Corn Silage as a Total Diet with by-Products of the Babassu Agroindustry in the Feed of Confined Ruminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Treatments and Experimental Design Adopted
2.3. Silage Making
2.4. Fermentative Profile
2.5. Chemical Composition Analysis
2.6. Aerobic Stability
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souza, G.C.L.; Gonzaga Neto, S.; Bezerra, L.R.; de Medeiros, A.N.; de Carvalho, F.F.R.; de Oliveira, J.S. Intake and apparent digestibility of dry matter, milk production, and composition of cows fed with diets containing oilseed cakes: A meta-analysis. Anim. Sci. J. 2022, 93, e13758. [Google Scholar] [CrossRef]
- Sá, H.C.M.; Borges, I.; Junior, G.L.M.; Neiva, J.N.M.; Sousa, L.F. Farinha do endocarpo I do babaçu na formulação de dietas para ovinos. Rev. Caatinga 2015, 28, 207–216. [Google Scholar]
- Santos, A.R.D.; Parente, H.N.; Machado, N.A.F. The physiological response, feeding behaviour and water intake of goat kids fed diets with increasing levels of babassu mesocarp flour. Biol. Rhythm Res. 2019, 53, 369–381. [Google Scholar] [CrossRef]
- Zanine, A.; Portela, Y.; Ferreira, D.; Parente, M.; Parente, H.; Santos, E.; Oliveira, J.; Perazzo, A.; Nascimento, T.; da Cunha, I.A.; et al. Babassu Byproducts in Total Mixed Ration Silage Based on Sugarcane for Small Ruminants Diets. Agronomy 2022, 12, 1641. [Google Scholar] [CrossRef]
- Macêdo, A.J.S.; Santos, E.M.; Araújo, G.G.L.; Edvan, R.L.; Oliveira, J.S.; Perazzo, A.F.; Sá, W.C.C.S.; Pereira, D.M. Silages in the form of diet based on spineless cactus and buffelgrass. Afr. J. Range Forage Sci. 2018, 2, 121–129. [Google Scholar] [CrossRef]
- National Research Council—NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Bolsen, K.K.; Lin, C.; Brent, C.R. Effects of silage additives on the microbial succession and fermentation process of alfafa and corn silages. J. Dairy Sci. 1992, 75, 3066–3083. [Google Scholar] [CrossRef]
- de Nogueira, A.R.; Souza, G.B. Manual de Laboratórios: Solo, Água, Nutrição Vegetal, Nutrição Animal e Alimentos; Embrapa Pecuária Sudeste: São Carlos, Brazil, 2005; 313p. [Google Scholar]
- Kung, L., Jr.; Ranjit, N.K. O efeito de Lactobacillus buchneri e outros aditivos na fermentação e estabilidade aeróbia da silagem de cevada. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef]
- Conaghan, P.; O’kiely, P.; O’Mara, F.P. Conservation characteristics of wilted perennial ryegrass silage made using biological or chemical additives. J. Dairy Sci. 2010, 93, 628–643. [Google Scholar] [CrossRef] [Green Version]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Zanine, A.D.M.; Santos, E.M.; Dórea, J.R.R.; Dantas, P.A.D.S.; Silva, T.C.D.; Pereira, O.G. Evaluation of elephant grass silage with the addition of cassava scrapings. Rev. Bras. Zootec. 2010, 39, 2611–2616. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 19th ed.; AOAC: Gaithersburg, VA, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Carbohydrate methodology, metabolism, and nutritional implications in dairy caltle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [Green Version]
- Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, A.C.; Berchielli, T.T.; Saliba, E.O.S.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M.E.; Azevedo, J.A.G. Métodos para Análise de Alimentos—INCT—Ciência Animal, 1st ed.; Suprema: Visconde do Rio Branco, Brazil, 2012; 214p. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the “in vitro” digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Kung Junior, L.; Shaver, R.D.; Grant, R.J.; Schimdt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Bucks, UK, 1991; 340p. [Google Scholar]
- Bautista-Trujillo, G.U.; Cobos, M.A.; Ventura-Canseco, L.M.C.; Ayora-Talavera, T.; Abud-Archila, M.; Oliva-Llaven, M.A.; Gutiérrez-Miceli, F.A. Effect ofsugarcane molasses and whey on silage quality of maize. Asian J. Crop. Sci. 2009, 1, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, B.; Zhang, Q.; Cheng, H.; Yu, Z. Improvement of Fermentation Quality in the Fermented Total Mixed Ration with Oat Silage. Microorganisms 2021, 9, 420. [Google Scholar] [CrossRef]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung Jr, L. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contentes. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Yan, Y.; Li, X.; Li, X.; Shuai, Y.; Feng, G.; Ran, Q.; Cai, Y.; LI, Y.; Zhang, X. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bior. Technol. 2018, 265, 282–290. [Google Scholar] [CrossRef]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Avanços metodológicos na avaliação da qualidade da forragem conservada. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council. Technical committee on responses to nutrients. Report 2. Characterization of feedstuffs. Nutr. Abstr. Rev. 1987, 57, 713–736. [Google Scholar]
- Henderson, N. Silage additives. Anim. Feed Sci. Tech. 1993, 45, 35–56. [Google Scholar] [CrossRef]
- Rezende, A.A.S.; Pascoal, L.A.F.; Van Cleef, E.H.C.B.; Gonçalves, J.S.; Olszevski, N.; Bezerra, A.P.A. Composição química e características fermentativas de silagens de cana-de-açúcar contendo farelo de babaçu. Arch. Zootec. 2011, 60, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Igarasi, M.S. Controle de Perdas na Ensilagem de Capim Tanzânia (Panicum maximum Jacq. cv. Tanzânia) sob os Efeitos do teor de Matéria Seca, do Tamanho de Partícula, da Estação do Ano e da Presença do Inoculante Bacteriano. Master’s Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2002. [Google Scholar]
- Mahanna, B. Proper management assures high-quality silage, grains. Feedstuffs 1994, 66, 12–56. [Google Scholar]
- Roth, G.; Undersander, D. Silage additives. In Corn Silage Production Management and Feeding; Madison American Society of Agronomy: Madison, WI, USA, 1995; pp. 27–29. [Google Scholar]
- Santos, E.M.; Silva, T.C.; Macedo, C.H.O.; Campos, F.S. Lactic acid bacteria in tropical grass silages. In Lactic Acid Bacteria—R & D for Food, Health and Livestock Purposes; Kongo, J.M., Ed.; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Rooke, J.A.; Hatfield, R.D. Biochemistry of Ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2003; pp. 95–139. [Google Scholar]
- Oliveira, M.R.; Neumann, M.; Ueno, R.K.; Neri, J.; Marafon, F. Avaliação das perdas na ensilagem de milho em diferentes estádios de maturação. Rev. Bras. Milho Sorgo 2014, 12, 319–325. [Google Scholar] [CrossRef]
- Gusmão, J.O.; Danes, M.A.C.; Casagrande, D.R.; Bernardes, T.C. Total mixed ration silage containing elephant grass for small-scale dairy farms. Grass Forage Sci. 2018, 73, 717–726. [Google Scholar] [CrossRef]
- Mertens, D.R. Using neutral detergent fiber to formulate dairy rations. In Proceedings of the Nutrition Conference Process Gant Conference for The Feed Industry, Athens, Greece, 19–20 September 1983; pp. 116–126. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.D.; Lopes, D.C. Tabelas Brasileiras para aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed.; UFV, DZO: Viçosa, Brazil, 2017; Volume 4, 488p. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminants; O & Books: Corvallis, OR, USA, 1982; 373p. [Google Scholar]
- Valadares Filho, S.C.; Magalhães, K.A.; Rocha Júnior, V.R. Tabelas Brasileiras de Composição de Alimentos Para Bovinos; Universidade Federal de Viçosa: Viçosa, MG, Brazil, 2006; 297p. [Google Scholar]
- Cabral, L.S.; ValadareS Filho, S.C.; Detmann, E.; Zervoudakis, J.T.; Pereira, O.G.; Veloso, R.G.; Pereira, E.S. Cinética ruminal das frações de carboidratos, produção de gás, digestibilidade in vitro da matéria seca e NDT estimado da silagem de milho com diferentes proporções de grãos. Rev. Bras. Zoot. 2002, 31, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2012, 68, 1–19. [Google Scholar] [CrossRef]
- Pitt, R.E. Silage, and Hay Preservation; Northeast Regional Agricultural Engineering Service: Ithaca, NY, USA, 1990; 53p. [Google Scholar]
Item, %DM | Babassu Flour | Babassu Cake |
---|---|---|
Dry matter | 87.4 | 89.0 |
Ash | 3.1 | 4.1 |
Crude protein | 5.1 | 15.5 |
Ether extract | 2.2 | 12.0 |
Neutral detergent fiber corrected for ash and protein | 66.0 | 63.5 |
Acid detergent fiber corrected for ash and protein | 54.7 | 53.7 |
Hemicellulose | 11.2 | 9.8 |
Cellulose | 37.9 | 43.3 |
Acid detergent lignin | 16.8 | 10.3 |
Total carbohydrates | 89.6 | 68.4 |
Non-fiber carbohydrate | 1.3 | 4.9 |
Item, g/kg DM | Silages | |||
---|---|---|---|---|
CS 1 | TRSS 2 | TRSF 3 | TRSC 4 | |
Ground corn | 0.0 | 340 | 170 | 170 |
Soybean meal | 0.0 | 139 | 139 | 145 |
Babassu cake | 0.0 | 0.0 | 0.0 | 170 |
Babassu flour | 0.0 | 0.0 | 170 | 0.0 |
Urea | 0.0 | 6.0 | 6.0 | 0.0 |
Mineral salt | 0.0 | 15.0 | 15.0 | 15.0 |
Corn silage | 1000 | 500 | 500 | 500 |
Chemical Composition | ||||
Dry matter | 207.30 | 361.20 | 349.50 | 386.90 |
Ash | 42.40 | 58.90 | 56.60 | 61.20 |
Organic matter | 957.60 | 940.90 | 943.30 | 938.70 |
Crude protein | 74.20 | 137.00 | 115.00 | 128.80 |
Ether extract | 27.70 | 25.00 | 25.60 | 24.90 |
Neutral detergent fiber | 656.60 | 597.50 | 543.60 | 524.30 |
Acid detergent fiber | 485.90 | 334.10 | 377.10 | 376.60 |
Hemicellulose | 170.70 | 263.40 | 166.50 | 147.70 |
Water-soluble carbohydrates | 116.80 | 105.10 | 96.40 | 98.40 |
Item | Silages | SEM | p-Value | |||
---|---|---|---|---|---|---|
CS 1 | TRSS 2 | TRSF 3 | TRSC 4 | |||
pH | 3.92 | 3.98 | 3.96 | 3.92 | 0.502 | 0.236 |
Water-soluble carbohydrates (g/kg DM) | 100.5 | 94.8 | 90.1 | 83.0 | 0.316 | 0.269 |
Buffer capacity (E. mgNaOH) | 0.06 a | 0.04 b | 0.04 b | 0.04 b | 0.003 | <0.001 |
Lactic acid (g/kg DM) | 55.15 b | 62.25 a | 62.01 a | 63.08 a | 0.125 | <0.001 |
Acetic acid (g/kg DM) | 11.54 | 12.33 | 12.87 | 12.97 | 0.245 | 0.299 |
Butyric acid (g/kg DM) | 13.82 a | 11.32 b | 11.44 b | 11.53 b | 0.047 | <0.001 |
Propionic acid (g/kg DM) | 0.44 | 0.56 | 0.51 | 0.61 | 0.427 | 0.178 |
Ethanol (g/kg DM) | 13.95 | 12.47 | 12.84 | 13.61 | 0.147 | 0.259 |
LA:FP (%) 5 | 58.11 b | 62.98 a | 62.29 a | 63.14 a | 0.002 | <0.001 |
NH3-N (% N total) | 4.77 b | 8.14 a | 5.20 b | 5.22 b | 0.358 | <0.001 |
Item | Silages | SEM | p-Value | |||
---|---|---|---|---|---|---|
CS 1 | TRSS 2 | TRSF 3 | TRSC 4 | |||
Gas losses (%DM) | 0.10 a | 0.05 b | 0.05 b | 0.04 b | 0.007 | <0.001 |
Effluent losses (kg/ton.) | 0.40 a | 0.04 b | 0.03 b | 0.03 b | 0.038 | <0.001 |
Dry matter recovery (%DM) | 86.93 b | 90.20 b a | 97.18 a | 93.06 a | 1.482 | <0.001 |
Item | Silages | SEM | p-Value | |||
---|---|---|---|---|---|---|
CS 1 | TRSS 2 | TRSF 3 | TRSC 4 | |||
Aerobic stability (hours) | 89.88 | 79.98 | 87.37 | 86.35 | 3.62 | 0.829 |
Max temperature in 120 h (°C) | 30.38 a | 29.63 ab | 27.88 b | 28.63 ab | 0.34 | <0.027 |
Hours/ Max temperature | 101.66 | 100.46 | 104 | 104.35 | 2.84 | 0.965 |
Item (g/kg DM) | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
CS 1 | TRSS 2 | TRSF 3 | TRSC 4 | |||
Dry matter | 192.5 b | 344.4 a | 347.9 a | 328.8 a | 1.52 | <0.001 |
Ash | 55.9 a | 37.9 c | 42.7 bc | 52.4 bc | 0.22 | 0.002 |
Organic matter | 944 c | 962 a | 957 ab | 947.6 bc | 0.22 | <0.001 |
Crude protein | 80.3 c | 139.9 b | 145.8 b | 161.5 a | 0.72 | <0.001 |
Ether extract | 26.9 a | 25.6 ab | 15.8 c | 23.8 b | 0.13 | <0.001 |
Neutral detergent fiber corrected for ash and protein | 659 a | 409.9 c | 482.3 bc | 500.4 b | 2.26 | <0.001 |
Acid detergent fiber corrected for ash and protein | 445.2 a | 197 d | 260.5 c | 362.3 b | 22.3 | <0.001 |
Cellulose | 350.8 a | 257.4 bc | 239.1 c | 305.8 ab | 1.16 | <0.0001 |
Hemicellulose | 213.8 | 212.9 | 221.8 | 138.1 | 0.80 | 0.329 |
Acid detergent lignin | 94.4 a | 27.0 b | 70.2 a | 43.9 b | 0.65 | <0.001 |
Total carbohydrates | 834 a | 796.2 b | 796.7 b | 765.2 c | 0.66 | <0.001 |
Non-fiber carbohydrate | 174.9 c | 381.8 a | 305.8 ab | 242.3 bc | 2.18 | <0.001 |
Total digestible nutrients | 743.5 c | 881.7 a | 828.2 b | 814.4 b | 1.30 | <0.001 |
In vitro digestibility of DM | 589.70 b | 693.02 a | 686.45 a | 687.74 a | 5.69 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sá, C.; Zanine, A.; Ferreira, D.; Parente, H.; Parente, M.; Santos, E.M.; Lima, A.G.; Santos, F.N.; Pereira, D.; Sousa, F.C.d.; et al. Corn Silage as a Total Diet with by-Products of the Babassu Agroindustry in the Feed of Confined Ruminants. Agronomy 2023, 13, 417. https://doi.org/10.3390/agronomy13020417
Sá C, Zanine A, Ferreira D, Parente H, Parente M, Santos EM, Lima AG, Santos FN, Pereira D, Sousa FCd, et al. Corn Silage as a Total Diet with by-Products of the Babassu Agroindustry in the Feed of Confined Ruminants. Agronomy. 2023; 13(2):417. https://doi.org/10.3390/agronomy13020417
Chicago/Turabian StyleSá, Cledson, Anderson Zanine, Daniele Ferreira, Henrique Parente, Michelle Parente, Edson Mauro Santos, Anny Graycy Lima, Francisco Naysson Santos, Danillo Pereira, Francisca Claudia de Sousa, and et al. 2023. "Corn Silage as a Total Diet with by-Products of the Babassu Agroindustry in the Feed of Confined Ruminants" Agronomy 13, no. 2: 417. https://doi.org/10.3390/agronomy13020417
APA StyleSá, C., Zanine, A., Ferreira, D., Parente, H., Parente, M., Santos, E. M., Lima, A. G., Santos, F. N., Pereira, D., Sousa, F. C. d., Costa, R., Castro, C. R., Alves, G. R., & Dórea, J. R. (2023). Corn Silage as a Total Diet with by-Products of the Babassu Agroindustry in the Feed of Confined Ruminants. Agronomy, 13(2), 417. https://doi.org/10.3390/agronomy13020417