Sex Chromosomes and Sex Determination in Dioecious Agricultural Plants
Abstract
:1. Introduction
2. Features of the Dioecious Crop Cultivation
2.1. Sex Chromosomes and Sex Determination in Herbaceous Crops
2.1.1. Asparagus
2.1.2. Sorrel
2.1.3. Spinacia
2.1.4. Hemp
2.1.5. Betel
2.1.6. Yams
2.2. Sex Chromosomes and Sex Determination of Perennial Tree Crops Grown for Fruits
2.2.1. Papaya
2.2.2. Vitis
2.2.3. Diospyros
2.2.4. Pistachio
2.2.5. Hippophae
2.2.6. Humulus
2.2.7. Date Palm
2.2.8. Myristica
2.2.9. Actinidia
2.2.10. Ilex
2.2.11. Chinese Bayberry
2.3. Sex Chromosomes and Sex Determination of Weeds
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renner, S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014, 101, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Bachtrog, D.; Mank, J.E.; Peichel, C.L.; Kirkpatrick, M.; Otto, S.P.; Ashman, T.-L.; Hahn, M.W.; Kitano, J.; Mayrose, I.; Ming, R.; et al. Sex Determination: Why So Many Ways of Doing It? PLoS Biol. 2014, 12, e1001899. [Google Scholar] [CrossRef] [PubMed]
- Vyskot, B.; Hobza, R. The genomics of plant sex chromosomes. Plant Sci. 2015, 236, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Montalvão, A.P.L.; Kersten, B.; Fladung, M.; Müller, N.A. The Diversity and Dynamics of Sex Determination in Dioecious Plants. Front. Plant Sci. 2021, 11, 580488. [Google Scholar] [CrossRef] [PubMed]
- Picq, S.; Santoni, S.; Lacombe, T.; Latreille, M.; Weber, A.; Ardisson, M.; Ivorra, S.; Maghradze, D.; Arroyo-Garcia, R.; Chatelet, P.; et al. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol. 2014, 14, 229. [Google Scholar] [CrossRef]
- Schaefer, H.; Renner, S.S. A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Mol. Phylogenetics Evol. 2010, 54, 553–560. [Google Scholar] [CrossRef]
- Weiblen, G.D. Phylogenetic relationships of functionally dioecious FICUS (Moraceae) based on ribosomal DNA sequences and morphology. Am. J. Bot. 2000, 87, 1342–1357. [Google Scholar] [CrossRef]
- Testolin, R.; Pilkington, S.M.; Akagi, T. Editorial: Dioecy in Fruit Crops: The Gender Rise and Decline and Its Agronomic Impact. Front. Plant Sci. 2021, 12, 719588. [Google Scholar] [CrossRef]
- Renner, S.S.; Ricklefs, R.E. Dioecy and its correlates in the flowering plants. Am. J. Bot. 1995, 82, 596–606. [Google Scholar] [CrossRef]
- Charlesworth, B.; Charlesworth, D. A Model for the Evolution of Dioecy and Gynodioecy. Am. Nat. 1978, 112, 975–997. [Google Scholar] [CrossRef]
- Charlesworth, D. Young sex chromosomes in plants and animals. New Phytol. 2019, 224, 1095–1107. [Google Scholar] [CrossRef]
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Harkess, A.; Huang, K.; van der Hulst, R.; Tissen, B.; Caplan, J.L.; Koppula, A.; Batish, M.; Meyers, B.C.; Leebens-Mack, J. Sex Determination by Two Y-Linked Genes in Garden Asparagus. Plant Cell 2020, 32, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.M.; Akagi, T.; Tao, R.; Comai, L. One Hundred Ways to Invent the Sexes: Theoretical and Observed Paths to Dioecy in Plants. Annu. Rev. Plant Biol. 2018, 69, 553–575. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Henry, I.M.; Ohtani, H.; Morimoto, T.; Beppu, K.; Kataoka, I.; Tao, R. A Y-Encoded Suppressor of Feminization Arose via Lineage-Specific Duplication of a Cytokinin Response Regulator in Kiwifruit. Plant Cell 2018, 30, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; Mcneilage, M.A.; Douglas, M.J.; Wang, T.; et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Sun, P.; Suo, Y.; Han, W.; Mai, Y.; Diao, S.; Yuan, D.; Fu, J. Cytomorphological observation on development of pistil and stamen of male and hermaphrodite floral buds of diospyros kaki’Longyan Yeshi 1’. Acta Hortic. Sin. 2019, 46, 1897–1906. [Google Scholar]
- Prentout, D.; Razumova, O.; Rhoné, B.; Badouin, H.; Henri, H.; Feng, C.; Käfer, J.; Karlov, G.; Marais, G.A. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res. 2020, 30, 164–172. [Google Scholar] [CrossRef]
- Akagi, T.; Henry, I.M.; Kawai, T.; Comai, L.; Tao, R. Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon. Plant Cell 2016, 28, 2905–2915. [Google Scholar] [CrossRef]
- Royal Botanic Gardens, Kew. Available online: https://cvalues.science.kew.org/search/angiosperm (accessed on 25 October 2022).
- Kubis, S.; Schmidt, T.; Heslop-Harrison, J.S. Repetitive DNA Elements as a Major Component of Plant Genomes. Ann. Bot. 1998, 82, 45–55. [Google Scholar] [CrossRef]
- Macas, J.; Novák, P.; Pellicer, J.; Čížková, J.; Koblížková, A.; Neumann, P.; Fuková, I.; Doležel, J.; Kelly, L.J.; Leitch, I.J. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE 2015, 10, e0143424. [Google Scholar] [CrossRef] [PubMed]
- Błocka-Wandas, M.; Sliwinska, E.; Grabowska-Joachimiak, A.; Musial, K.; Joachimiak, A.J. Male gametophyte development and two different DNA classes of pollen grains in Rumex acetosa L., a plant with an XX/XY1Y2 sex chromosome system and a female-biased sex ratio. Sex. Plant Reprod. 2007, 20, 171–180. [Google Scholar] [CrossRef]
- Grabowska-Joachimiak, A.; Śliwińska, E.; Piguła, M.; Skomra, U.; Joachimiak, A.J. Genome size in Humulus lupulus L. and H. japonicus Siebold and Zucc. (Cannabaceae). Acta Soc. Bot. Pol. 2011, 75, 207–214. [Google Scholar] [CrossRef]
- Carey, S.B.; Lovell, J.T.; Jenkins, J.; Leebens-Mack, J.; Schmutz, J.; Wilson, M.A.; Harkess, A. Representing sex chromosomes in genome assemblies. Cell Genom. 2022, 2, 100132. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Tian, R.; Li, G.; Zhao, C.; Fan, S.; Sun, J.; Zhao, S.; Wang, X. Establishment of male-specific sequence-tagged site markers in Asparagus officinalis: An efficient tool for sex identification. Plant Breed. 2022, 141, 471–481. [Google Scholar] [CrossRef]
- Korpelainen, H. A genetic method to resolve gender complements investigations on sex ratios in Rumex acetosa. Mol. Ecol. 2002, 11, 2151–2156. [Google Scholar] [CrossRef]
- She, H.; Xu, Z.; Zhang, H.; Li, G.; Wu, J.; Wang, X.; Li, Y.; Liu, Z.; Qian, W. Identification of a male-specific region (MSR) in Spinacia oleracea. Hortic. Plant J. 2021, 7, 341–346. [Google Scholar] [CrossRef]
- Mandolino, G.; Carboni, A.; Forapani, S.; Faeti, V.; Ranalli, P. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theor. Appl. Genet. 1999, 98, 86–92. [Google Scholar] [CrossRef]
- Samantaray, S.; Phurailatpam, A.; Bishoyi, A.K.; Geetha, K.A.; Maiti, S. Identification of sex-specific DNA markers in betel vine (Piper betle L.). Genet. Resour. Crop. Evol. 2011, 59, 645–653. [Google Scholar] [CrossRef]
- Mondo, J.M.; Agre, P.A.; Asiedu, R.; Akoroda, M.O.; Asfaw, A. Genome-Wide Association Studies for Sex Determination and Cross-Compatibility in Water Yam (Dioscorea alata L.). Plants 2021, 10, 1412. [Google Scholar] [CrossRef]
- Deputy, J.; Ming, R.; Ma, H.; Liu, Z.; Fitch, M.; Wang, M.; Manshardt, R.; Stiles, J. Molecular markers for sex determination in papaya (Carica papaya L.). Theor. Appl. Genet. 2002, 106, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Ming, R.; Yu, Q.; Moore, P.H. Sex determination in papaya. Semin. Cell Dev. Biol. 2007, 18, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Kajita, K.; Kibe, T.; Morimura, H.; Tsujimoto, T.; Nishiyama, S.; Kawai, T.; Yamane, H.; Tao, R. Development of molecular markers associated with sexuality in Diospyros lotus L. and their application in D. kaki Thunb. J. Jpn. Soc. Hortic. Sci. 2013, 83, 214–221. [Google Scholar] [CrossRef]
- Khodaeiaminjan, M.; Kafkas, E.; Güney, M.; Kafkas, S. Development and linkage mapping of novel sex-linked markers for marker-assisted cultivar breeding in pistachio (Pistacia vera L.). Mol. Breed. 2017, 37, 1–9. [Google Scholar] [CrossRef]
- Kafkas, S.; Khodaeiaminjan, M.; Güney, M.; Kafkas, E. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genom. 2015, 16, 98. [Google Scholar] [CrossRef] [PubMed]
- Korekar, G.; Sharma, R.K.; Kumar, R.; Meenu; Bisht, N.C.; Srivastava, R.B.; Ahuja, P.S.; Stobdan, T. Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotechnol. Lett. 2012, 34, 973–978. [Google Scholar] [CrossRef]
- Danilova, T.V.; Karlov, G.I. Application of inter simple sequence repeat (ISSR) polymorphism for detection of sex-specific molecular markers in hop (Humulus lupulus L.). Euphytica 2006, 151, 15–21. [Google Scholar] [CrossRef]
- Amjad, Z.; Khan, Z.; Shan, M.; Khanum, P.; Saeed, A.; Akhtar, G. Validation of PCR-based Markers Associated with Sex Determination in Date Palm (Phoenix dactylifera L.). Pak. J. Biochem. Biotechnol. 2022, 3, 26–33. [Google Scholar] [CrossRef]
- Shaanker, U. ldentification of sex-specific DNA markers in the dioecious tree, nutmeg (Myristica fragrans Houtt.). Noticiario de Recursos Fitogenéticos 2000. [Google Scholar]
- Fraser, L.G.; Tsang, G.K.; Datson, P.M.; De Silva, H.N.; Harvey, C.F.; Gill, G.P.; Crowhurst, R.N.; Mcneilage, M.A. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genom. 2009, 10, 102. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, H.-M.; Shen, Y.-T.; Zhao, H.-B.; Yang, Q.-S.; Zhu, C.-Q.; Sun, D.-L.; Wang, G.-Y.; Zhou, C.-C.; Jiao, Y.; et al. Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry. Hortic. Res. 2020, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.S.; Sadeque, A.; Giacomini, D.A.; Brown, P.J.; Tranel, P.J. Sex-specific markers for waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri). Weed Sci. 2019, 67, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Uragami, A.; Ueno, R.; Yamasaki, A.; Matsuo, K.; Yamaguchi, T.; Tokiwa, H.; Takizawa, T.; Sakai, H.; Ikeuchi, T.; Watanabe, S.-I.; et al. Productive Differences between Male and Female Plants in White Asparagus Production Using the Rootstock-planting Forcing Culture Technique. Hortic. J. 2016, 85, 322–330. [Google Scholar] [CrossRef]
- Norup, M.F.; Petersen, G.; Burrows, S.; Bouchenak-Khelladi, Y.; Leebens-Mack, J.; Pires, J.C.; Linder, H.P.; Seberg, O. Evolution of Asparagus L. (Asparagaceae): Out-of-South-Africa and multiple origins of sexual dimorphism. Mol. Phylogenetics Evol. 2015, 92, 25–44. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 October 2022).
- Flory, W.S. Genetic and cytological investigations on Asparagus officinalis L. Genetics 1932, 17, 432–467. [Google Scholar] [CrossRef]
- Deng, C.-L.; Qin, R.-Y.; Wang, N.-N.; Cao, Y.; Gao, J.; Gao, W.-J.; Lu, L.-D. Karyotype of asparagus by physical mapping of 45S and 5S rDNA by FISH. J. Genet. 2012, 91, 209–212. [Google Scholar] [CrossRef]
- Löptien, H. Giemsa-Banden auf Mitosechromosomen des Spargels (Asparagus officinalis L.) und des Spinats (Spinacia oleracea L.). Z Pflanz. 1976, 76, 225–230. [Google Scholar]
- Ming, R.; Bendahmane, A.; Renner, S.S. Sex Chromosomes in Land Plants. Annu. Rev. Plant Biol. 2011, 62, 485–514. [Google Scholar] [CrossRef]
- Harkess, A.; Mercati, F.; Shan, H.; Sunseri, F.; Falavigna, A.; Leebens-Mack, J. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis). New Phytol. 2015, 207, 883–892. [Google Scholar] [CrossRef]
- Li, S.-F.; Lv, C.-C.; Lan, L.-N.; Jiang, K.-L.; Zhang, Y.-L.; Li, N.; Deng, C.-L.; Gao, W.-J. DNA methylation is involved in sexual differentiation and sex chromosome evolution in the dioecious plant garden asparagus. Hortic. Res. 2021, 8, 198. [Google Scholar] [CrossRef]
- Sneep, J. The significance of andromonoecism for the breeding of Asparagus officinalis L. II. Euphytica 1953, 2, 224–228. [Google Scholar] [CrossRef]
- Franken, A.A. Sex characteristics and inheritance of sex in asparagus (Asparagus officinalis L.). Euphytica 1970, 19, 277–287. [Google Scholar] [CrossRef]
- Falloon, P.; Nikoloff, A. Asparagus: Value of individual plant yield and fern characteristics as selection criteria. New Zealand J. Exp. Agric. 1986, 14, 417–420. [Google Scholar] [CrossRef]
- Moreno-Pinel, R.; Castro-López, P.; Die-Ramón, J.V.; Gil-Ligero, J. Asparagus (Asparagus officinalis L.) Breeding. In Advances in Plant Breeding Strategies: Vegetable Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 425–469. [Google Scholar] [CrossRef]
- Jain, S.M.; Al-Khayri, J.M.; Johnson, D.V. Advances in Plant Breeding Strategies: Vegetable Crops: Volume 10: Leaves, Flowerheads, Green Pods, Mushrooms and Truffles; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ii, Y.; Uragami, A.; Uno, Y.; Kanechi, M.; Inagaki, N. RAPD-based analysis of differences between male and female genotypes of Asparagus officinalis. Hortic. Sci. 2012, 39, 33–37. [Google Scholar] [CrossRef]
- Bracale, M.; Caporali, E.; Galli, M.; Longo, C.; Marziani-Longo, G.; Rossi, G.; Spada, A.; Soave, C.; Falavigna, A.; Raffaldi, F.; et al. Sex determination and differentiation in Asparagus officinalis L. Plant Sci. 1991, 80, 67–77. [Google Scholar] [CrossRef]
- Reamon-Büttner, S.M.; Jung, C. AFLP-derived STS markers for the identification of sex in Asparagus officinalis L. Theor. Appl. Genet. 2000, 100, 432–438. [Google Scholar] [CrossRef]
- Mercati, F.; Riccardi, P.; Leebens-Mack, J.; Abenavoli, M.R.; Falavigna, A.; Sunseri, F. Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.). Plant Sci. 2013, 203–204, 115–123. [Google Scholar] [CrossRef]
- Stone, N.K.; Thomas, Z.M.; Roose, M.L. A new robust codominant sex-linked STS marker for asparagus. Acta Hortic. 2018, 1223, 51–58. [Google Scholar] [CrossRef]
- Vasas, A.; Orbán-Gyapai, O.; Hohmann, J. The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2015, 175, 198–228. [Google Scholar] [CrossRef]
- Schuster, T.M.; Reveal, J.L.; Bayly, M.J.; Kron, K.A. An updated molecular phylogeny of Polygonoideae (Polygonaceae): Relationships of Oxygonum, Pteroxygonum, and Rumex, and a new circumscription of Koenigia. Taxon 2015, 64, 1188–1208. [Google Scholar] [CrossRef]
- Yazdi, S.A.F.; Rezvani, M.; Mohassel, M.H.R.; Ghanizadeh, H. Factors affecting seed germination and seedling emergence of sheep sorrel (Rumex acetosella). Rom Agric Res 2013, 30, 373–380. [Google Scholar]
- Kennedy, K.J.; Boyd, N.S.; Nams, V.O. Hexazinone and Fertilizer Impacts on Sheep Sorrel (Rumex acetosella) in Wild Blueberry. Weed Sci. 2010, 58, 317–322. [Google Scholar] [CrossRef]
- Kennedy, K.J.; Boyd, N.S.; Nams, V.O.; Olson, A.R. The Impacts of Fertilizer and Hexazinone on Sheep Sorrel (Rumex acetosella) Growth Patterns in Lowbush Blueberry Fields. Weed Sci. 2011, 59, 335–340. [Google Scholar] [CrossRef]
- Talovina, G.V.; Smekalova, T.N. Distribution of wild relatives of cultivated sorrel (Rumex acetosa L.) over russia and aspects of their in situ conservation. Vavilovia 2018, 1, 33–39. [Google Scholar] [CrossRef]
- Kukusheva, A.; Stepanov, A. Effect of mowing term on biometrics, yield and nutritional properties of hybrid (Rumex patientia × Rumex tianschanicus). Bulg. J. Agric. Sci. 2016, 22, 948–954. [Google Scholar]
- Feduraev, P.; Skrypnik, L.; Nebreeva, S.; Dzhobadze, G.; Vatagina, A.; Kalinina, E.; Pungin, A.; Maslennikov, P.; Riabova, A.; Krol, O.; et al. Variability of Phenolic Compound Accumulation and Antioxidant Activity in Wild Plants of Some Rumex Species (Polygonaceae). Antioxidants 2022, 11, 311. [Google Scholar] [CrossRef]
- Yıldırım, A.; Mavi, A.; Kara, A.A. Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. Extracts. J. Agric. Food Chem. 2001, 49, 4083–4089. [Google Scholar] [CrossRef]
- Cuñado, N.; Navajas-Pérez, R.; de la Herrán, R.; Rejón, C.R.; Rejón, M.R.; Santos, J.L.; Garrido-Ramos, M.A. The evolution of sex chromosomes in the genus Rumex (Polygonaceae): Identification of a new species with heteromorphic sex chromosomes. Chromosom. Res. 2007, 15, 825–833. [Google Scholar] [CrossRef]
- Mariotti, B.; Manzano, S.; Kejnovský, E.; Vyskot, B.; Jamilena, M. Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol. Genet. Genom. 2008, 281, 249–259. [Google Scholar] [CrossRef]
- Rejón, C.R.; Jamilena, M.; Ramos, M.G.; Parker, J.S. Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity 1994, 72, 209–215. [Google Scholar] [CrossRef]
- Takenaka, Y. On the Special Autosomes with Reference to the Sex-determination of Rumex acetosa L. Cytologia 1937, 2, 995–1002. [Google Scholar] [CrossRef]
- Kihara, H.; Ono, T. The sex-chromosomes of rumex acetosa. Mol. Genet. Genom. 1925, 39, 1–7. [Google Scholar] [CrossRef]
- Wilby, A.S.; Parker, J.S. Recurrent patterns of chromosome variation in a species group. Heredity 1988, 61, 55–62. [Google Scholar] [CrossRef]
- Shibata, F.; Hizume, M.; Kuroki, Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 1999, 108, 266–270. [Google Scholar] [CrossRef]
- Shibata, F.; Hizume, M.; Kuroki, Y. Molecular cytogenetic analysis of supernumerary heterochromatic segments in Rumex acetosa. Genome 2000, 43, 391–397. [Google Scholar] [CrossRef]
- Steflova, P.; Tokan, V.; Vogel, I.; Lexa, M.; Macas, J.; Novak, P.; Hobza, R.; Vyskot, B.; Kejnovsky, E. Contrasting Patterns of Transposable Element and Satellite Distribution on Sex Chromosomes (XY1Y2) in the Dioecious Plant Rumex acetosa. Genome Biol. Evol. 2013, 5, 769–782. [Google Scholar] [CrossRef]
- Bürli, S.; Pannell, J.R.; Tonnabel, J. Environmental variation in sex ratios and sexual dimorphism in three wind-pollinated dioecious plant species. Oikos 2022, 2022, e08651. [Google Scholar] [CrossRef]
- Liu, Z.; She, H.; Xu, Z.; Zhang, H.; Li, G.; Zhang, S.; Qian, W. Quantitative trait loci (QTL) analysis of leaf related traits in spinach (Spinacia oleracea L.). BMC Plant Biol. 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Hammer, K. Chenopodiaceae, Spinacia oleracea L. In Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (Except Ornamentals), 1st English ed.; Hanelt, P., Institute of Plant Genetics and Crop Plant Research Berlin, Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001; pp. 249–251. [Google Scholar]
- Stevenson, E.C. A genetic study of the heterogametic nature of the staminate plant in spinach (Spinacia oleracea L.). Proc. Am. Soc. Hortic. Sci. 1954, 63, 444–446. [Google Scholar]
- Janick, J.; Stevenson, E.C. The effects of polyploidy on sex expression in Spinach. J. Hered. 1955, 46, 151–156. [Google Scholar] [CrossRef]
- Janick, J.; Mahoney, D.L.; Pfahler, P.L. The trisomics of Spinacia oleracea. J. Hered. 1959, 50, 47–50. [Google Scholar] [CrossRef]
- Khattak, J.Z.K.; Torp, A.M.; Andersen, S.B. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 2006, 148, 311–318. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Wang, X.; Wu, J.; Zhang, H.; Xia, Z.; Qian, W. Genome-wide association studies for monoecism in spinach. Acta Hortic. Sin. 2019, 46, 1495–1502. [Google Scholar] [CrossRef]
- She, H.; Liu, Z.; Xu, Z.; Zhang, H.; Cheng, F.; Wang, X.; Qian, W. The female (XX) and male (YY) genomes provide insights into the sex determination mechanism in spinach. bioRxiv 2020. [CrossRef]
- Vitale, J.J.; Freeman, D.C. Secondary sex characteristics in Spinacia oleracea L.: Quantitative evidence for the existence of at least three sexual morphs. Am. J. Bot. 1985, 72, 1061–1066. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Kosheleva, O.V.; Krivenkov, L.V.; Dobrutskaya, H.G.; Nadezhkin, S.; Caruso, G. Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci. Hortic. 2017, 225, 350–358. [Google Scholar] [CrossRef]
- Pérez-Llorca, M.; Vilas, J.S. Sexual dimorphism in response to herbivory and competition in the dioecious herb Spinacia oleracea. Plant Ecol. 2019, 220, 57–68. [Google Scholar] [CrossRef]
- Divashuk, M.G.; Alexandrov, O.S.; Razumova, O.V.; Kirov, I.V.; Karlov, G.I. Molecular Cytogenetic Characterization of the Dioecious Cannabis sativa with an XY Chromosome Sex Determination System. PLoS ONE 2014, 9, e85118. [Google Scholar] [CrossRef]
- Van Bakel, H.; Stout, J.M.; Cote, A.G.; Tallon, C.M.; Sharpe, A.G.; Hughes, T.R.; Page, J.E. The draft genome and transcriptome of Cannabis sativa. Genome Biol. 2011, 12, R102. [Google Scholar] [CrossRef]
- Grassa, C.J.; Weiblen, G.D.; Wenger, J.P.; Dabney, C.; Poplawski, S.G.; Motley, S.T.; Michael, T.P.; Schwartz, C.J. A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytol. 2021, 230, 1665–1679. [Google Scholar] [CrossRef]
- Laverty, K.U.; Stout, J.M.; Sullivan, M.J.; Shah, H.; Gill, N.; Holbrook, L.; Deikus, G.; Sebra, R.; Hughes, T.R.; Page, J.E.; et al. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res. 2018, 29, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, B.; Xie, S.; Xu, X.; Zhang, J.; Pei, L.; Yu, Y.; Yang, W.; Zhang, Y. A high-quality reference genome of wild Cannabis sativa. Hortic. Res. 2020, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schultes, R.E.; Klein, W.M.; Plowman, T.; Lockwood, T.E. Cannabis: An example of taxonomic neglect. In Cannabis and Culture; De Gruyter Mouton: New York, NY, USA, 1975; pp. 21–38. [Google Scholar] [CrossRef]
- Merlin, M.D. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ. Bot. 2003, 57, 295–323. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Sorrentino, G. Introduction to emerging industrial applications of cannabis (Cannabis sativa L.). Rendiconti Lince Sci. Fis. Nat. 2021, 32, 233–243. [Google Scholar] [CrossRef]
- Faux, A.-M.; Draye, X.; Lambert, R.; D’Andrimont, R.; Raulier, P.; Bertin, P. The relationship of stem and seed yields to flowering phenology and sex expression in monoecious hemp (Cannabis sativa L.). Eur. J. Agron. 2013, 47, 11–22. [Google Scholar] [CrossRef]
- Baldini, M.; Ferfuia, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cattivello, C. The Performance and Potentiality of Monoecious Hemp (Cannabis sativa L.) Cultivars as a Multipurpose Crop. Agronomy 2018, 8, 162. [Google Scholar] [CrossRef]
- Razumova, O.V.; Alexandrov, O.S.; Divashuk, M.G.; Sukhorada, T.I.; Karlov, G.I. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution. Protoplasma 2015, 253, 895–901. [Google Scholar] [CrossRef]
- Faux, A.-M.; Berhin, A.; Dauguet, N.; Bertin, P. Sex chromosomes and quantitative sex expression in monoecious hemp (Cannabis sativa L.). Euphytica 2013, 196, 183–197. [Google Scholar] [CrossRef]
- Törjék, O.; Bucherna, N.; Kiss, E.; Homoki, H.; Finta-Korpelová, Z.; Bócsa, I.; Nagy, I.; Heszky, L.E. Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 2002, 127, 209–218. [Google Scholar] [CrossRef]
- Mandolino, G.; Ranalli, P. The Applications of Molecular Markers in Genetics and Breeding of Hemp. J. Ind. Hemp 2002, 7, 7–23. [Google Scholar] [CrossRef]
- Moliterni, V.M.; Cattivelli, L.; Ranalli, P.; Mandolino, G. The sexual differentiation of Cannabis sativa L.: A morphological and molecular study. Euphytica 2004, 140, 95–106. [Google Scholar] [CrossRef]
- Faux, A.-M.; Draye, X.; Flamand, M.-C.; Occre, A.; Bertin, P. Identification of QTLs for sex expression in dioecious and monoecious hemp (Cannabis sativa L.). Euphytica 2016, 209, 357–376. [Google Scholar] [CrossRef]
- Heslop-Harrison, J.; Heslop-Harrison, Y. Studies on Flowering-Plant Growth and Organogenesis: III. Leaf Shape Changes Associated with Flowering and Sex Differentiation in Cannabis Sativa. In Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science; Royal Irish Academy: Dublin, Ireland, 1957; Volume 59, pp. 257–283. [Google Scholar]
- Adal, A.M.; Doshi, K.; Holbrook, L.; Mahmoud, S.S. Comparative RNA-Seq analysis reveals genes associated with masculinization in female Cannabis sativa. Planta 2021, 253, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Guha, P. Betel Leaf: The Neglected Green Gold of India. J. Hum. Ecol. 2006, 19, 87–93. [Google Scholar] [CrossRef]
- Biswas, P.; Anand, U.; Saha, S.C.; Kant, N.; Mishra, T.; Masih, H.; Bar, A.; Pandey, D.K.; Jha, N.K.; Majumder, M.; et al. Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J. Cell. Mol. Med. 2022, 26, 3083–3119. [Google Scholar] [CrossRef] [PubMed]
- Taukoorah, U.; Lall, N.; Mahomoodally, F. Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics. S. Afr. J. Bot. 2016, 105, 133–140. [Google Scholar] [CrossRef]
- Gundala, S.R.; Yang, C.; Mukkavilli, R.; Paranjpe, R.; Brahmbhatt, M.; Pannu, V.; Cheng, A.; Reid, M.D.; Aneja, R. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol. Appl. Pharmacol. 2014, 280, 86–96. [Google Scholar] [CrossRef]
- Bari, S.; Khandokar, L.; Haque, E.; Romano, B.; Capasso, R.; Seidel, V.; Haque, A.; Rashid, M.A. Ethnomedicinal uses, phytochemistry, and biological activities of plants of the genus Gynura. J. Ethnopharmacol. 2021, 271, 113834. [Google Scholar] [CrossRef]
- Madhumita, M.; Guha, P.; Nag, A. Processing and Potential Health Benefits of Betel Leaf (Piper betle L.). In Herbal Medicine in India; Springer: Singapore, 2020; pp. 237–246. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, N.; Ranade, S.A. Genetic diversity amongst landraces of a dioecious vegetatively propagated plant, betelvine (Piper betle L.). J. Biosci. 2004, 29, 319–328. [Google Scholar] [CrossRef]
- Phurailatpam, A.K.; Geetha, K.A.; Maiti, S. Ploidy distinction in male and female plants of betelvine (Piper betle L.): A study by flow cytometry. Genet. Resour. Crop. Evol. 2018, 65, 1565–1570. [Google Scholar] [CrossRef]
- Das, S.; Parida, R.; Sandeep, I.S.; Nayak, S.; Mohanty, S. Biotechnological intervention in betelvine (Piper betle L.): A review on recent advances and future prospects. Asian Pac. J. Trop. Med. 2016, 9, 938–946. [Google Scholar] [CrossRef]
- Sheeja, T.E.; Bindu, K.H.; Anto, P.; Dhanya, K.; Siju, S.; Kumar, T.V. A SCAR marker based method for sex determination in dioecious betel vine (Piper betle). Ind. J. Agric. Sci. 2013, 83, 1409–1410. [Google Scholar]
- Denadi, N.; Gandonou, C.; Missihoun, A.A.; Zoundjihékpon, J.; Quinet, M. Plant Sex Prediction Using Genetic Markers in Cultivated Yams (Dioscorea rotundata Poir.) in Benin. Agronomy 2020, 10, 1521. [Google Scholar] [CrossRef]
- Terauchi, R.; Kahl, G. Sex determination in Dioscorea tokoro, a wild yam species. In Sex Determination in Plants; Ainsworth, C.C., Ed.; BIOS Scientific Publishers: Oxford, UK, 1999; pp. 163–171. [Google Scholar]
- Martin, F.W. Sex Ratio and Sex Determination in Dioscorea. J. Hered. 1966, 57, 95–99. [Google Scholar] [CrossRef]
- Tamiru, M.; Natsume, S.; Takagi, H.; White, B.; Yaegashi, H.; Shimizu, M.; Yoshida, K.; Uemura, A.; Oikawa, K.; Abe, A.; et al. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biol. 2017, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, Y.; Darkwa, K.; Yaegashi, H.; Natsume, S.; Shimizu, M.; Abe, A.; Hirabuchi, A.; Ito, K.; Oikawa, K.; Tamiru-Oli, M.; et al. Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (Dioscorea rotundata). Proc. Natl. Acad. Sci. USA 2020, 117, 31987–31992. [Google Scholar] [CrossRef]
- Agre, P.; Nwachukwu, C.; Olasanmi, B.; Obidiegwu, J.; Nwachukwu, E.; Adebola, P.; Dekoeyer, D.; Asrat, A. Sample Preservation and Plant Sex Prediction in White Guinea yam (Dioscorea rotundata Poir.). J. Appl. Biotechnol. Rep. 2020, 7, 145–151. [Google Scholar] [CrossRef]
- Sugihara, Y.; Kudoh, A.; Oli, M.T.; Takagi, H.; Natsume, S.; Shimizu, M.; Abe, A.; Asiedu, R.; Asfaw, A.; Adebola, P.; et al. Population Genomics of Yams: Evolution and Domestication of Dioscorea Species. In Population Genomics; Springer: Cham, Switzerland, 2021; pp. 1–28. [Google Scholar] [CrossRef]
- Renner, S.S.; Feil, J.P. Pollinators of tropical dioecious angiosperms. Am. J. Bot. 1993, 80, 1100–1107. [Google Scholar] [CrossRef]
- Rakocevic, M.; Medrado, M.; Martim, S.; Assad, E. Sexual dimorphism and seasonal changes of leaf gas exchange in the dioecious tree Ilex paraguariensis grown in two contrasted cultivation types. Ann. Appl. Biol. 2009, 154, 291–301. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, X.; Ma, X.; Yue, J.; Liao, Z.; Ming, R. Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya. Hortic. Res. 2022, 9, uhab065. [Google Scholar] [CrossRef] [PubMed]
- Ming, R.; Hou, S.; Feng, Y.; Yu, Q.; Dionne-Laporte, A.; Saw, J.H.; Senin, P.; Wang, W.; Ly, B.V.; Lewis, K.L.T.; et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 2008, 452, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, J.; Sharma, A.; Wai, C.M.; Ming, R.; Yu, Q. Transcriptional regulation of dosage compensation in Carica papaya. Sci. Rep. 2021, 11, 5854. [Google Scholar] [CrossRef] [PubMed]
- Lemos, E.G.M.; Silva, C.L.S.P.; Zaidan, H.A. Identification of sex in Carica papaya L. using RAPD markers. Euphytica 2002, 127, 179–184. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Gwo, J.-C.; Lin, K.-H. Rapid sex identification of papaya (Carica papaya) using multiplex loop-mediated isothermal amplification (mLAMP). Planta 2012, 236, 1239–1246. [Google Scholar] [CrossRef]
- Chaves-Bedoya, G.; Nuñez, V. A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica 2007, 153, 215–220. [Google Scholar] [CrossRef]
- Liao, Z.; Yu, Q.; Ming, R. Development of male-specific markers and identification of sex reversal mutants in papaya. Euphytica 2017, 213, 1–12. [Google Scholar] [CrossRef]
- Yu, Q.; Hou, S.; Hobza, R.; Feltus, F.A.; Wang, X.; Jin, W.; Ming, R. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol. Genet. Genom. 2007, 278, 177–185. [Google Scholar] [CrossRef]
- Urasaki, N.; Tarora, K.; Shudo, A.; Ueno, H.; Tamaki, M.; Miyagi, N.; Adaniya, S.; Matsumura, H. Digital Transcriptome Analysis of Putative Sex-Determination Genes in Papaya (Carica papaya). PLoS ONE 2012, 7, e40904. [Google Scholar] [CrossRef]
- Wang, J.; Na, J.-K.; Yu, Q.; Gschwend, A.R.; Han, J.; Zeng, F.; Aryal, R.; VanBuren, R.; Murray, J.E.; Zhang, W.; et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 13710–13715. [Google Scholar] [CrossRef]
- VanBuren, R.; Zeng, F.; Chen, C.; Zhang, J.; Wai, C.M.; Han, J.; Aryal, R.; Gschwend, A.R.; Wang, J.; Na, J.-K.; et al. Origin and domestication of papaya Yh chromosome. Genome Res. 2015, 25, 524–533. [Google Scholar] [CrossRef]
- Lin, H.; Liao, Z.; Zhang, L.; Yu, Q. Transcriptome analysis of the male-to-hermaphrodite sex reversal induced by low temperature in papaya. Tree Genet. Genomes 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Ramos, H.C.C.; Pereira, M.G.; Da Silva, F.F.; Viana, A.P.; Ferreguetti, G.A. Seasonal and genetic influences on sex expression in a backcrossed segregating papaya population. Crop. Breed. Appl. Biotechnol. 2011, 11, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Martelleto, L.A.P.; Ribeiro, R.D.L.D.; Sudo-Martelleto, M.; Vasconcellos, M.A.D.S.; Pereira, M.B. Expressão da esterilidade feminina e da carpeloidia em mamoeiro sob diferentes ambientes de cultivo protegido. Rev. Bras. Frutic. 2011, 33, 1185–1193. [Google Scholar] [CrossRef]
- Moreira, N.F.; Pereira, T.N.S.; Catarina, R.S.; Cortes, D.F.M.; Vettorazzi, J.C.F.; Ramos, H.C.C.; Viana, A.P.; Pereira, M.G. Quantification of floral abnormalities in a population generated from sexual polymorphism aiming at recurrent selection in papaya. Bragantia 2019, 78, 158–165. [Google Scholar] [CrossRef]
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome. Compendium of Plant Genomes; Cantu, D., Walker, M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Moore, M.O. Classification and systematics of eastern North American Vitis L. (Vitaceae) north of Mexico. Sida 1991, 14, 345. [Google Scholar]
- This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef]
- Badouin, H.; Velt, A.; Gindraud, F.; Flutre, T.; Dumas, V.; Vautrin, S.; Marande, W.; Corbi, J.; Sallet, E.; Ganofsky, J.; et al. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biol. 2020, 21, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Duangjai, S.; Samuel, M.R.; Munzinger, J.; Forest, F.; Wallnöfer, B.; Barfuss, M.H.; Fischer, G.; Chase, M.W. A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Mol. Phylogenetics Evol. 2009, 52, 602–620. [Google Scholar] [CrossRef] [PubMed]
- Giordani, E. History and Current Status of Worldwide Production. In The Persimmon Genome; Springer: Cham, Switzerland, 2022; pp. 1–10. [Google Scholar] [CrossRef]
- Tamura, M.; Tao, R.; Yonemori, K.; Utsunomiya, N.; Sugiura, A. Ploidy Level and Genome Size of Several Diospyros Species. J. Jpn. Soc. Hortic. Sci. 1998, 67, 306–312. [Google Scholar] [CrossRef]
- Kafkas, S.; Açar, İ.; Gözel, H. A project on developing monoecious pistachio (Pistacia vera L.) populations and determination of sex mechanism in Pistacia. Options Méditérr 2003, 63, 57–60. [Google Scholar]
- Sheikhi, A.; Arab, M.M.; Brown, P.J.; Ferguson, L.; Akbari, M. Pistachio (Pistacia spp.) Breeding. In Advances in Plant Breeding Strategies: Nut and Beverage Crops; Springer: Cham, Switzerland, 2019; pp. 353–400. [Google Scholar] [CrossRef]
- Sola-Campoy, P.J.; Robles, F.; Schwarzacher, T.; Rejón, C.R.; De La Herrán, R.; Navajas-Pérez, R. The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1. PLoS ONE 2015, 10, e0143861. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, S.; Ma, X.; Zhang, X.; Topçu, H.; Navajas-Pérez, R.; Wai, C.M.; Tang, H.; Xu, X.; Khodaeiaminjan, M.; Güney, M.; et al. Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. Plant Commun. 2022, in press. [CrossRef]
- Singh, R.; Dwivedi, S.K.; Bala, M. Biosystematics and Botanical Descriptions of Seabuckthorn (Hippophae Sp.) in India. In The Seabuckthorn Genome; Springer: Cham, Switzerland, 2022; pp. 1–21. [Google Scholar] [CrossRef]
- Mir, N.A.; Geelani, S.M. Seabuckthorn (Hippophae sp.): A Unique high altitude multipurpose plant species growing in cold regions. Int. J. Adv. Res. Sci. Eng. 2018, 7, 1–12. [Google Scholar]
- Zeb, A. Important therapeutic uses of sea buckthorn (Hippophae): A review. J. Biol. Sci. 2004, 4, 687–693. [Google Scholar]
- Li, T.S.; Schroeder, W. Sea Buckthorn (Hippophae rhamnoides L.): A Multipurpose Plant. Horttechnology 1996, 6, 370–380. [Google Scholar] [CrossRef]
- Krejcarová, J.; Straková, E.; Suchý, P.; Herzig, I.; Karásková, K. Sea buckthorn (Hippophae rhamnoides L.) as a potential source of nutraceutics and its therapeutic possibilities—A review. Acta Veter Brno 2015, 84, 257–268. [Google Scholar] [CrossRef]
- Singh, V. Global Distribution of Seabuckthorn (Hippophae Sp.) Resources and Their Utilization. In The Seabuckthorn Genome; Springer: Cham, Switzerland, 2022; pp. 345–368. [Google Scholar] [CrossRef]
- Puterova, J.; Razumova, O.; Martinek, T.; Alexandrov, O.; Divashuk, M.; Kubat, Z.; Hobza, R.; Karlov, G.; Kejnovsky, E. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes. Genome Biol. Evol. 2017, 9, 197–212. [Google Scholar] [CrossRef]
- Yu, L.; Diao, S.; Zhang, G.; Yu, J.; Zhang, T.; Luo, H.; Duan, A.; Wang, J.; He, C.; Zhang, J. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of Hippophae rhamnoides. Plant Biotechnol. J. 2022, 20, 1257–1273. [Google Scholar] [CrossRef]
- Luo, X.; Liu, J.; He, Z. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes 2022, 13, 195. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Zinta, G.; Rana, S.; Shirko, P. Molecular identification of sex in Hippophae rhamnoides L. using isozyme and RAPD markers. For. Stud. China 2010, 12, 62–66. [Google Scholar] [CrossRef]
- Persson, H.A.; Nybom, H. Genetic Sex Determination and RAPD Marker Segregation in the Dioecious Species Sea Buckthorn (Hippophae Rhamnoides L.). Hereditas 2004, 129, 45–51. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Zhang, G.; Luan, G.; Chen, S.; Meng, J.; Wang, H.; Hu, N.; Suo, Y. Molecular Sex Identification in Dioecious Hippophae rhamnoides L. via RAPD and SCAR Markers. Molecules 2018, 23, 1048. [Google Scholar] [CrossRef] [PubMed]
- Stobdan, T.; Mishra, G.P.; Yadav, A.; Chaurasia, O.P. Methods in Seabuckthorn Breeding. In The Seabuckthorn Genome; Springer: Cham, Switzerland, 2022; pp. 331–344. [Google Scholar] [CrossRef]
- Chen, J.-J.; Kratsch, H.; Norton, J.; Sun, Y.; Rupp, L. Nodulation and Plant Growth of Shepherdia × utahensis ‘Torrey’ Topdressed with Controlled-release Fertilizer. Hortscience 2020, 55, 1956–1962. [Google Scholar] [CrossRef]
- Riedl, K.M.; Choksi, K.; Wyzgoski, F.J.; Scheerens, J.C.; Schwartz, S.J.; Reese, R.N. Variation in Lycopene and Lycopenoates, Antioxidant Capacity, and Fruit Quality of Buffaloberry (Shepherdia argentea [Pursh] Nutt.). J. Food Sci. 2013, 78, C1673–C1679. [Google Scholar] [CrossRef]
- Divashuk, M.; Alexandrov, O.; Kroupin, P.; Karlov, G. Molecular Cytogenetic Mapping of Humulus lupulus Sex Chromosomes. Cytogenet. Genome Res. 2011, 134, 213–219. [Google Scholar] [CrossRef]
- Karlov, G.; Danilova, T.; Horlemann, C.; Weber, G. Molecular cytogenetics in hop (Humulus lupulus L.) and identification of sex chromosomes by DAPI-banding. Euphytica 2003, 132, 185–190. [Google Scholar] [CrossRef]
- Neve, R.A. Sex Chromosomes in the Hop Humulus lupulus. Nature 1958, 181, 1084–1085. [Google Scholar] [CrossRef]
- Neve R., A. Hops; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Čerenak, A.; Kolenc, Z.; Sehur, P.; Whittock, S.P.; Koutoulis, A.; Beatson, R.; Buck, E.; Javornik, B.; Škof, S.; Jakše, J. New Male Specific Markers for Hop and Application in Breeding Program. Sci. Rep. 2019, 9, 14223. [Google Scholar] [CrossRef]
- Polley, A.; Ganal, M.W.; Seigner, E. Identification of sex in hop (Humulus lupulus) using molecular markers. Genome 1997, 40, 357–361. [Google Scholar] [CrossRef]
- Jakše, J.; Štajner, N.; Kozjak, P.; Čerenak, A.; Javornik, B. Trinucleotide microsatellite repeat is tightly linked to male sex in hop (Humulus lupulus L.). Mol. Breed. 2007, 21, 139–148. [Google Scholar] [CrossRef]
- Haunold, A. Cytology, Sex Expression, and Growth of a Tetraploid ✕ Diploid Cross in Hop (Humulus lupulus L.) 1. Crop. Sci. 1971, 11, 868–871. [Google Scholar] [CrossRef]
- Beatson, R.A.; Ferguson, A.R.; Weir, I.E.; Graham, L.T.; Ansell, K.A.; Ding, H. Flow cytometric identification of sexually derived polyploids in hop (Humulus lupulus L.) and their use in hop breeding. Euphytica 2003, 134, 189–194. [Google Scholar] [CrossRef]
- Younis, R.A.; Ismail, O.M.; Soliman, S.S. Identification of sex-specific DNA markers for date palm (Phoenix dactylifera L.) using RAPD and ISSR techniques. Res. J. Agric. Biol. Sci. 2008, 4, 278–284. [Google Scholar]
- Jaskani, M.J.; Awan, F.S.; Ahmad, S.; Khan, I.A. Maryam Development of molecular method for sex identification in date palm (Phoenix dactylifera L.) plantlets using novel sex-linked microsatellite markers. 3 Biotech 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Intha, N.; Chaiprasart, P. Sex determination in date palm (Phoenix dactylifera L.) by PCR based marker analysis. Sci. Hortic. 2018, 236, 251–255. [Google Scholar] [CrossRef]
- Elmeer, K.; Mattat, I. Marker-assisted sex differentiation in date palm using simple sequence repeats. 3 Biotech 2012, 2, 241–247. [Google Scholar] [CrossRef]
- Dhawan, C.; Kharb, P.; Sharma, R.; Uppal, S.; Aggarwal, R.K. Development of male-specific SCAR marker in date palm (Phoenix dactylifera L.). Tree Genet. Genomes 2013, 9, 1143–1150. [Google Scholar] [CrossRef]
- Torres, M.F.; Mathew, L.S.; Ahmed, I.; Al-Azwani, I.K.; Krueger, R.; Rivera-Nuñez, D.; Mohamoud, Y.A.; Clark, A.G.; Suhre, K.; Malek, J.A. Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, J.; Yang, M.; Yin, Y.; Al-Mssallem, I.S.; Yu, J. Date Palm Genome Project at the Kingdom of Saudi Arabia. In Date Palm Biotechnology; Springer: Dordrecht, The Netherlands, 2011; pp. 427–448. [Google Scholar] [CrossRef]
- Al-Mssallem, I.S.; Hu, S.; Zhang, X.; Lin, Q.; Liu, W.; Tan, J.; Yu, X.; Liu, J.; Pan, L.; Zhang, T.; et al. Genome sequence of the date palm Phoenix dactylifera L. Nat. Commun. 2013, 4, 2274. [Google Scholar] [CrossRef]
- Al-Dous, E.K.; George, B.; E Al-Mahmoud, M.; Al-Jaber, M.Y.; Wang, H.; Salameh, Y.M.; Al-Azwani, E.K.; Chaluvadi, S.; Pontaroli, A.C.; DeBarry, J.; et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat. Biotechnol. 2011, 29, 521–527. [Google Scholar] [CrossRef]
- Mathew, L.S.; Spannagl, M.; Al-Malki, A.; George, B.; Torres, M.F.; Al-Dous, E.K.; Al-Azwani, E.K.; Hussein, E.; Mathew, S.; Mayer, K.F.; et al. A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genom. 2014, 15, 285. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R. Chromosome number analysis in different sex types and open-pollinated seedlings of nutmeg (Myristica fragrans Houtt). J. Plant. Crops 2019, 47, 197–201. [Google Scholar] [CrossRef]
- Olajide, O.A.; Ajayi, F.F.; Ekhelar, A.I.; Awe, S.O.; Makinde, J.M.; Alada, A.A. Biological effects of Myristica fragrans (nutmeg) extract. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 344–345. [Google Scholar] [CrossRef]
- Mintah, F.D. Sex Determination in Nutmeg Seedlings Using Scar Primers. J. Hortic. Plant Res. 2018, 3, 40–47. [Google Scholar] [CrossRef]
- Nikam, D.P.; Ingale, P.C.; Gokhale, N.B.; Lajurkar, V.G. Sex Determination in Nutmeg (Myristica fragrance Hott.) by using RAPD Markers. Indian Hortic. J. 2016, 6, 148–149. [Google Scholar]
- Ferguson, A.R. Botanical description. In The Kiwifruit Genome; Springer: Cham, Switzerland, 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Ferguson, A.R. Kiwifruit: The wild and the cultivated plants. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2013; Volume 68, pp. 15–32. [Google Scholar]
- Mcneilage, M.A. Gender variation in Actinidia deliciosa, the kiwifruit. Sex. Plant Reprod. 1991, 4, 267–273. [Google Scholar] [CrossRef]
- Ferguson, A.R.; Huang, H. Genetic resources of kiwifruit: Domestication and breeding. Hortic. Rev. 2007, 33, 1–121. [Google Scholar]
- Yan, G.; Yao, J.; Ferguson, A.R.; Mcneilage, M.A.; Seal, A.G.; Murray, B.G. New reports of chromosome numbers in Actinidia (Actinidiaceae). N. Z. J. Bot. 1997, 35, 181–186. [Google Scholar] [CrossRef]
- Gill, G.P.; Harvey, C.F.; Gardner, R.C.; Fraser, L.G. Development of sex-linked PCR markers for gender identification in Actinidia. Theor. Appl. Genet. 1998, 97, 439–445. [Google Scholar] [CrossRef]
- Seal, A.G.; Ferguson, A.R.; De Silva, H.N.; Zhang, J.-L. The effect of 2n gametes on sex ratios in Actinidia. Sex. Plant Reprod. 2012, 25, 197–203. [Google Scholar] [CrossRef]
- He, Z.-C.; Li, J.Q.; Cai, Q.; Wang, Q. The cytology of Actinidia, Saurauia and Clematoclethra (Actinidiaceae). Bot. J. Linn. Soc. 2005, 147, 369–374. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Liu, Y.; VanBuren, R.; Yao, X.; Zhong, C.; Huang, H. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. DNA Res. 2015, 22, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Shirkot, P.; Sharma, D.R.; Mohapatra, T. Molecular identification of sex in Actinidia deliciosa var. deliciosa by RAPD markers. Sci. Hortic. 2002, 94, 33–39. [Google Scholar] [CrossRef]
- Hale, I.; Melo, A.; Gustafson, H. Sex-linked molecular markers for two cold-hardy kiwifruit species, Actinidia arguta and A. kolomikta. Eur. J. Hortic. Sci. 2018, 83, 236–246. [Google Scholar] [CrossRef]
- Chłosta, I.; Kwolek, D.; Sliwinska, E.; Góralski, G.; Popielarska-Konieczna, M. Sex-Linked Molecular Markers Identify Female Lines in Endosperm-Derived Kiwifruit Callus and in Regenerants. Plants 2021, 10, 526. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Sertic, S.; Kim, H.K.; Wilson, E.G.; Michopoulos, F.; Lefeber, A.W.M.; Erkelens, C.; Kricun, S.D.P.; Verpoorte, R. Classification of Ilex Species Based on Metabolomic Fingerprinting Using Nuclear Magnetic Resonance and Multivariate Data Analysis. J. Agric. Food Chem. 2005, 53, 1237–1245. [Google Scholar] [CrossRef]
- Gottlieb, A.M.; Giberti, G.C.; Poggio, L. Molecular analyses of the genus Ilex (Aquifoliaceae) in southern South America, evidence from AFLP and ITS sequence data. Am. J. Bot. 2005, 92, 352–369. [Google Scholar] [CrossRef] [PubMed]
- Evens, Z.N.; Stellpflug, S. Holiday Plants with Toxic Misconceptions. WestJEM 21.2 March Issue 2012, 13, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zhang, F.; Corlett, R.T. Utilization of the Hollies (Ilex L. spp.): A Review. Forests 2022, 13, 94. [Google Scholar] [CrossRef]
- Barral, G.; Poggio, L. Chromosome numbers and DNA content from Ilex argentina (Aquifoliaceae). Bol Soc Argent Bot 1995, 30, 243–248. [Google Scholar]
- Gaiad, S.; Rakocevic, M.; Reissmann, C.B. N sources affect growth, nutrient content, and net photosynthesis in maté (Ilex paraguariensis St. Hil.). Braz. Arch. Biol. Technol. 2006, 49, 689–697. [Google Scholar] [CrossRef]
- Rakocevic, M.; Costes, E.; Assad, E. Structural and physiological sexual dimorphism estimated from three-dimensional virtual trees of yerba-mate (Ilex paraguariensis) is modified by cultivation environment. Ann. Appl. Biol. 2011, 159, 178–191. [Google Scholar] [CrossRef]
- Rakocevic, M.; Medrado, M.J.S. Quality of yerba-mate leaves originating from male and female plants. Pesqui. Florest. Bras. 2007, 54, 71–83. [Google Scholar]
- Gottlieb, A.M.; Poggio, L. Genomic screening in dioecious “yerba mate” tree (Ilex paraguariensis A. St. Hill., Aquifoliaceae) through representational difference analysis. Genetica 2010, 138, 567–578. [Google Scholar] [CrossRef]
- Golan-Goldhirsch, A.; Jones, R.; Rowland, L. AFLP markers for sex determination in an ilex species. Acta Hortic. 2001, 546, 591–595. [Google Scholar] [CrossRef]
- Gauer, L.; Cavalli-Molina, S. Genetic variation in natural populations of maté (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) using RAPD markers. Heredity 2000, 84, 647–656 . [Google Scholar] [CrossRef]
- Torimaru, T.; Tani, N.; Tsumura, Y.; Hiraoka, K.; Tomaru, N. Development and polymorphism of simple sequence repeat DNA markers for the evergreen shrub Ilex leucoclada M. Mol. Ecol. Notes 2004, 4, 531–533. [Google Scholar] [CrossRef]
- Chen, K.; Xu, C. Red bayberry: Botany and horticulture. In Horticultural Reviews; John Wiley & Sons Inc.: Oxford, UK, 2010; pp. 83–114. [Google Scholar]
- Stokes, J. Cytological Studies in the Myricaceae. Bot. Gaz. 1937, 99, 387–399. [Google Scholar] [CrossRef]
- Jia, H.; Zhao, L.; Wang, Y.; Wu, H.; Zhao, H.; Zhu, Y.; Jiao, Y.; Wang, G.; Zhou, C.; Huang, C.; et al. Comparative Transcriptome Analysis Reveals Sex-Biased Expression of Hormone-Related Genes at an Early Stage of Sex Differentiation in Red Bayberry (Morella rubra). Horticulturae 2022, 8, 183. [Google Scholar] [CrossRef]
- Ward, S.M.; Webster, T.M.; Steckel, L.E. Palmer Amaranth (Amaranthus palmeri): A Review. Weed Technol. 2013, 27, 12–27. [Google Scholar] [CrossRef]
- Tranel, P.J.; Riggins, C.; Bell, M.S.; Hager, A.G. Herbicide Resistances in Amaranthus tuberculatus: A Call for New Options. J. Agric. Food Chem. 2011, 59, 5808–5812. [Google Scholar] [CrossRef] [PubMed]
- Mesgaran, M.B.; Matzrafi, M.; Ohadi, S. Sex dimorphism in dioecious Palmer amaranth (Amaranthus palmeri) in response to water stress. Planta 2021, 254, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.C.; Hough, J. Sexual dimorphism in flowering plants. J. Exp. Bot. 2012, 64, 67–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, T.E.; Geber, M.A. Sexual Dimorphism in Physiology and Morphology. In Gender and Sexual Dimorphism in Flowering Plants; Springer: Berlin/Heidelberg, Germany, 1999; pp. 175–215. [Google Scholar] [CrossRef]
- Harris, M.S.; Pannell, J.R. Roots, shoots and reproduction: Sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proc. R. Soc. B Boil. Sci. 2008, 275, 2595–2602. [Google Scholar] [CrossRef] [PubMed]
- Obeso, J.R. The costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef] [PubMed]
Species | Sex Chromosome System | Genome Sequenced * | Molecular Markers | Reference |
---|---|---|---|---|
Asparagus officinalis | XX/XY | Yes | Yes | [26] |
Rumex acetosa | XX/XY1Y2 | No | Yes | [27] |
Spinacia oleracea | XX/XY | Yes | Yes | [28] |
Cannabis sativa | XX/XY | Yes | Yes | [29] |
Piper betle | unknown | No | Yes | [30] |
Dioscorea cayenensis subsp. rotundata | ZZ/ZW | Yes | Yes | [31] |
Carica papaya | XX/XY/XY | Yes | Yes | [32,33] |
Vitis vinifera | monoecious | Yes | - | - |
Diospyros kaki | XX/XY | Yes | Yes | [34] |
Pistacia vera | ZW/WW | Yes | Yes | [35,36] |
Hippophae rhamnoides | XX/XY | No | Yes | [37] |
Humulus lupulus | XX/XY | Yes | Yes | [38] |
Phoenix dactylifera | XX/XY | Yes | Yes | [39] |
Myristica fragrans | XX/XY | No | Yes | [40] |
Actinidia chinensis | XX/XY | Yes | Yes | [41] |
Ilex paraguariensis | unknown | Yes | No | - |
Morella rubra | ZW/WW | Yes | Yes | [42] |
Amaranthus palmeri | XX\XY | Yes | Yes | [43] |
Life-Forms | Species | Common Name | Part of a Plant Used by Humans | Direction of Use | What Type of Plants Are Used |
---|---|---|---|---|---|
Grass annual or perennial | Asparagus officinalis | Asparagus | Stock | Vegetable | Male or supermale |
Rumex acetosa | Sorrel | Leaves | Green crops | Male and female | |
Spinacia oleracea | Spinach | Leaves | Green crops | Male and female | |
Cannabis sativa | Hemp | Leaves, seeds, fibers, | Industrial, food or medicinal use | Female, male and monoecious | |
Piper betle | Betel leaves | Leaves | Medicinal | Male and female | |
Dioscorea spp. | Yam | Modified tubers | Food | Male and female | |
Amaranthus palmeri | Green amaranth | - | Weeds | - | |
Woody perennial | Carica papaya | Papaya | Fruit | Fruit crops | Hermaphroditic |
Vitis vinifera | Grape | Fruit | Fruit crops | Only wild forms are dioecious; varieties of cultivated grapes are hermaphroditic | |
Diospyros sp. | Persimmon | Fruit | Fruit crops | Female or monoecious; male needed for pollination | |
Pistacia vera | Pistacia | Fruit | Nut-bearing crops | Female; male needed for pollination | |
Hippophae rhamnoides | Sea buckthorn | Fruit | Berry crops, medicinal | Female; male needed for pollination | |
Humulus lupulus | Hop | Fruit | Hop culture | Female; male plants are only needed for breeding to develop new cultivars | |
Phoenix dactylifera | Date palm | Fruit | Fruit crops | Female; male needed for pollination | |
Myristica fragrans | Nutmeg | Fruit | Cultural spices | Female; male needed for pollination | |
Actinidia chinensis | Kiwifruit | Fruit | Fruit crops | Female; male needed for pollination | |
Ilex paraguariensis | Yerba Mate | Leaves | Tea crops | Female and male | |
Morella rubra | Chinese Bayberry | Fruit | Fruit crops | Female; male needed for pollination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razumova, O.V.; Alexandrov, O.S.; Bone, K.D.; Karlov, G.I.; Divashuk, M.G. Sex Chromosomes and Sex Determination in Dioecious Agricultural Plants. Agronomy 2023, 13, 540. https://doi.org/10.3390/agronomy13020540
Razumova OV, Alexandrov OS, Bone KD, Karlov GI, Divashuk MG. Sex Chromosomes and Sex Determination in Dioecious Agricultural Plants. Agronomy. 2023; 13(2):540. https://doi.org/10.3390/agronomy13020540
Chicago/Turabian StyleRazumova, Olga V., Oleg S. Alexandrov, Karina D. Bone, Gennady I. Karlov, and Mikhail G. Divashuk. 2023. "Sex Chromosomes and Sex Determination in Dioecious Agricultural Plants" Agronomy 13, no. 2: 540. https://doi.org/10.3390/agronomy13020540
APA StyleRazumova, O. V., Alexandrov, O. S., Bone, K. D., Karlov, G. I., & Divashuk, M. G. (2023). Sex Chromosomes and Sex Determination in Dioecious Agricultural Plants. Agronomy, 13(2), 540. https://doi.org/10.3390/agronomy13020540