Biomass and Methane Production in Double Cereal Cropping Systems with Different Winter Cereal and Maize Plant Densities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
- Four cropping systems based on single or double crops harvested as whole-crop silage:
- ○
- M, sole-crop maize planted in spring,
- ○
- BM, double cropping system with hybrid barley followed by maize as an intercrop,
- ○
- TM, double cropping system with triticale followed by maize as an intercrop,
- ○
- WM, double cropping system with common wheat followed by maize as an intercrop.
- Two plant densities for the maize crop:
- ○
- StD, a standard planting density (7.5 plants m−2) with plants sown at a 0.75 m wide inter-row spacing, and an average distance of 0.18 m between two contiguous plants,
- ○
- HiD, a high planting density (10 plants m−2) with plants sown at a narrow inter-row spacing of 0.5 m, and a distance between plants of 0.2 m in the same row.
2.2. Biomass and Methane Yield and Qualitative Measurements
2.3. Statistical Analysis
3. Results
3.1. Meteorological Trends
3.2. Winter Cereal Biomass and Methane Yield
3.3. Maize Biomass and Methane Yield
Growing | Maize | Plant | Biomass | DM | VS | BMP | Methane |
---|---|---|---|---|---|---|---|
Season | Density | Yield | Yield | ||||
(t ha−1 DM) | (%) | (% DM) | (Nm3CH4 t VS−1) | (Nm3 ha−1) | |||
2013–14 | single crop | StD | 23.0 c | 30.8 ab | 91.3 a | 326 a | 6838 bc |
after barley | StD | 19.6 de | 32.0 a | 88.1 ab | 309 a | 5357 d | |
after triticale | StD | 16.3 f | 27.8 abc | 83.3 cd | 346 a | 4698 d | |
after wheat | StD | 17.6 ef | 23.7 bc | 88.0 abc | 316 a | 4905 d | |
single crop | HiD | 30.6 a | 28.1 abc | 90.7 a | 332 a | 9192 a | |
after barley | HiD | 25.9 b | 32.7 a | 85.0 bcd | 336 a | 7405 b | |
after triticale | HiD | 20.5 de | 29.2 abc | 80.2 d | 385 a | 6323 c | |
after wheat | HiD | 17.7 ef | 22.2 c | 88.2 ab | 326 a | 5073 d | |
P (F) | *** | *** | *** | ns | *** | ||
2014–15 | single crop | StD | 21.0 b | 28.5 cd | 95.7 a | 402 a | 8102 a |
after barley | StD | 16.1 cd | 34.5 ab | 95.1 a | 306 a | 4701 bc | |
after triticale | StD | 13.3 ef | 34.5 ab | 96.0 a | 317 a | 4038 bc | |
after wheat | StD | 10.1 f | 29.1 cd | 95.3 a | 339 a | 3266 c | |
single crop | HiD | 25.2 a | 25.9 d | 95.2 a | 394 a | 9440 a | |
after barley | HiD | 18.4 c | 37.9 a | 96.1 a | 316 a | 5587 b | |
after triticale | HiD | 14.7 de | 32.0 bc | 95.1 a | 331 a | 4597 bc | |
after wheat | HiD | 9.9 f | 32.0 bc | 95.8 a | 327 a | 3113 c | |
P (F) | *** | *** | ns | ns | *** | ||
2015–16 | single crop | StD | 19.8 b | 33.6 a | 95.4 a | 334 a | 6311 b |
after barley | StD | 15.9 c | 32.7 ab | 96.2 a | 352 a | 5390 c | |
after triticale | StD | 15.1 c | 29.8 bc | 95.6 a | 349 a | 5030 c | |
after wheat | StD | 10.4 de | 27.9 c | 95.3 a | 338 a | 3342 d | |
single crop | HiD | 23.1 a | 30.1 bc | 95.1 a | 338 a | 7414 a | |
after barley | HiD | 18.2 b | 29.3 c | 96.3 a | 355 a | 6223 b | |
after triticale | HiD | 15.8 c | 31.3 abc | 94.8 a | 320 a | 4793 c | |
after wheat | HiD | 10.8 de | 28.0 c | 95.6 a | 344 a | 3558 d | |
P (F) | *** | *** | ns | ns | *** |
3.4. Biomass and Methane Yield of the Cropping Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Biogas Association; Statistical Report 2022. Available online: https://www.europeanbiogas.eu/SR-2022/EBA/ (accessed on 10 January 2023).
- Burg, V.; Bowman, G.; Haubensak, M.; Baier, U.; Thees, O. Valorization of an untapped resource: Energy and greenhouse gas emissions benefits of converting manure to biogas through anaerobic digestion. Resour. Conserv. Recy. 2018, 136, 53–62. [Google Scholar] [CrossRef]
- Di Maria, F.; Sisani, F.; Lasagni, M.; Borges, M.S.; Gonzales, T.H. Replacement of energy crops with bio-waste in existing anaerobic digestion plants: An energetic and environmental analysis. Energy 2018, 152, 202–213. [Google Scholar] [CrossRef]
- Esteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C. do R.V. Life cycle assessment of manure biogas production: A review. J. Clean Prod. 2019, 219, 411–423. [Google Scholar] [CrossRef]
- Bauer, A.; Leonhartsberger, C.; Bösch, P.; Amon, B.; Friedl, A.; Amon, T. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Envir. 2010, 12, 153–161. [Google Scholar] [CrossRef]
- D’Imporzano, G.; Pilu, R.; Corno, L.; Adani, F. Arundo donax L. can substitute traditional energy crops for more efficient, environmentally-friendly production of biogas: A Life Cycle Assessment approach. Bioresour. Technol. 2018, 267, 249–256. [Google Scholar] [CrossRef]
- Schievano, A.; D’Imporzano, G.; Orzi, V.; Colombo, G.; Maggiore, T.; Adani, F. Biogas from dedicated energy crops in Northern Italy: Electric energy generation costs. GCB Bioenergy 2015, 7, 899–908. [Google Scholar] [CrossRef]
- Hamelin, L.; Naroznova, I.; Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energ. 2014, 114, 774–782. [Google Scholar] [CrossRef]
- Graß, R.; Heuser, F.; Stülpnagel, R.; Piepho, H.-P.; Wachendorf, M. Energy crop production in double-cropping systems: Results from an experiment at seven sites. Eur. J. Agron. 2013, 51, 120–129. [Google Scholar] [CrossRef]
- Valli, L.; Rossi, L.; Fabbri, C.; Sibilla, F.; Gattoni, P.; Dale, B.E.; Kim, S.; Ong, R.G.; Bozzetto, S. Greenhouse gas emissions of electricity and biomethane produced using the BiogasdonerightTM system: Four case studies from Italy. Biofuel Bioprod. Bior. 2017, 11, 847–860. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic aspects of future energy crops in Europe. Biofuel. Bioprod. Bior 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Johnson, B.; Ji, Y.; Seames, W.; Aponte, A. Double- and relay-cropping of energy crops in the northern Great Plains, USA. Ind. Crop Prod. 2015, 75, 26–34. [Google Scholar] [CrossRef]
- Moset, V.; Fontaine, D.; Møller, H.B. Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance. Energy 2017, 141, 451–460. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef]
- Negri, M.; Bacenetti, J.; Manfredini, A.; Lovarelli, D.; Fiala, M.; Maggiore, T.M.; Bocchi, S. Evaluation of methane production from maize silage by harvest of different plant portions. Biomass Bioenerg. 2014, 67, 339–346. [Google Scholar] [CrossRef]
- Fuksa, P.; Hakl, J.; Michal, P.; Hrevusova, Z.; Santrucek, J.; Tlutos, P. Effect of silage maize plant density and plant parts on biogas production and composition. Biomass Bioenerg. 2020, 142, 105770. [Google Scholar] [CrossRef]
- Samarappuli, D.; Berti, M.T. Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. J. Clean Prod. 2018, 194, 515–524. [Google Scholar] [CrossRef]
- Schorling, M.; Enders, C.; Voigt, C.A. Assessing the cultivation potential of the energy crop Miscanthus × giganteus for Germany. GCB Bioenergy 2015, 7, 763–773. [Google Scholar] [CrossRef]
- Bocchi, S.; Lazzaroni, G.; Berardo, N.; Maggiore, T. Evaluation of triticale as a forage plant through the analysis of the kinetics of some qualitative parameters from stem elongation to maturity. In Triticale: Today and Tomorrow; Guedes-Pinto, H., Darvey, N., Carnide, V.P., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1996; pp. 827–834. [Google Scholar]
- Ovejero, J.; Ortiz, C.; Boixadera, J.; Serra, X.; Ponsá, S.; Lloveras, J.; Casas, C. Pig slurry fertilization in a double-annual cropping forage system under sub-humid Mediterranean conditions. Eur. J. Agron. 2016, 81, 138–149. [Google Scholar] [CrossRef]
- Giuliano, S.; Ryan, M.R.; Véricel, G.; Rametti, G.; Perdrieux, F.; Justes, E.; Alletto, L. Low-input cropping systems to reduce input dependency and environmental impacts in maize production: A multi-criteria assessment. Eur. J. Agron. 2016, 76, 160–175. [Google Scholar] [CrossRef]
- Garuti, M.; Soldano, M.; Mazzola, L.; Fermoso, F.G.; Rodriguez, A.J.; Immovilli, A.; Dal Prà, A. Evaluation of triticale anaerobic digestion in a double cropping system: Relation between biomass yield, chemical composition, and biomethane production. Biofuels Bioprod. Bioref. 2022, 16, 1599–1612. [Google Scholar] [CrossRef]
- Duvick, D.N. Genetic progress in yield of United States maize (Zea mays L.). Maydica 2005, 50, 193–202. [Google Scholar]
- Testa, G.; Reyneri, A.; Blandino, M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. Eur. J. Agron. 2016, 72, 28–37. [Google Scholar] [CrossRef]
- Bernhard, T.; Friedt, W.; Voss-Fels, K.P.; Frisch, M.; Snowdon, R.J.; Wittkop, B. Heterosis for biomass and grain yield facilitates breeding of productive dual-purpose winter barley hybrids. Crop Sci. 2017, 57, 2405–2418. [Google Scholar] [CrossRef]
- Mühleisen, J.; Piepho, H.-P.; Maurer, H.P.; Longin, C.F.H.; Reif, J.C. Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor. Appl. Genet. 2014, 127, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Philipp, N.; Liu, G.; Zhao, Y.; He, S.; Spiller, M.; Stiewe, G.; Pillen, K.; Reif, J.C.; Li, Z. Genomic Prediction of Barley Hybrid Performance. Plant Genome 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy 2020, 10, 304. [Google Scholar] [CrossRef]
- Owens, D.; McGee, M.; Boland, T.; O’Kiely, P. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat. J. Anim. Sci. 2009, 87, 658–668. [Google Scholar] [CrossRef]
- Keady, T.W.J.; Lively, F.O.; Kilpatrick, D.J.; Moss, B.W. Effects of replacing grass silage with either maize or whole-crop wheat silages on the performance and meat quality of beef cattle offered two levels of concentrates. Animal 2007, 1, 613. [Google Scholar] [CrossRef]
- Ronga, D.; Dal Prà, A.; Immovilli, A.; Ruozzi, F.; Davolio, R.; Pacchioli, M.T. Effects of Harvest Time on the Yield and Quality of Winter Wheat Hay Produced in Northern Italy. Agronomy 2020, 10, 917. [Google Scholar] [CrossRef]
- Herrmann, C.; Idler, C.; Heiermann, M. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresour. Technol. 2016, 206, 23–35. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Van Den Boom, T.; Langeluddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Cozzolino, D.; Fassio, A.; Fernández, E.; Restaino, E.; La Manna, A. Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy. Anim. Feed. Sci. Technol. 2006, 129, 329–336. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure, Fermentation of Organic Materials Characterisation of the Substrate, Sampling, Collection of Material Data, fermentation tests, 2006.
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A.; Negri, M.; Guidetti, R.; Fiala, M. Environmental assessment of two different crop systems in terms of biomethane potential production. Sci. Total Environ. 2014, 466–467, 1066–1077. [Google Scholar] [CrossRef]
- Nadeau, E. Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. J. Sci. Food Agr. 2007, 87, 789–801. [Google Scholar] [CrossRef]
- Vitez, T.; Dokulilova, T.; Vitezova, M.; Elbl, J.; Kintl, A.; Kynicky, J.; Hladky, J.; Brtnicky, M. The Digestion of Waste from Vegetables and Maize Processing. Waste Biomass Valor 2020, 11, 2467–2473. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Chen, Y.; Solomon, R. The quality of commercial wheat silages in Israel. J. Dairy Sci. 2009, 92, 638–644. [Google Scholar] [CrossRef]
- Rincón, B.; Banks, C.J.; Heaven, S. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice. Bioresour. Technol. 2010, 101, 8179–8184. [Google Scholar] [CrossRef]
- Randby, Å.T.; Nadeau, E.; Karlsson, L.; Johansen, A. Effect of maturity stage at harvest and kernel processing of whole crop wheat silage on digestibility by dairy cows. Anim. Feed Sci. Technol. 2019, 253, 141–152. [Google Scholar] [CrossRef]
- Ashbell, G.; Weinberg, Z.G.; Bruckental, I.; Tabori, K.; Sharet, N. Wheat silage: Effect of cultivar and stage of maturity on yield and degradability in situ. J. Agric. Food Chem. 1997, 45, 709–712. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V.; Saripalli, G.; Pal, B.; Basnet, B.R.; Joshi, A.K. Hybrid wheat: Past, present and future. Theor. Appl. Genet. 2019, 132, 2463–2483. [Google Scholar] [CrossRef] [PubMed]
- Bikel, D.; Ben-Meir, Y.A.; Shaani, Y.; Solomon, R.; Richker, I.; Portnik, Y.; Jacoby, S.; Miron, J.; Ben-David, R. Nutritive value for high-yielding lactating cows of barley silage and hay as a substitute for wheat silage and hay in low-roughage diets. Anim. Feed. Sci. Technol. 2020, 265, 114498. [Google Scholar] [CrossRef]
- Preiti, G.; Calvi, A.; Romeo, M.; Badagliacca, G.; Bacchi, M. Seeding Density and Nitrogen Fertilization Effects on Agronomic Responses of Some Hybrid Barley Lines in a Mediterranean Environment. Agronomy 2021, 11, 1942. [Google Scholar] [CrossRef]
- Blandino, M.; Marinaccio, F.; Reyneri, A. La tecnica agronomica per gli orzi ibridi. L’Informatore Agrar. 2015, 35, 43–46. [Google Scholar]
- Hargreaves, A.; Hill, J.; Leaver, J.D. Effect of stage of growth on the chemical composition, nutritive value and ensilability of whole-crop barley. Anim. Feed Sci. Technol. 2009, 152, 50–61. [Google Scholar] [CrossRef]
- Mühleisen, J.; Piepho, H.-P.; Maurer, H.P.; Zhao, Y.; Reif, J.C. Exploitation of yield stability in barley. Theor. Appl. Genet. 2014, 127, 1949–1962. [Google Scholar] [CrossRef]
- Caviglia, O.P.; Rizzalli, R.H.; Monzon, J.P.; García, F.O.; Melchiori, R.J.M.; Martinez, J.J.; Cerrudo, A.; Irigoyen, A.; Barbieri, P.A.; Van Opstal, N.V.; et al. Improving resource productivity at a crop sequence level. Field Crops Res. 2019, 235, 129–141. [Google Scholar] [CrossRef]
- Strauß, C.; Herrmann, C.; Weiser, C.; Peter Kornatz, P.; Heiermann, M.; Aurbacher, J.; Müller, J.; Vetter, A. Can Energy Cropping for Biogas Production Diversify Crop Rotations? Findings from a Multi-Site Experiment in Germany. Bioenerg. Res. 2019, 12, 123–136. [Google Scholar] [CrossRef]
- Wannasek, L.; Ortner, M.; Kaul, H.P.; Amon, B.; Amon, T. Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield. Eur. J. Agron. 2019, 110, 125934. [Google Scholar] [CrossRef]
- Bonelli, L.E.; Monzon, J.P.; Cerrudo, A.; Rizzalli, R.H.; Andrade, F.H. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Res. 2016, 198, 215–225. [Google Scholar] [CrossRef]
- Testa, G.; Reyneri, A.; Blandino, M. Effect of high planting density and foliar fungicide application on the grain maize and silage and methane yield. Ital. J. Agron. 2018, 13, 290–296. [Google Scholar] [CrossRef]
- Li, Y.-C.; Dai, H.-Y.; Chen, H. Effects of plant density on the aboveground dry matter and radiation-use efficiency of field corn. PLoS ONE 2022, 17, e0277547. [Google Scholar] [CrossRef]
- Curin, F.; Severini, A.D.; González, F.G.; Otegui, M.E. Water and radiation use efficiencies in maize: Breeding effects on single-cross Argentine hybrids released between 1980 and 2012. Field Crops Res. 2020, 246, 107683. [Google Scholar] [CrossRef]
- Irmak, S.; Djaman, K. Effects of planting date and density on plant growth, yield, evapotranspiration, and irrigation- and evapotranspiration-yield production functions of maize (Zea mays L.) under subsurface drip irrigation and rainfed conditions. Trans. ASABE 2016, 59, 1235–1256. [Google Scholar] [CrossRef]
- Djaman, K.; Allen, S.; Djaman, D.S.; Koudahe, K.; Irmak, S.; Puppala, N.; Darapuneni, M.K.; Angadi, S.V. Planting date and plant density effects on maize growth, yield and water use efficiency. Environ. Chall. 2022, 6, 100417. [Google Scholar] [CrossRef]
Parameters | Measurement Units | Candiolo | Carignano |
---|---|---|---|
Sand (2–0.05 mm) | % | 54.7 | 35.5 |
Silt (0.05–0.002 mm) | % | 5.5 | 57.9 |
Clay (<0.002 mm) | % | 1.9 | 6.6 |
pH | 8.0 | 8.1 | |
Organic matter | % | 1.9 | 2.3 |
C/N | 10.1 | 8.9 | |
Cation Exchange Capacity (C.E.C.) | meq 100 g−1 | 9.2 | 12.0 |
N | % | 0.13 | 0.15 |
Available P2O5 | mg kg−1 | 22 | 21 |
Exchangeable K | mg kg−1 | 201 | 174.0 |
Growing Season | Crop | Sowing Date | Harvesting Date |
---|---|---|---|
2013–14 | Barley | 30 October 2013 | 26 May 2014 |
Triticale | 30 October 2013 | 4 June 2014 | |
Wheat | 30 October 2013 | 13 June 2014 | |
Maize | 1 April 2014 | 21 August 2014 | |
Maize after barley | 5 June 2014 | 7 October 2014 | |
Maize after triticale | 11 June 2014 | 7 October 2014 | |
Maize after wheat | 23 June 2014 | 7 October 2014 | |
2014–15 | Barley | 3 November 2014 | 27 May 2015 |
Triticale | 3 November 2014 | 8 June 2015 | |
Wheat | 3 November 2014 | 17 June 2015 | |
Maize | 1 April 2015 | 5 August 2015 | |
Maize after barley | 3 June 2015 | 29 September 2015 | |
Maize after triticale | 10 June 2015 | 13 October 2015 | |
Maize after wheat | 19 June 2015 | 13 October 2015 | |
2015–16 | Barley | 27 October 2015 | 30 May 2016 |
Triticale | 27 October 2015 | 11 June 2016 | |
Wheat | 27 October 2015 | 17 June 2016 | |
Maize | 1 April 2016 | 19 August 2016 | |
Maize after barley | 31 May 2016 | 12 September 2016 | |
Maize after triticale | 14 June 2016 | 12 September 2016 | |
Maize after wheat | 24 June 2016 | 5 October 2016 |
Growing | Month | Rainfall | Rainy Days | GDDs Cereal | GDDs Maize |
---|---|---|---|---|---|
Season | (mm) | (n°) | (Σ °C-Day) | (Σ °C-Day) | |
2013–14 | November | 96.8 | 16 | 264 | |
December | 65.8 | 15 | 168 | ||
January | 66.0 | 15 | 157 | ||
February | 86.6 | 18 | 177 | ||
March | 88.8 | 11 | 318 | ||
April | 60.2 | 10 | 436 | 169 | |
May | 97.4 | 14 | 524 | 242 | |
June | 67.4 | 14 | 339 | ||
July | 89.6 | 18 | 364 | ||
August | 73.6 | 12 | 370 | ||
September | 50.0 | 11 | 286 | ||
October | 22.4 | 13 | 136 | ||
November–May | 562 | 99 | 2044 | ||
May–October | 303 | 68 | 1496 | ||
2014–15 | November | 271.0 | 15 | 289 | |
December | 92.2 | 9 | 185 | ||
January | 35.6 | 10 | 139 | ||
February | 205.6 | 11 | 143 | ||
March | 188.4 | 9 | 300 | ||
April | 66.6 | 7 | 416 | 171 | |
May | 86.0 | 11 | 581 | 273 | |
June | 55.0 | 7 | 359 | ||
July | 9.2 | 3 | 446 | ||
August | 71.8 | 8 | 379 | ||
September | 52.4 | 5 | 260 | ||
October | 147.6 | 13 | 137 | ||
November–May | 945 | 72 | 2054 | ||
May–October | 336 | 36 | 1580 | ||
2015–16 | November | 3.2 | 1 | 284 | |
December | 2.0 | 1 | 182 | ||
January | 4.4 | 4 | 159 | ||
February | 127.6 | 10 | 190 | ||
March | 70.6 | 6 | 286 | ||
April | 79.8 | 9 | 428 | 163 | |
May | 112.0 | 18 | 517 | 222 | |
June | 36.6 | 13 | 336 | ||
July | 17.8 | 7 | 412 | ||
August | 5.4 | 3 | 396 | ||
September | 24.6 | 8 | 309 | ||
October | 59.6 | 7 | 122 | ||
November–May | 400 | 49 | 2047 | ||
May–October | 144 | 38 | 1575 |
Growing | Winter | Biomass | DM | VS | BMP | Methane |
---|---|---|---|---|---|---|
Season | Cereal | Yield | Yield | |||
(t ha−1 DM) | (%) | (% DM) | (Nm3CH4 t VS−1) | (Nm3 ha−1) | ||
2013–14 | barley | 12.0 b | 21.4 c | 90.6 a | 335 a | 3634 b |
triticale | 12.5 b | 27.3 b | 91.8 a | 346 a | 3968 b | |
wheat | 16.0 a | 35.5 a | 90.9 a | 331 a | 4811 a | |
P (F) | * | ** | ns | ns | *** | |
2014–15 | barley | 11.7 b | 27.9 c | 89.6 a | 342 a | 3650 b |
triticale | 12.1 b | 38.9 b | 90.3 a | 348 a | 3828 b | |
wheat | 14.0 a | 49.0 a | 90.7 a | 339 a | 4368 a | |
P (F) | ** | *** | ns | ns | ** | |
2015–16 | barley | 10.6 c | 26.8 b | 90.2 a | 355 a | 3412 b |
triticale | 12.0 b | 34.9 a | 92.3 a | 350 a | 3871 b | |
wheat | 14.7 a | 34.3 a | 89.2 a | 341 a | 4470 a | |
P (F) | *** | ** | ns | ns | * |
Growing | Winter | NDF | ADF | ADL | Starch | Crude |
---|---|---|---|---|---|---|
Season | Cereal | Protein | ||||
(% DM) | (% DM) | (% DM) | (% DM) | (% DM) | ||
2013–14 | barley | 55.3 b | 36.3 b | 4.4 b | 12.7 a | 8.8 a |
triticale | 58.5 a | 40.6 a | 4.6 b | 5.8 b | 7.1 a | |
wheat | 56.1 b | 39.9 a | 5.2 a | 18.2 a | 7.6 a | |
P (F) | ** | * | * | * | ns | |
2014–15 | barley | 54.6 a | 38.0 b | 5.3 a | 16.2 a | 8.8 a |
triticale | 56.9 a | 48.4 a | 6.2 a | 8.7 b | 5.9 c | |
wheat | 55.8 a | 37.3 b | 5.9 a | 19.0 a | 7.4 b | |
P (F) | ns | * | ns | * | * | |
2015–16 | barley | 53.5 a | 36.3 ab | 5.4 ab | 10.4 a | 8.5 b |
triticale | 51.8 a | 34.1 b | 5.0 b | 14.2 a | 9.3 ab | |
wheat | 53.7 a | 38.0 a | 5.9 a | 15.0 a | 10.0 a | |
P (F) | ns | * | * | ns | * |
Growing | Maize | Plant | NDF | ADF | ADL | Starch | Crude |
---|---|---|---|---|---|---|---|
Season | Density | Protein | |||||
(% DM) | (% DM) | (% DM) | (% DM) | (% DM) | |||
2013–14 | single crop | StD | 40.5 cd | 25.2 bc | 3.0 | 30.4 | 7.3 bc |
after barley | StD | 45.9 bcd | 27.8 ab | 3.0 | 31.8 | 6.0 e | |
after triticale | StD | 51.0 ab | 31.7 ab | 3.6 | 25.1 | 6.8 bcd | |
after wheat | StD | 48.8 abc | 30.0 ab | 3.4 | 25.1 | 7.4 b | |
single crop | HiD | 41.9 cd | 25.5 bc | 2.8 | 30.8 | 7.2 bc | |
after barley | HiD | 38.9 d | 22.9 c | 2.7 | 37.3 | 6.6 cde | |
after triticale | HiD | 49.2 abc | 30.8 ab | 3.5 | 26.9 | 6.3 de | |
after wheat | HiD | 54.6 a | 35.1 a | 4.3 | 20.0 | 8.5 a | |
P (F) | ** | ** | ** | ** | *** | ||
2014–15 | single crop | StD | 36.5 a | 22.6 a | 3.4 | 31.3 | 8.3 abc |
after barley | StD | 39.4 a | 22.1 a | 3.4 | 32.5 | 8.7 a | |
after triticale | StD | 37.4 a | 21.1 a | 2.9 | 34.3 | 7.0 c | |
after wheat | StD | 41.5 a | 24.1 a | 3.2 | 28.6 | 7.7 abc | |
single crop | HiD | 37.8 a | 22.8 a | 3.3 | 31.6 | 8.5 ab | |
after barley | HiD | 39.1 a | 21.8 a | 3.2 | 31.2 | 8.2 abc | |
after triticale | HiD | 36.9 a | 21.2 a | 3.0 | 34.8 | 7.1 bc | |
after wheat | HiD | 39.0 a | 22.8 a | 3.3 | 29.2 | 8.0 abc | |
P (F) | ns | ns | ns | ns | * | ||
2015–16 | single crop | StD | 35.1 a | 22.7 a | 3.1 | 34.0 | 8.2 a |
after barley | StD | 40.8 a | 26.3 a | 3.1 | 29.6 | 7.3 a | |
after triticale | StD | 42.4 a | 27.8 a | 3.5 | 26.5 | 6.9 a | |
after wheat | StD | 41.5 a | 24.0 a | 3.2 | 28.6 | 7.7 a | |
single crop | HiD | 37.7 a | 25.1 | 3.3 | 33.0 | 7.9 a | |
after barley | HiD | 44.1 a | 28.6 | 3.4 | 25.4 | 7.4 a | |
after triticale | HiD | 41.9 a | 26.2 | 3.5 | 27.8 | 7.1 a | |
after wheat | HiD | 39.0 a | 22.8 | 3.2 | 29.2 | 8.0 a | |
P (F) | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blandino, M.; Scapino, M.; Rollè, L.; Dinuccio, E.; Reyneri, A. Biomass and Methane Production in Double Cereal Cropping Systems with Different Winter Cereal and Maize Plant Densities. Agronomy 2023, 13, 536. https://doi.org/10.3390/agronomy13020536
Blandino M, Scapino M, Rollè L, Dinuccio E, Reyneri A. Biomass and Methane Production in Double Cereal Cropping Systems with Different Winter Cereal and Maize Plant Densities. Agronomy. 2023; 13(2):536. https://doi.org/10.3390/agronomy13020536
Chicago/Turabian StyleBlandino, Massimo, Mattia Scapino, Luca Rollè, Elio Dinuccio, and Amedeo Reyneri. 2023. "Biomass and Methane Production in Double Cereal Cropping Systems with Different Winter Cereal and Maize Plant Densities" Agronomy 13, no. 2: 536. https://doi.org/10.3390/agronomy13020536
APA StyleBlandino, M., Scapino, M., Rollè, L., Dinuccio, E., & Reyneri, A. (2023). Biomass and Methane Production in Double Cereal Cropping Systems with Different Winter Cereal and Maize Plant Densities. Agronomy, 13(2), 536. https://doi.org/10.3390/agronomy13020536