.; Jena, S.; Raza, B.; Panda, R.K.; Song, B.; Lal, M.K.; et al. Effects of sunflower residue management options on productivity and profitability of succeeding rice under different crop establishment methods. Field Crops Res. 2023, 290, 108763. [Google Scholar] [CrossRef]
- Pula, J.; Zandi, P.; Stachurska-Swakori, A.; Barabasz-Krasny, B.; Mozdžen, K.; Wang, Y. Influence of alcoholic extracts from Helianthus annnus L. roots on the photosynthetic activity of Sinapis alba L. cv. Barka plants. Acta Agr. Scand. B Soil Plant Sci. 2020, 70, 8–13. [Google Scholar]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Bonanomi, G.; Sicurezza, G.M.; Caporaso, S.; Esposito, A.; Mazzoleni, S. Phytotoxicity dynamics of decaying plant materials. New Phytol. 2006, 169, 571–578. [Google Scholar] [CrossRef]
- Iqbal, A.; Hamayun, M.; Shah, F.; Hussain, A. Role of plant bioactives in sustainable agriculture. In Environment, Climate, Plant and Vegetation Growth, 1st ed.; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 591–605. [Google Scholar]
- Gniazdowska, A.; Bogatek, R. Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiol. Plant. 2005, 27, 395–407. [Google Scholar] [CrossRef]
- Rigon, C.A.G.; Salamoni, A.T.; Aguiar, A.C.M.; Cutti, L. Allelopathic effect of aqueous extracts of different organs of three sunflower cultivars on germination of radish. Biosci. J. 2018, 34, 577–586. [Google Scholar] [CrossRef]
- Okrushko, S.E. Allelopathic effect of couch grass (Elymus repens L.) on germination of common wheat seeds. Zemdirb. Agric. 2022, 109, 323–328. [Google Scholar] [CrossRef]
- Janušauskaitė, D. Allelopathic effect of aqueous extracts of common sunflower on seed germination and growth of field pea. Zemdirb. Agric. 2023, 110, 17–26. [Google Scholar] [CrossRef]
- Janusauskaite, D. The allelopathic activity of aqueous extracts of Helianthus annuus L., grown in boreal conditions, on germination, development, and physiological indices of Pisum sativum L. Plants 2023, 12, 1920. [Google Scholar] [CrossRef]
- Sainju, U.M.; Lenssen, A.W.; Barsotti, J.L. Dryland malt barley yield and quality affected by tillage, cropping sequence, and nitrogen fertilization. Agron. J. 2013, 105, 329–340. [Google Scholar] [CrossRef]
- Arlauskiene, A.; Ceseviciene, J.; Slepetiene, A. Effect of catch crop, straw management and fertilisation on the productivity of field pea and winter wheat crop sequence. Zemdirb. Agric. 2020, 107, 217–226. [Google Scholar] [CrossRef]
- Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 2022, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Bashir, U.; Javaid, A.; Bajwa, R. Effects of aquous extracts of sunflower (Helianthus annuus L.) on germination of seedling growth on the selected wheat (Triticum aestivum L.) varieties. Bangladesh J. Bot. 2017, 46, 1323–1332. [Google Scholar]
- Ravlić, M.; Markulj Kulundžić, A.; Baličević, R.; Marković, M.; Viljevac Vuletić, M.; Kranjac, D.; Sarajlić, A. Allelopathic potential of sunflower genotypes at different growth stages on lettuce. Appl. Sci. 2022, 12, 12568. [Google Scholar] [CrossRef]
- Ashrafi, Y.Z.; Sagehgi, S.; Mashhadi, R.H.; Hassan, A.M. Allelopathic effects of sunflower (Helianthus annuus) on germination and growth of wild barley (Hordeum spontaneum). J. Agric. Tech. 2008, 4, 219–229. [Google Scholar]
- Muhammad, Z.; Majeed, A. Allelopathic effects of aqueous extracts of sunflower on wheat (Triticum aestivum L.) and maize (Zea mays L.). Pak. J. Bot. 2014, 46, 1715–1718. [Google Scholar]
- Kamal, J.; Bano, A. Effects of sunflower (Helianthus annuus L.) extracts on wheat (Triticum aestivum L.) and physicochemical characteristics of soil. Afr. J. Biotechnol. 2008, 7, 4130–4135. [Google Scholar]
- Dadkhah, A. Phytotoxic effects of aqueous extract of eucalyptus, sunflower and sugar beet on seed germination, growth and photosynthesis of Amaranthus retroflexus. Allelopathy J. 2012, 29, 287–296. [Google Scholar]
- Flayyih, T.M.; Almarie, A.A. Allelopathic effect of sunflower residues on some soil properties and growth parameters of wheat, bean and flax crops. Rev. Bionat. 2022, 7, 38. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Sarbout, A.K.; Al-Shamma, L.M. Differential allelopathic potential of sunflower (Helianthus annuus L.) genotypes on weeds and wheat (Triticum aestivum L.) crop. Arch. Agron. Soil Sci. 2012, 58, 1139–1148. [Google Scholar] [CrossRef]
- Batool, A.; Riaz, M.A.; Hassan, F.; Irum, S.; Iqbal, S.; Anwar, F.; Saadia, M. Screening of active formulation from combined sunflower (Helianthus annuus) and neem (Azadirachta indica) aqueous extract to control growth of lesser canary grass (Phalaris minor). Pakistan J. Bot. 2019, 51, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Marinov-Serafimov, P.; Enchev, S.; Golubinova, I. Allelopathic soil activity in the rotation of some forage and technical crops. Bulgarian J. Agric. Sci. 2019, 25, 980–985. [Google Scholar]
- AL-Behadili, A.A.; Fadhel, L.Z. Integration of Sunflower and Sorghum Water Extracts Applied Alone or in Combination with Reduced Doses of Chevalier for Weed Control in Wheat. Iraqi J. Sci. 2023, 64, 3330–3339. [Google Scholar]
- Flayyih, T.M.; Almarie, A.A. Total Phenolic Exudation and Allelopathic Potential of Sunflower Residues as Sustainable Weed Management. Iraqi J. Sci. 2023, 64, 2215–2222. [Google Scholar] [CrossRef]
- Rys, M.; Saja-Garbarz, D.; Skoczowski, A. Phytotoxic effects of selected herbal extracts on the germination, growth and metabolism of mustard and oilseed rape. Agronomy 2022, 12, 110. [Google Scholar] [CrossRef]
- Nafees, A.; Abbas, A.; Iram-us-Salam; Hussain, F. Bioassay test of allelopathic potential of sunflower (Helianthus annuus L.) against mung bean (Vigna radiata (L.) R. Wilczek). Ghazi Univ. J. Phytosci. 2021, 1, 70–79. [Google Scholar]
- Vishwajith; Halagalimath, S.P.; Ganajaxi, M. Allelopathic effects of sunflower on succeeding mungbean (Vigna radiata L. Wilczek) crop. Allelopath. J. 2017, 42, 37–48. [Google Scholar] [CrossRef]
- Kamal, J. Impact of allelopathy of sunflower (Helianthus annuus L.) roots extract on physiology of wheat (Triticum aestivum L.). Afr. J. Biotechnol. 2011, 10, 14465–14477. [Google Scholar]
- Nafees, A.; Abbas, A.; Iram-us-Salam; Hussain, F. Allelopathic effects of sunflower (Helianthus annuus L.) against Luffa cylindrica (L.) Roem. Ghazi Univ. J. Phytosci. 2021, 1, 124–132. [Google Scholar]
- Kupidłowska, E.; Gniazdowska, A.; Stepien, J.; Corbineau, F.; Vinel, D.; Skoczowski, A.; Janeczko, A.; Bogatek, R. Impact of sunflower (Helianthus annus L.) extracts upon reserve mobilization and energy metabolism in germinating mustard (Sinapis alba L.) seeds. J. Chem. Ecol. 2006, 32, 2569–2583. [Google Scholar] [CrossRef]
- Gawronska, H.; Ciarka, D.; Bernat, W.; Gawronski, S.W. Sunflower-desired allelopathic crop for sustainable and organic agriculture? In Allelopathy: New Concepts and Methodology, 1st ed.; Fujii, Y., Hiradate, S., Eds.; Science Publishers: Enfield, CT, USA, 2007; pp. 185–210. [Google Scholar]
- Oliwa, J.; Możdżeń, K.; Rut, G.; Rzepka, A. The influence of alcoholic extract from leaves of Helianthus annuus L. on germination and growth of Sinapis alba L. Mod. Phytomorphology 2017, 11, 91–97. [Google Scholar]
- Watt, M.; Moosavi, S.; Cunningham, S.C.; Kirkegaard, J.A.; Rebetzke, G.J.; Richards, R.A. A rapid, controlled-environment seedling roots creen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites. Ann. Bot. 2013, 112, 447–455. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhang, R.; Huang, Y.; Feng, S.; Ma, X.; Zhang, Y.; Sikdar, A.; Roy, R. Allelopathic effects of aqueous leaf extracts from four shrub species on seed germination and initial growth of Amygdalus pedunculata Pall. Forests 2018, 9, 711. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Caruso, P.; Lombardo, S.; Mauromicale, G. Allelopathy in durum wheat landraces as affected by genotype and plant part. Plants 2022, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Ðikič, M.; Gadžo, D.; Šarič, T.; Gavrič, T.; Muminovič, Š. Investigation of allelopathic potential of buckwheat. Herbologia 2008, 9, 59–71. [Google Scholar]
- Jafariehyazdi, E.; Javidfar, F. Comparison of allelopathic effects of some brassica species in two growth stages on germination and growth of sunflower. Plant Soil Environ. 2011, 57, 52–56. [Google Scholar] [CrossRef]
- Kandhro, M.N.; Tunio, S.D.; Rajpar, I.; Chachar, Q.D.; Gandahi, A.W. Allelopathic impact of sorghum and sunflower on germination and seedling growth of summer broadleaf weeds. Pak. J. Agric. Agril. Eng. Vet. Sci. 2015, 31, 229–239. [Google Scholar]
- Sarma, D.; Basumatary, P.; Datta, B.K. Allelopathic impact of Melastoma malabathricum L. on the seed germination and seedling growth of three agricultural crops. J. Indian Bot. Soc. 2019, 98, 183–193. [Google Scholar] [CrossRef]
- Patra, B.; Schluttenhofer, C.; Wu, Y.; Pattanaik, S.; Yuan, L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim. Biophys. Acta Gene Regul. Mech. 2013, 1829, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, M.V.; de Farias, S.G.G.; de Castro, D.P.; Silva, R.B.; de Oliveira Silva, D.Y.B.O.; Souto Dias, B.A.S.; da Silva, A.F.; dos Santos, G.N.L.; de Matos, D.C.P.; de Almada Oliveira, C.V.A. Allelopathy of the Leaf Extract of Eucalyptus Genetic Material on the Physiological Performance of Millet Seeds. Am. J. Plant Sci. 2018, 9, 34–45. [Google Scholar] [CrossRef]
- Pannacci, E.; Masi, M.; Farneselli, M.; Tei, F. Evaluation of Mugwort (Artemisia vulgaris L.) Aqueous Extract as a Potential Bioherbicide to Control Amaranthus retroflexus L. in Maize. Agriculture 2020, 10, 642. [Google Scholar] [CrossRef]
- Farooq, M.; Nadeem, F.; Arfat, M.Y.; Nabeel, M.; Musadaq, S.; Cheema, S.A.; Nawaz, A. Exogenous application of allelopathic water extracts helps improving tolerance against terminal heat and drought stresses in bread wheat (Triticum aestivum L. Em. Thell.). J. Agron. Crop Sci. 2018, 204, 298–312. [Google Scholar] [CrossRef]
- Javaid, A.; Shafique, S.; Bajwa, R.; Shafique, S. Effect of aqueous extracts of allelopathic crops on germination and growth of Parthenium hysterophorus L. S. Afr. J. Bot. 2006, 72, 609–612. [Google Scholar] [CrossRef]
- Naeem, M.; Cheema, Z.A.; Ihsan, M.Z.; Hussain, Y.; Mazari, A.; Abbas, H.T. Allelopathic effects of different plant water extracts on yield and weeds of wheat. Planta Daninha 2018, 36, e018177840. [Google Scholar] [CrossRef]
Donor Plant GS | Plant Part | Concentration % | Spring Barley | Spring Wheat | ||
---|---|---|---|---|---|---|
SG | GI | SG | GI | |||
Data averaged across plant parts and extract concentration | ||||||
FS | 3.1 a | 0.63 a | 5.3 a | 1.07 a | ||
RS | 4.8 b | 0.97 b | 8.0 b | 1.59 b | ||
Data averaged across donor plant GS and extract concentration | ||||||
L + S | 3.8 a | 0.75 a | 5.3 a | 1.06 a | ||
H | 3.8 a | 0.76 a | 6.2 b | 1.24 b | ||
R | 4.4 a | 0.88 a | 8.5 c | 1.69 c | ||
Data averaged across donor plant GS and plant part | ||||||
0 | 10.0 a | 2.00 a | 10.0 a | 2.00 a | ||
25 | 3.7 b | 0.73 b | 7.8 b | 1.57 b | ||
50 | 2.0 c | 0.40 c | 6.2 c | 1.23 c | ||
75 | 3.5 b | 0.70 b | 5.2 d | 1.03 d | ||
100 | 0.8 d | 0.15 d | 4.1 e | 0.82 e | ||
Mean squares (percentage of the sum of squares between parentheses) and effect of factors and their interaction and significance. | ||||||
Donor plant GS (A) | 86.7 ** (4.6) | 3.47 ** (4.6) | 208.0 ** (14.3) | 8.32 ** (14.3) | ||
Plant parts (B) | 5.2 (0.6) | 0.21 (0.6) | 105.3 ** (14.5) | 4.21 ** (14.5) | ||
Extract concentration (C) | 305.5 ** (64.3) | 12.22 ** (64.3) | 129.9 ** (35.7) | 5.20 ** (35.7) | ||
A × B | 5.7 (0.6) | 0.23 (0.6) | 18.2 ** (2.5) | 0.73 ** (2.5) | ||
A × C | 25.2 ** (5.3) | 1.01 ** (5.3) | 22.5 ** (6.2) | 0.90 ** (6.2) | ||
B × C | 4.6 (1.9) | 0.18 (1.9) | 19.1 ** (10.5) | 0.76 ** (10.5) | ||
A × B × C | 6.1 (2.6) | 0.24 (2.6) | 9.1 ** (5.0) | 0.36 ** (5.0) |
Donor Plant GS | Plant Part | Concentration % | Spring Barley | Spring Wheat | ||
---|---|---|---|---|---|---|
8 DAS | 14 DAS | 8 DAS | 14 DAS | |||
Data averaged across plant parts and extract concentration | ||||||
FS | 0.30 a | 0.56 a | 0.63 a | 0.97 a | ||
RS | 0.39 b | 0.83 b | 1.00 b | 1.87 b | ||
Data averaged across donor plant GS and extract concentration | ||||||
L + S | 0.36 a | 0.62 a | 0.68 a | 1.10 a | ||
H | 0.29 b | 0.41 a | 0.75 b | 1.18 a | ||
R | 0.38 a | 1.06 c | 1.02 c | 1.99 b | ||
Data averaged across donor plant GS and plant part | ||||||
0 | 1.19 a | 1.61 a | 2.64 a | 3.13 a | ||
25 | 0.22 b | 1.13 b | 0.76 b | 2.37 b | ||
50 | 0.15 c | 0.48 c | 0.40 c | 0.98 c | ||
75 | 0.14 c | 0.23 c | 0.19 d | 0.53 d | ||
100 | 0.03 d | 0.04 d | 0.10 d | 0.11 e | ||
Mean squares (percentage of the sum of squares between parentheses) and effect of factors and their interaction and significance | ||||||
Donor plant GS (A) | 0.25 ** (1.0) | 2.19 ** (2.5) | 4.09 ** (3.2) | 24.41 ** (8.9) | ||
Plant parts (B) | 0.09 ** (0.7) | 4.34 ** (10.0) | 1.36 ** (2.1) | 9.81 ** (7.1) | ||
Extract concentration (C) | 5.48 ** (89.4) | 10.29 ** (47.6) | 26.52 ** (83.1) | 39.12 ** (56.8) | ||
A × B | 0.01 (0.1) | 0.26 (0.6) | 0.65 ** (1.0) | 1.43 * (1.0) | ||
A × C | 0.07 ** (1.1) | 0.52 (2.4) | 1.06 ** (3.3) | 6.23 ** (9.0) | ||
B × C | 6.03 ** (2.5) | 1.23 ** (11.4) | 0.31 ** (1.9) | 1.47 ** (4.3) | ||
A × B × C | 1.32 (0.6) | 0.14 (1.3) | 0.27 ** (1.7) | 0.81 * (2.4) |
Donor Plant GS | Plant Part | Concentration % | Spring Barley | Spring Wheat | ||
---|---|---|---|---|---|---|
8 DAS | 14 DAS | 8 DAS | 14 DAS | |||
Data averaged across plant parts and extract concentration | ||||||
FS | 0.81 a | 2.16 a | 0.61 a | 1.81 a | ||
RS | 1.03 b | 3.15 b | 1.05 b | 4.09 b | ||
Data averaged across donor plant GS and extract concentration | ||||||
L + S | 1.01 a | 2.71 a | 0.72 a | 2.24 a | ||
H | 0.82 b | 2.14 b | 0.72 a | 2.47 a | ||
R | 0.94 b | 3.11 c | 1.04 b | 4.14 b | ||
Data averaged across donor plant GS and plant part | ||||||
0 | 3.35 a | 7.52 a | 2.64 a | 6.81 a | ||
25 | 0.46 b | 2.83 b | 0.82 b | 4.28 b | ||
50 | 0.28 b | 1.16 c | 0.38 c | 2.12 c | ||
75 | 0.39 b | 1.42 c | 0.25 c | 1.33 d | ||
100 | 0.13 c | 0.35 d | 0.06 d | 0.20 e | ||
Mean squares (percentage of the sum of squares between parentheses) and effect of factors and their interaction and significance | ||||||
Donor plant GS (A) | 1.54 ** (0.8) | 29.23 ** (2.7) | 6.05 ** (4.2) | 155.91 ** (12.3) | ||
Plant parts (B) | 0.38 (0.4) | 9.52 ** (1.7) | 1.37 ** (1.9) | 48.09 ** (6.8) | ||
Extract concentration (C) | 44.63 ** (87.7) | 196.7 ** (72.0) | 26.40 ** (73.5) | 165.24 ** (52.1) | ||
A × B | 0.15 (0.1) | 1.89 (0.3) | 1.51 ** (2.1) | 24.15 ** (3.8) | ||
A × C | 0.79 ** (1.6) | 7.40 ** (2.7) | 1.79 ** (5.0) | 35.33 ** (11.1) | ||
B × C | 0.70 ** (2.8) | 6.17 ** (4.5) | 0.58 ** (3.2) | 7.34 ** (4.6) | ||
A × B × C | 1.32 (0.6) | 1.26 (0.9) | 0.58 ** (3.2) | 4.99 ** (3.1) |
Plant Part | Concentration | Spring Barley | Spring Wheat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IRSG | IRRL | IRSL | IRRFM | IRSFM | IRSG | IRRL | IRSL | IRRFM | IRSFM | ||
Extract of FS | |||||||||||
L + S | 25 | −0.30 | −0.34 | −0.43 | −0.34 | −0.39 | −0.25 | −0.71 | −0.79 | −0.52 | −0.60 |
50 | −0.75 | −0.95 | −0.95 | −0.95 | −0.95 | −0.75 | −0.97 | −1.00 | −0.89 | −0.78 | |
75 | −0.95 | −0.95 | −0.95 | −0.95 | −0.95 | −0.80 | −0.99 | −0.97 | −0.98 | −1.00 | |
100 | −0.95 | −0.95 | −0.98 | −0.95 | −0.95 | −0.90 | −0.97 | −0.98 | −0.97 | −0.98 | |
H | 25 | −0.80 | −0.99 | −0.83 | −0.32 | −0.83 | −0.60 | −0.88 | −0.88 | −0.59 | −0.90 |
50 | −0.95 | −0.97 | −0.98 | −0.94 | −0.95 | −0.85 | −0.99 | −0.92 | −1.00 | −1.00 | |
75 | −0.95 | −0.91 | −0.98 | −0.95 | −0.95 | −0.75 | −0.99 | −0.97 | −0.94 | −0.95 | |
100 | −0.95 | −0.98 | −0.98 | −0.95 | −0.98 | −0.75 | −0.98 | −0.98 | −0.98 | −0.95 | |
R | 25 | −0.55 | −0.21 | −0.73 | −0.59 | −0.05 | −0.05 | −0.34 | −0.72 | −0.49 | −0.28 |
50 | −0.75 | −0.23 | −0.76 | −0.66 | +0.03 | −0.25 | −0.62 | −0.81 | −0.81 | −0.21 | |
75 | −0.95 | −0.98 | −0.98 | −0.95 | −0.98 | −0.65 | −0.96 | −1.00 | −1.00 | −1.00 | |
100 | −0.95 | −0.98 | −0.94 | −0.89 | −0.25 | −0.25 | −0.92 | −0.92 | −0.94 | −0.83 | |
Extract of RS | |||||||||||
L + S | 25 | −0.55 | −0.07 | −0.41 | −0.62 | +0.33 | −0.05 | −0.05 | −0.06 | −0.41 | 0.18 |
50 | −0.90 | −0.96 | −0.99 | −0.87 | −0.66 | −0.25 | −0.89 | −0.91 | −0.92 | −0.79 | |
75 | −0.80 | −0.81 | −0.66 | −0.86 | +0.21 | −0.25 | −0.91 | −0.96 | −1.00 | −1.00 | |
100 | −0.95 | −0.95 | −0.89 | −0.96 | −0.34 | −0.80 | −0.98 | −0.99 | −1.00 | −1.00 | |
H | 25 | −0.45 | −0.68 | −0.79 | −0.76 | −0.07 | −0.05 | +0.10 | −0.26 | −0.23 | +0.24 |
50 | −0.70 | −0.81 | −0.75 | −0.93 | −0.82 | −0.25 | −0.61 | −0.55 | −0.66 | −0.31 | |
75 | −0.25 | −0.94 | −0.79 | −0.88 | −0.03 | −0.10 | −0.92 | −0.80 | −0.89 | −0.75 | |
100 | −0.95 | −0.98 | −0.91 | −0.95 | −0.98 | −0.55 | −0.98 | −0.99 | −1.00 | −1.00 | |
R | 25 | −0.10 | +0.33 | −0.55 | −0.22 | +0.24 | 0.00 | +0.28 | 0.32 | +0.04 | +0.43 |
50 | −0.40 | −0.21 | −0.59 | −0.54 | +0.42 | −0.10 | −0.05 | 0.06 | −0.28 | +0.28 | |
75 | −0.35 | −0.38 | −0.42 | −0.72 | +0.34 | 0.00 | −0.22 | −0.08 | −0.68 | −0.22 | |
100 | −0.75 | −0.91 | −0.89 | −0.94 | −0.92 | −0.15 | −0.93 | −0.94 | −1.00 | −1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janusauskaite, D. Investigating the Phytotoxic Potential of Helianthus annuus on Germination and Seedling Morphological Parameters of Two Target Poaceae Species: Spring Barley and Spring Wheat. Agronomy 2023, 13, 3064. https://doi.org/10.3390/agronomy13123064
Janusauskaite D. Investigating the Phytotoxic Potential of Helianthus annuus on Germination and Seedling Morphological Parameters of Two Target Poaceae Species: Spring Barley and Spring Wheat. Agronomy. 2023; 13(12):3064. https://doi.org/10.3390/agronomy13123064
Chicago/Turabian StyleJanusauskaite, Daiva. 2023. "Investigating the Phytotoxic Potential of Helianthus annuus on Germination and Seedling Morphological Parameters of Two Target Poaceae Species: Spring Barley and Spring Wheat" Agronomy 13, no. 12: 3064. https://doi.org/10.3390/agronomy13123064
APA StyleJanusauskaite, D. (2023). Investigating the Phytotoxic Potential of Helianthus annuus on Germination and Seedling Morphological Parameters of Two Target Poaceae Species: Spring Barley and Spring Wheat. Agronomy, 13(12), 3064. https://doi.org/10.3390/agronomy13123064