Biogenic Titanium Dioxide Nanoparticles Ameliorate the Effect of Salinity Stress in Wheat Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Leaf Extract
2.2. Green Synthesis of Titanium Dioxide Nanoparticles
2.3. Characterization of Nanoparticles
2.4. Plant Materials and Growth Conditions
2.5. Experimental Design and Application of Treatments
2.6. Analysis of Germination Parameters
2.6.1. Germination Percentage (Germination %)
Total no. of seeds planted
2.6.2. Germination Index (G.I.)
2.6.3. Seedling Vigor Index (S.V.I.)
2.7. Determination of Morphological Parameters
2.8. Determination of Physiological Parameters
2.8.1. Leaf Relative Water Content
(Saturated weight − Dry weight)
2.8.2. Membrane Stability Index
2.8.3. Leaf Chlorophyll Content
2.9. Determination of Biochemical Parameters
2.9.1. Proline Content
Fresh weight of plant tissue
2.9.2. Free Amino Acids
Weight of fresh plant tissue × 1000
2.9.3. Soluble Sugar Content
Weight of fresh plant tissue
2.9.4. Superoxide Dismutase (SOD) Activity
2.9.5. Peroxidase Dismutase (POD) Activity
2.10. Research Involving Plants
2.11. Statistical Analysis
3. Results
3.1. Biosynthesis and Characterization of TiO2 NPs
3.2. Germination Parameters
3.3. Morphological Parameters
3.4. Physiological Parameters
3.4.1. Membrane Stability Index
3.4.2. Relative Water Content
3.4.3. Chlorophyll a. Content
3.4.4. Chlorophyll b. Content
3.4.5. Total Chlorophyll Content
3.5. Biochemical Parameters
3.5.1. Proline Content
3.5.2. Free Amino Acid Contents
3.5.3. Soluble Sugar Contents
3.5.4. Superoxide Dismutase (SOD) Activity
3.5.5. Peroxidase Dismutase (POD) Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Arshad, A. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An overview of its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, P.K. Soil Salinity and Food Security in India. Front. Sustain. Food Syst. 2020, 4, 533–781. [Google Scholar] [CrossRef]
- Mbarki, S.; Sytar, O.; Cerda, A.; Zivcak, M.; Rastogi, A.; He, X.; Brestic, M. Strategies to Mitigate The Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants. In Salinity Responses and Tolerance in Plants, Volume 1; Springer: Cham, Switzerland, 2018; pp. 85–136. [Google Scholar] [CrossRef]
- Sabagh, A.E.; Hossain, A.; Barutçular, C.; Islam, M.S.; Ratnasekera, D.; Kumar, N.; da Silva, J.A.T. Drought And Salinity Stress Management for Higher and Sustainable Canola (Brassica Napus L.) Production: A Critical Review. Aust. J. Crop Sci. 2019, 13, 88–96. [Google Scholar] [CrossRef]
- Talaat, N.B. Role of Reactive Oxygen Species Signaling in Plant Growth and Development. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms; Wiley: New York, NY, USA, 2019; pp. 225–266. [Google Scholar] [CrossRef]
- Singh, R.P.; Handa, R.; Manchanda, G. Nanoparticles in Sustainable Agriculture: An Emerging Opportunity. J. Control. Release 2021, 329, 1234–1248. [Google Scholar] [CrossRef] [PubMed]
- Vera-Reyes, I.; Vázquez-Núñez, E.; Lira-Saldivar, R.H.; Méndez-Argüello, B. Effects of Nanoparticles on Germination, Growth, and Plant Crop Development. In Agricultural Nanobiotechnology; Springer: Cham, Switzerland, 2018; pp. 77–110. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef] [PubMed]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium Dioxide Nanoparticles (TiO2 NPs) Promote Growth and Ameliorate Salinity Stress Effects on Essential oil Profile and Biochemical Attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel Latef, A.A.H.; Srivastava, A.K.; El-sadek, M.S.A.; Kordrostami, M.; Tran, L.S.P. Titanium Dioxide Nanoparticles Improve Growth And Enhance Tolerance of Broad Bean Plants Under Saline Soil Conditions. Land Degrad. Dev. 2018, 29, 1065–1073. [Google Scholar] [CrossRef]
- Mustafa, N.; Raja, N.I.; Ilyas, N.; Ikram, M.; Ehsan, M. Foliar Applications of Plant-Based Titanium Dioxide Nanoparticles to Improve Agronomic and Physiological Attributes of Wheat (Triticum Aestivum L.) Plants under Salinity Stress. Green Process. Synth. 2021, 10, 246–257. [Google Scholar] [CrossRef]
- Chaudhary, I.J.; Singh, V. Titanium Dioxide Nanoparticles and its Impact on Growth, Biomass and Yield of Agricultural Crops under Environmental Stress: A Review. Res. J. Nanosci. Nanotechnol. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf Extract Mediated Green Synthesis of Silver Nanoparticles from Widely Available Indian Plants: Synthesis, Characterization, Antimicrobial Property and Toxicity Analysis. Bioresour. Bioprocess. 2014, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Raja, N.I.; Mashwani, Z.U.R.; Iqbal, M.; Sabir, S.; Yasmeen, F. In Vitro Seed Germination and Biochemical Profiling of Artemisia absinthium Exposed to Various Metallic Nanoparticles. 3 Biotech 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razack, S.A.; Suresh, A.; Sriram, S.; Ramakrishnan, G.; Sadanandham, S.; Veerasamy, M.; Sahadevan, R. Green Synthesis of Iron Oxide Nanoparticles Using Hibiscus Rosa-Sinensis for Fortifying Wheat Biscuits. SN Appl. Sci. 2020, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor Determination in Soybean Seed by Multiple Criteria 1. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Caballero-Molada, M.; Atares, S.; García, C.; Vicente, O. New Eco-friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy 2020, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Weatherley, P. Studies in the Water Relations of the Cotton Plant. I. the Field Measurement of Water Deficits in Leaves. New Phytol. 1950, 49, 81–97. [Google Scholar] [CrossRef]
- Sairam, R.K. Effect of Moisture-Stress on Physiological Activities of Two Contrasting Wheat Genotypes. Indian J. Exp. Biol. 1994, 32, 594. [Google Scholar]
- Bruinsma, J. The Quantitative Analysis of Chlorophylls a and b in Plant Extracts. Photochem. Photobiol. Chlor. Metabol. Symp. 1963, 2, 241–429. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Van Slyke, D.D. Amino Acid Determination with Ninhydrin. J. Biol. Chem. 1943, 150, 231–250. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ullah, A.; Heng, S.; Munis, M.F.H.; Fahad, S.; Yang, X. Phytoremediation of Heavy Metals Assisted by Plant Growth Promoting (PGP) Bacteria: A Review. Environ. Exp. Bot. 2015, 117, 28–40. [Google Scholar] [CrossRef]
- Lagrimini, L.M. Wound-Induced Depositions of Polyphenols in Transgenic Plants Over expressing Peroxidase. Plant Phys. 1991, 96, 577–583. [Google Scholar] [CrossRef]
- Kishor, P.K.; Suravajhala, P.; Rathnagiri, P.; Sreenivasulu, N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. Front. Plant Sci. 2022, 13, 867531. [Google Scholar] [CrossRef]
- Mishra, V.; Mishra, R.K.; Dikshit, A.; Pandey, A.C. Interactions of Nanoparticles with Plants: An Emerging Prospective in the Agriculture Industry. In Emerging Technologies and Management of Crop Stress Tolerance; Academic Press: Cambridge, MA, USA, 2014; pp. 159–180. [Google Scholar] [CrossRef]
- Shah, T.; Latif, S.; Saeed, F.; Ali, I.; Ullah, S.; Alsahli, A.A.; Ahmad, P. Seed Priming With Titanium Dioxide Nanoparticles Enhances Seed Vigor, Leaf Water Status, and Antioxidant Enzyme Activities in Maize (Zea Mays L.) Under Salinity Stress. J. King Saud Univ.-Sci. 2021, 33, 101207. [Google Scholar] [CrossRef]
- Abdalla, H.; Adarosy, M.H.; Hegazy, H.S.; Abdelhameed, R.E. Potential of Green Synthesized Titanium Dioxide Nanoparticles for Enhancing Seedling Emergence, Vigor and Tolerance Indices and DPPH Free Radical Scavenging in Two Varieties of Soybean Under Salinity Stress. BMC Plant Biol. 2022, 22, 560. [Google Scholar] [CrossRef]
- Wu, L.; Yang, H.; Li, Z.; Wang, L.; Peng, Q. Effects of Salinity-Stress on Seed Germination and Growth Physiology of Quinclorac-Resistant Echinochloa crus-galli (L.) Beauv. Agronomy 2022, 12, 1193. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, W.; He, J.; Zhang, L.; Wei, Y.; Yang, M. Nitric Oxide Alleviates Salt Stress in Seed Germination and Early Seedling Growth of Pakchoi (Brassica chinensis L.) By Enhancing Physiological and Biochemical Parameters. Ecotoxicol. Environ. Saf. 2020, 187, 109785. [Google Scholar] [CrossRef]
- Mustafa, N.; Raja, N.I.; Ilyas, N.; Abasi, F.; Ahmad, M.S.; Ehsan, M.; Proćków, J. Exogenous Application of Green Titanium Dioxide Nanoparticles (TiO2 NPs) to Improve the Germination, Physiochemical, and Yield Parameters of Wheat Plants under Salinity Stress. Molecules 2022, 27, 4884. [Google Scholar] [CrossRef]
- Shafea, A.A.; Dawood, M.F.; Zidan, M.A. Wheat Seedlings Traits as Affected by Soaking at Titanium Dioxide Nanoparticles. Environ. Earth Ecol. 2017, 1, 102–111. [Google Scholar] [CrossRef]
- Ayed, S.; Rassaa, N.; Chamekh, Z.; Beji, S.; Karoui, F.; Bouzaien, T.; Ben, Y.M. Effect of Salt Stress (Sodium Chloride) on Germination and Seedling Growth of Durum Wheat (Triticum Durum Desf.) Genotypes. Int. J. Biodivers. Conserv. 2014, 6, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Rahneshan, Z.; Nasibi, F.; Moghadam, A.A. Effects of Salinity Stress on Some Growth, Physiological, Biochemical Parameters and Nutrients in Two Pistachio (Pistacia vera L.) Rootstocks. J. Plant Interact. 2018, 13, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Wahid, I.; Kumari, S.; Ahmad, R.; Hussain, S.J.; Alamri, S.; Siddiqui, M.H.; Khan, M.I.R. Silver Nanoparticle Regulates Salt Tolerance in Wheat Through Changes in ABA Concentration, Ion Homeostasis, and Defense Systems. Biomolecules 2020, 10, 1506. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Esmaielpour, B.; Gohari, G.; Haghighi, M.; Jafari, H.; Farhadi, H.; Kalisz, A. Salt Stress Mitigation via the Foliar Application of Chitosan-Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia (Stevia rebaudiana Bertoni). Molecules 2021, 26, 4090. [Google Scholar] [CrossRef]
- Al Mahmud, J.; Biswas, P.K.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Exogenous Application of Gibberellic Acid Mitigates Drought-Induced Damage in Spring Wheat. Acta Agrobot. 2019, 72, 2. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.; Ahmed, M.Z.; Hussain, T.; Aziz, I.; Ahmad, N.; Gul, B.; Nielsen, B.L. Effects of Salinity Stress on Chloroplast Structure and Function. Cells 2021, 10, 2023. [Google Scholar] [CrossRef]
- Satti, S.H.; Raja, N.I.; Javed, B.; Akram, A.; Mashwani, Z.U.R.; Ahmad, M.S.; Ikram, M. Titanium Dioxide Nanoparticles Elicited Agro-Morphological and Physicochemical Modifications in Wheat Plants to Control Bipolaris Sorokiniana. PLoS ONE 2021, 16, e0246880. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic Adjustment and Energy Limitations to Plant Growth in Saline Soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Chakraborty, S.; Mukherjee, S.; Sau, A.; Das, S.; Chakraborty, B.; Hessel, V. A Comparative Study on the Modulatory Role of Mesoporous Silica Nanoparticles MCM 41 and MCM 48 on Growth and Metabolism of Dicot Vigna radiata. Plant Physiol. Biochem. 2022, 187, 25–36. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Nanoparticles Potentially Mediate Salt Stress Tolerance in Plants. Plant Physiol. Biochem. 2021, 160, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, M.T.B.; Mohammadi, H.; Ghorbanpour, M. Effects of Nanoparticulate Anatase Titanium Dioxide on Physiological and Biochemical Performance of Linum usitatissimum (Linaceae) under Well-Watered and Drought Stress Conditions. Braz. J. Bot. 2016, 39, 139–146. [Google Scholar] [CrossRef]
- Tumburu, L.; Andersen, C.P.; Rygiewicz, P.T.; Reichman, J.R. Molecular and Physiological Responses to Titanium Dioxide and Cerium Oxide Nanoparticles in Arabidopsis. Environ. Toxicol. Chem. 2017, 36, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Zhang, W.; Lombardini, L.; Ma, X. The Impact of Cerium Oxide Nanoparticles on the Salt Stress Responses of Brassica napus L. Environ. Pollut. 2016, 219, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R. ROS are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yuan, Y.; Jiang, Z.; Jin, S. Nitric Oxide Improves Salt Tolerance of Cyclocarya paliurus by Regulating Endogenous Glutathione Level and Antioxidant Capacity. Plants 2022, 11, 1157. [Google Scholar] [CrossRef]
Treatments | Description | |
---|---|---|
TiO2 NPs treatment | T0 | 0 µg/mL of TiO2 NPs |
T1 | 25 µg/mL of TiO2 NPs | |
T2 | 50 µg/mL of TiO2 NPs | |
T3 | 75 µg/mL of TiO2 NPs | |
T4 | 100 µg/mL of TiO2 NPs | |
Salt Stress (NaCl) | T5 | Salt stress (NaCl) 50 mM |
T6 | Salt stress (NaCl) 100 mM | |
T7 | Salt stress (NaCl) 150 mM | |
TiO2 NPs + 50 mM Salt Stress | T8 | Salt stress (NaCl) 50 mM + 25 µg/mL of TiO2 NPs |
T9 | Salt stress (NaCl) 50 mM + 50 µg/mL of TiO2 NPs | |
T10 | Salt stress (NaCl) 50 mM + 75 µg/mL of TiO2 NPs | |
T11 | Salt stress (NaCl) 50 mM + 100 µg/mL of TiO2 NPs | |
TiO2 NPs + 100 mM Salt Stress | T12 | Salt stress (NaCl) 100 mM + 25 µg/mL of TiO2 NPs |
T13 | Salt stress (NaCl) 100 mM + 50 µg/mL of TiO2 NPs | |
T14 | Salt stress (NaCl) 100 mM + 75 µg/mL of TiO2 NPs | |
T15 | Salt stress (NaCl) 100 mM + 100 µg/mL of TiO2 NPs | |
TiO2 NPs + 150 mM Salt Stress | T16 | Salt stress (NaCl) 150 mM + 25 µg/mL of TiO2 NPs |
T17 | Salt stress (NaCl) 150 mM + 50 µg/mL of TiO2 NPs | |
T18 | Salt stress (NaCl) 150 mM + 75 µg/mL of TiO2 NPs | |
T19 | Salt stress (NaCl) 150 mM + 100 µg/mL of TiO2 NPs |
Treatments | Germination % Age | Germination Index | Seedling Vigor Index | Seedling Length (cm) | Fresh Weight (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pirsabak-05 | NARC-09 | Pirsabak-05 | NARC-09 | NARC-09 | Pirsabak-05 | NARC-09 | Pirsabak-05 | NARC-09 | Pirsabak-05 | |
T0 | 82.00 ± 5.88 b | 80.00± 5.75 b | 2.21 ± 0.065 a | 2.11 ± 0.08 a | 154.62 ± 2.23 a | 152.43 ± 2.01 a | 14.20 ± 0.34 a | 14.16 ± 0.44 a | 0.59 ± 0.028 a | 0.57 ± 0.018 a |
T1 | 73.00 ± 5.01 c | 70.00 ± 4.92 c | 1.47 ± 0.055 b | 1.34 ± 0.03 b | 144.25 ± 2.31 a | 142.21 ± 2.11 a | 13.43 ± 0.28 a | 12.92 ± 0.22 a | 0.51 ± 0.022 a | 0.49 ± 0.016 ab |
T2 | 91.00 ± 3.82 a | 90.00 ± 3.17 a | 2.41 ± 0.088 a | 2.35 ± 0.05 a | 169.51 ± 2.01 a | 167.52 ± 2.45 a | 15.91 ± 0.22 a | 15.71 ± 0.18 a | 0.64 ± 0.032 a | 0.62 ± 0.023 a |
T3 | 51.00 ± 3.25 d | 50.00 ± 2.88 d | 1.27 ± 0.095 b | 1.21 ± 0.05 b | 142.46 ± 2.88 a | 140.34 ± 2.18 a | 12.88 ± 0.31 a | 12.64 ± 0.41 a | 0.41 ± 0.035 ab | 0.39 ± 0.038 ab |
T4 | 22.00 ± 2.88 fg | 20.00 ± 2.22 g | 0.96 ± 0.044 c | 0.92 ± 0.07 c | 103.48 ± 3.09 a | 101.46 ± 2.81 a | 8.89 ± 0.37 b | 8.55 ± 0.45 b | 0.31 ± 0.029 ab | 0.29 ± 0.032 b |
T5 | 18.00 ± 2.21 gh | 17.00 ± 2.25 gh | 0.63 ± 0.045 cd | 0.57 ± 0.05 cd | 89.33 ± 3.36 b | 87.32 ± 3.02 b | 9.31 ± 0.35 b | 8.61 ± 0.25 b | 0.28 ± 0.023 b | 0.37 ± 0.019 ab |
T6 | 10.00 ± 2.76 i | 9.00 ± 2.18 i | 0.38 ± 0.032 d | 0.32 ± 0.04 | 81.31 ± 3.77 b | 79.47 ± 3.9 c | 8.35 ± 0.43 b | 8.11 ± 0.37 b | 0.21 ± 0.015 b | 0.19 ± 0.14 c |
T7 | 0.00 ± 0.00 j | 0.00 ± 0.00 j | 0.00 ± 0.00 e | 0.00 ± 0.0 e | 0.00 ± 0.00 f | 0.00 ± 0.00 f | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
T8 | 30.00 ± 3.11 e | 27.00 ± 2.89 ef | 1.11 ± 0.081 b | 1.04 ± 0.07 b | 75.85 ± 3.62 c | 71.76 ± 3.42 c | 10.47 ± 0.44 b | 10.26 ± 0.34 b | 0.34 ± 0.018 ab | 0.32 ± 0.022 ab |
T9 | 50.00 ± 3.64 d | 45.00 ± 3.14 d | 1.53 ± 0.07 b | 1.34 ± 0.05 b | 89.87 ± 3.98 b | 87.86 ± 3.88 b | 13.64 ± 0.49 a | 13.11 ± 0.39 a | 0.42 ± 0.029 ab | 0.37 ± 0.035 ab |
T10 | 20.00 ± 2.01 g | 17.00 ± 1.88 gh | 1.02 ± 0.05 b | 0.97 ± 0.05 c | 75.23 ± 2.88 c | 73.47 ± 2.99 c | 9.91 ± 0.29 b | 9.32 ± 0.35 b | 0.29 ± 0.035 b | 0.21 ± 0.018 b |
T11 | 10.00 ± 2.66 i | 8.00 ± 2.02 i | 0.85 ± 0.03 c | 0.82 ± 0.03 c | 71.26 ± 2.28 c | 69.26 ± 2.42 d | 8.87 ± 0.18 b | 8.23 ± 0.22 b | 0.17 ± 0.039 cd | 0.13 ± 0.041 c |
T12 | 20.00 ± 2.95 g | 18.00 ± 2.31 gh | 1.04 ± 0.06 b | 0.98 ± 0.05 c | 68.36 ± 3.01 d | 66.48 ± 2.36 d | 9.83 ± 0.17 b | 9.14 ± 0.11 b | 0.25 ± 0.024 b | 0.18 ± 0.02 c |
T13 | 30.00 ± 1.95 e | 25.00 ± 1.44 ef | 1.37 ± 0.03 b | 1.36 ± 0.03 b | 77.16 ± 2.95 c | 73.35 ± 2.86 c | 10.20 ± 0.11 b | 9.81 ± 0.15 b | 0.31 ± 0.018 ab | 0.24 ± 0.012 b |
T14 | 15.00 ± 1.77 h | 13.00 ± 1.99 hi | 0.96 ± 0.04 c | 0.82 ± 0.05 c | 66.41 ± 4.22 d | 64.43 ± 4.15 d | 9.25 ± 0.23 b | 9.03 ± 0.19 b | 0.14 ± 0.02 c | 0.11 ± 0.026 c |
T15 | 10.00 ± 2.12 i | 9.30 ± 2.44 i | 0.72 ± 0.07 cd | 0.65 ± 0.07 cd | 64.13 ± 4.01 d | 62.13 ± 3.72 d | 8.32 ± 0.23 b | 8.28 ± 0.26 b | 0.11 ± 0.022 c | 0.09 ± 0.031 cd |
T16 | 10.00 ± 2.65 | 8.70 ± 2.17 i | 0.49 ± 0.04 d | 0.41 ± 0.04 d | 62.28 ± 3.99 d | 60.13 ± 4.07 d | 8.34 ± 0.24 b | 8.24 ± 0.29 b | 0.19 ± 0.013 c | 0.15 ± 0.016 c |
T17 | 25.00 ± 2.11 ef | 22.30 ± 2.01 fg | 0.62 ± 0.031 cd | 0.54 ± 0.02 cd | 66.89 ± 3.11 d | 63.46 ± 3.02 d | 9.56 ± 0.32 b | 9.46 ± 0.22 b | 0.24 ± 0.009 b | 0.17 ± 0.006 c |
T18 | 10.00 ± 3.17 i | 9.50 ± 2.77 i | 0.38 ± 0.024 d | 0.27 ± 0.02 d | 52.13 ± 2.88 e | 50.16 ± 2.82 e | 5.83 ± 0.39 c | 5.56 ± 0.31 c | 0.08 ± 0.019 cd | 0.05 ± 0.022 cd |
T19 | 0.00 ± 0.00 j | 0.00 ± 0.00 j | 0.00 ± 0.00 e | 0.00 ± 0.00 a | 0.00 ± 0.00 f | 0.00 ± 0.00 f | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
Plant Length (cm) | Plant Fresh Weight (g) | Plant Dry Weight (g) | Number of Leaves | Leaf Area (cm2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatments | Pirsabak-05 | NARC-09 | Pirsabak-05 | NARC-09 | Pirsabak-05 | NARC-09 | Pirsabak-05 | NARC-09 | Pirsabak-05 | NARC-09 |
To | 76.34 ± 2.21 a | 75.54 ± 1.84 a | 6.29 ± 0.08 a | 6.23 ± 0.07 a | 1.51 ± 0.06 ab | 1.49 ± 0.07 b | 7.91 ± 0.28 a | 7.71 ± 0.32 a | 125.16 ± 1.83 a | 120.57 ± 0.98 a |
T1 | 74.01 ± 2.93 ab | 73.01 ± 2.73 ab | 5.21 ± 0.06 a | 5.15 ± 0.05 a | 1.53. ± 0.04 ab | 1.48 ± 0.05 b | 7.53 ± 0.33 a | 6.54 ± 0.41 b | 114.52 ± 1.65 b | 110.47 ± 0.91 b |
T2 | 80.23 ± 1.88 a | 78.23 ± 1.98 a | 6.91 ± 0.09 a | 6.81 ± 0.06 a | 2.17 ± 0.18 a | 2.02 ± 0.46 a | 8.96 ± 0.39 a | 8.61 ± 0.17 a | 139.34 ± 1.98 a | 133.63 ± 1.13 a |
T3 | 68.57 ± 1.75 b | 67.32 ± 1.65 b | 4.38 ± 0.11 b | 4.31 ± 0.08 b | 2.06 ± 0.32 a | 1.98 ± 0.59 ab | 7.51 ± 0.19 a | 6.54 ± 0.14 b | 109.13 ± 2.11 b | 108.36 ± 2.38 b |
T4 | 58.25 ± 1.66 c | 57.17 ± 1.52 c | 3.55 ± 0.07 b | 3.51 ± 0.09 b | 1.16 ± 0.30 b | 1.14 ± 0.63 b | 6.59 ± 0.15 b | 5.53 ± 0.11 b | 95.23 ± 1.98 c | 92.21 ± 2.52 c |
T5 | 59.23 ± 1.71 c | 58.29 ± 1.63 c | 4.21 ± 0.08 b | 4.16 ± 0.34 b | 1.44 ± 0.38 b | 1.15 ± 0.34 b | 4.53 ± 0.26 c | 3.59 ± 0.22 c | 75.65 ± 2.44 d | 70.37 ± 1.59 d |
T6 | 52.14 ± 2.11 cd | 51.01 ± 2.02 cd | 3.16 ± 0.15 b | 3.31 ± 0.11 b | 1.17 ± 0.75 b | 1.08 ± 0.67 b | 5.54 ± 0.22 b | 4.55 ± 0.29 c | 60.22 ± 2.88 e | 55.17± 3.24 e |
T7 | 41.43 ± 2.35 e | 40.52 ± 2.46 e | 2.46 ± 0.21 c | 2.4 ± 0.18 c | 1.11 ± 0.06 b | 0.97 ± 0.07 c | 3.51 ± 0.37 c | 2.57 ± 0.45 d | 45.56 ± 1.98 f | 40.32 ± 1.22 fg |
T8 | 66.32 ± 2.98 b | 65.24 ± 3.11 b | 5.06 ± 0.09 a | 5.02 ± 0.12 a | 1.43 ± 0.19 b | 1.31 ± 0.48 b | 5.56 ± 0.41 b | 4.51 ± 0.37 c | 80.12 ± 1.75 d | 74.54 ± 2.62 d |
T9 | 69.85 ± 2.63 b | 68.67 ± 2.73 b | 5.77 ± 0.08 a | 5.64 ± 0.09 a | 1.88 ± 0.47 ab | 1.75 ± 0.66 ab | 6.52± 0.32 b | 5.56 ± 0.31 b | 89.42 ± 2.22 c | 85.37 ± 3.15 c |
T10 | 56.26 ± 2.11 c | 55.23 ± 2.01 c | 3.04 ± 0.04 b | 3.02 ± 0.46 b | 1.52 ± 0.24 ab | 1.46 ± 0.51 b | 4.57 ± 0.27 c | 3.51 ± 0.21 c | 84.29 ± 2.65 c | 82.59 ± 1.88 c |
T11 | 52.14 ± 1.55 cd | 51.12 ± 1.65 cd | 3.02 ± 0.58 b | 2.92 ± 0.55 c | 1.12 ± 0.06 b | 1.01 ± 0.07 bc | 4.21 ± 0.44 c | 3.22 ± 0.39 c | 80.17 ± 3.19 d | 78.13 ± 2.11 d |
T12 | 48.33 ± 1.33 d | 47.39 ± 1.43 d | 4.22 ± 0.16 b | 4.19 ± 0.12 b | 1.23 ± 0.22 b | 1.21 ± 0.43 b | 5.58 ± 0.29 b | 4.52 ± 0.22 c | 72.25 ± 3.024 d | 70.47 ± 2.34 d |
T13 | 44.67 ± 1.11 e | 43.67 ± 1.28 e | 5.01 ± 0.16 a | 4.34 ± 0.19 b | 1.32 ± 0.29 b | 1.27 ± 0.23 b | 6.11 ± 0.20 b | 5.12 ± 0.16 b | 75.31 ± 2.18 d | 73.23 ± 1.66 d |
T14 | 49.41 ± 1.2 d | 48.48 ± 1.11 d | 3.02 ± 0.21 b | 2.99 ± 0.12 c | 1.11 ± 0.18 b | 1.09 ± 0.31 b | 5.54 ± 0.19 b | 4.57 ± 0.26 c | 61.14 ± 1.22 de | 62.7 ± 2.16 de |
T15 | 41.22 ± 1.56 e | 40.20 ± 1.41 e | 2.98 ± 0.38 c | 2.77 ± 0.26 c | 1.02 ± 0.07 bc | 0.63 ± 0.17 cd | 3.55 ± 0.16 c | 2.62 ± 0.28 d | 57.22 ± 1.32 e | 55.09 ± 1.21 e |
T16 | 43.35 ± 1.43 e | 42.35 ± 1.53 e | 3.67 ± 0.44 b | 3.24 ± 0.34 b | 1.09 ± 0.04 bc | 0.86 ± 0.08 c | 2.58 ± 0.23 d | 2.51 ± 0.31 d | 52.19 ± 1.53 e | 49.4 ± 2.36 f |
T17 | 44.67 ± 1.13 e | 43.93 ± 1.25 e | 5.11 ± 0.57 a | 4.21 ± 0.18 b | 1.31 ± 0.15 b | 0.94 ± 0.10 c | 5.51 ± 0.34 b | 4.36 ± 0.39 c | 65.43 ± 1.89 de | 61.17 ± 2.11 de |
T18 | 39.23 ± 1.28 ef | 38.22 ± 1.44 ef | 2.77 ± 0.66 c | 2.57 ± 0.11 c | 0.86 ± 0.08 c | 0.73 ± 0.05 cd | 2.54 ± 0.36 d | 2.23 ± 0.29 d | 48.08 ± 2.015 f | 46.05 ± 1.24 f |
T19 | 34.01 ± 1.09 f | 33.01 ± 1.26 f | 2.72 ± 0.81 c | 2.25 ± 0.09 c | 0.69 ± 0.05 cd | 0.58 ± 0.03 cd | 2.21 ± 0.26 d | 1.82 ± 0.19 de | 44.13 ± 1.33 f | 42.26 ± 2.24 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badshah, I.; Mustafa, N.; Khan, R.; Mashwani, Z.-u.-R.; Raja, N.I.; Almutairi, M.H.; Aleya, L.; Sayed, A.A.; Zaman, S.; Sawati, L.; et al. Biogenic Titanium Dioxide Nanoparticles Ameliorate the Effect of Salinity Stress in Wheat Crop. Agronomy 2023, 13, 352. https://doi.org/10.3390/agronomy13020352
Badshah I, Mustafa N, Khan R, Mashwani Z-u-R, Raja NI, Almutairi MH, Aleya L, Sayed AA, Zaman S, Sawati L, et al. Biogenic Titanium Dioxide Nanoparticles Ameliorate the Effect of Salinity Stress in Wheat Crop. Agronomy. 2023; 13(2):352. https://doi.org/10.3390/agronomy13020352
Chicago/Turabian StyleBadshah, Imran, Nilofar Mustafa, Riaz Khan, Zia-ur-Rehman Mashwani, Naveed Iqbal Raja, Mikhlid H. Almutairi, Lotfi Aleya, Amany A. Sayed, Shah Zaman, Laraib Sawati, and et al. 2023. "Biogenic Titanium Dioxide Nanoparticles Ameliorate the Effect of Salinity Stress in Wheat Crop" Agronomy 13, no. 2: 352. https://doi.org/10.3390/agronomy13020352
APA StyleBadshah, I., Mustafa, N., Khan, R., Mashwani, Z.-u.-R., Raja, N. I., Almutairi, M. H., Aleya, L., Sayed, A. A., Zaman, S., Sawati, L., & Sohail. (2023). Biogenic Titanium Dioxide Nanoparticles Ameliorate the Effect of Salinity Stress in Wheat Crop. Agronomy, 13(2), 352. https://doi.org/10.3390/agronomy13020352