Harvest Aids Applied at Appropriate Time Could Reduce the Damage to Cotton Yield and Fiber Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection and Measurement Items
2.3. Data Statistics and Analysis
3. Results
3.1. Effect of Harvest Aids on the Cotton Boll Period
3.2. Effect of Harvest Aids on Single Boll Components and the Quantitative Relationship with Rd/b
3.2.1. Changes in Fiber Weight and Cottonseed Weight per Boll
3.2.2. Quantitative Relationship between the Amount of Damage to a Single Boll Component and the Rd/b Value
3.3. Quantitative Relationship between the Fiber Quality and Rd/b Value under Different Harvest Aids
3.3.1. Change in Fiber Quality
3.3.2. Quantitative Relationship between Fiber Quality Damage and the Rd/b Value
4. Discussion
4.1. Effect of Harvest Aids on the Formation of Boll Weight and Fiber Quality for Spraying at an Appropriate Time
4.2. Spraying Harvest Aids at the Appropriate Time according to the Development of Cotton Bolls Can Balance the Contradiction between Cotton Yield and Fiber Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, M.W.; Ren, X.M.; Tian, X.L.; Duan, L.S.; Zhang, M.C.; Tan, W.M.; Li, Z.H. Evaluation of harvest aid chemicals for the cotton-winter wheat double cropping system. J. Integr. Agric. 2013, 12, 273–282. [Google Scholar] [CrossRef]
- Guo, X.X.; Zeng, W. A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agron. Sin. 1989, 15, 202–212. (In Chinese) [Google Scholar]
- Wang, F.Y.; Han, H.Y.; Lin, H.; Chen, B.; Kong, X.H.; Ning, X.Z.; Wang, X.W.; Yu, Y.; Liu, J.D. Effects of planting patterns on yield, quality, and defoliation in machine-harvested cotton. J. Integr. Agr. 2019, 18, 2019–2028. [Google Scholar] [CrossRef]
- Tian, J.S.; Zhang, X.Y.; Wang, W.M.; Yang, Y.L.; Sui, L.L.; Zhang, P.P.; Zhang, Y.L.; Zhang, W.F.; Gou, L. A method of defoliant application based on fiber damage and boll growth period of machine-harvested cotton. Acta Agron. Sin. 2020, 46, 1388–1397. (In Chinese) [Google Scholar]
- Long, R.L.; Bange, M.P. Consequences of immature fiber on the processing performance of Upland cotton. Field Crops Res. 2011, 121, 401–407. [Google Scholar] [CrossRef]
- Iqbal, N.; Masood, A.; Khan, N.A. Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica 2012, 50, 161–170. [Google Scholar] [CrossRef]
- Jin, D.S.; Wang, X.R.; Xu, Y.C.; Gui, H.P.; Zhang, H.H.; Dong, Q.; Sikder, R.K.; Yang, G.Z.; Song, M.Z. Chemical defoliant promotes leaf abscission by altering ROS metabolism and photosynthetic efficiency in gossypium hirsutum. Int. J. Mol. Sci. 2020, 21, 2738. [Google Scholar] [CrossRef] [Green Version]
- Nisler, J.; Kopečný, D.; Končitíková, R.; Zatloukal, M.; Bazgier, V.; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, M.; Spíchal, L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016, 92, 235–248. [Google Scholar] [CrossRef]
- Snipes, C.E.; Cathey, G.W. Evaluation of defoliant mixtures in cotton. Field Crops Res. 1992, 28, 327–334. [Google Scholar] [CrossRef]
- Craig, C. W075: Cotton Defoliation Timing. TN: The University of Tennessee Agriculture Extension Service. 2010. Available online: http://trace.tennessee.edu/utk_agexcrop/88 (accessed on 16 June 2022).
- Snipes, C.E.; Baskin, C.C. Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Res. 1994, 37, 137–143. [Google Scholar] [CrossRef]
- Bange, M.P.; Long, R.L.; Constable, G.A.; Gordon, S.G. Minimizing immature fiber and neps in upland cotton. Agron. J. 2010, 102, 781–789. [Google Scholar] [CrossRef]
- DB65T 3980–2017; Technical Specification of Spraying Defoliant Mechanical Harvesting of Cotton Field. Xinjiang Uygur Autonomous Region Standard: Urumqi, China, 2017.
- Xu, J.; Chen, L.; Sun, H.; Wusiman, N.; Sun, W.N.; Li, B.Q.; Gao, Y.; Kong, J.; Zhang, D.W.; Zhang, X.L.; et al. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J. Exp. Bot. 2019, 70, 1525–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.J.; Wu, Q.; Liao, B.P.; Yu, K.K.; Huo, Y.N.; Meng, L.; Wang, S.M.; Wang, B.M.; Du, M.W.; Tian, X.L.; et al. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int. J. Mol. Sci. 2022, 23, 2696. [Google Scholar] [CrossRef] [PubMed]
- Long, R.L.; Delhom, C.D.; Bange, M.P. Effects of cotton genotype, defoliation timing and season on fiber cross-sectional properties and yarn performance. Text. Res. J. 2021, 91, 1943–1956. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tian, J.S.; Yang, Y.L.; Sui, L.L.; Zhang, P.P.; Zhang, W.F. Response of cotton single boll damage to defoliation and boll stage in northern Xinjiang cotton region. Xinjiang Agric. Sci. 2018, 55, 1186–1193. (In Chinese) [Google Scholar]
- Larson, J.A.; Gwathmey, C.O.; Hayes, R.M. Cotton defoliation and harvest timing effects on yields, quality, and net revenues. Cotton Sci. 2002, 6, 13–27. [Google Scholar]
- Gormus, O.; Kurt, F.; Sabagh, A.E. Impact of defoliation timings and leaf pubescence on yield and fiber quality of cotton. J. Agr. Sci. Tech. 2017, 19, 903–915. [Google Scholar]
- Tian, J.S.; Zhang, X.Y.; Zhang, W.F.; Dong, H.Y.; Jiu, X.L.; Yu, Y.C.; Zhao, Z. Leaf adhesiveness affects damage to fiber strength during seed cotton cleaning of machine-harvested cotton. Ind. Crop. Prod. 2017, 107, 211–216. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Zhang, C.X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef]
- Hake, S.J.; Hake, K.D.; Kerby, T.A. Preharvest/harvest decisions. In Cotton Production Manual; Hake, S.J., Kerby, T.A., Hake, K.D., Eds.; Division of Agriculture and Natural Resources Press: Oakland, CA, USA, 1996; pp. 73–81. [Google Scholar]
- Tian, J.S.; Zhang, X.Y.; Zhang, L.N.; Xu, S.Z.; Qi, B.Q.; Sui, L.L.; Zhang, P.P.; Yang, Y.L.; Zhang, W.F.; Gou, L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agron. Sin. 2019, 45, 613–620. (In Chinese) [Google Scholar] [CrossRef]
- Brown, L.C.; Hyer, A.H. Chemical defoliation of cotton: V. effects of premature defoliant and desiccant treatments on boll components, fiber properties, germination, and yield of cotton. Agron. J. 1956, 48, 50–55. [Google Scholar] [CrossRef]
- Gao, L.L.; Li, G.; Kang, Z.H.; Li, J.W.; Wang, M.F.; Ma, Y.Z.; Zhang, J.S. Effect of defoliants on chlorophyll fluorescence of cotton leaves. Cotton Sci. 2016, 28, 345–352. (In Chinese) [Google Scholar]
- Kloth, R.H.; Turley, R.B. Physiology of seed and fiber development. In Physiology of Cotton; Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R., Eds.; Springer: New York, NY, USA, 2010; pp. 111–122. [Google Scholar]
- Zhang, M.L.; Song, X.L.; Ji, H.; Wang, Z.L.; Sun, X.Z. Carbon partitioning in the boll plays an important role in fiber quality in colored cotton. Cellulose 2017, 24, 1087–1097. [Google Scholar] [CrossRef]
- Li, P.M.; Han, B.W.; Xi, H.D. Enhancement of cotton maturity by spary ethephon. Sci. Agric. Sinica. 1981, 3, 47–53. (In Chinese) [Google Scholar]
- Faircloth, J.C.; Edmisten, K.L.; Wells, R.; Stewart, A.M. The influence of defoliation timing on yields and quality of two cotton cultivars. Crop Sci. 2004, 44, 165–172. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, X.L.; Song, S.Q.; Zeng, Q.W.; Hou, L.; Li, D.M.; Zhao, J.; Wei, Y.; Li, X.B.; Luo, M.; et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat. Biotechnol. 2011, 29, 453–458. [Google Scholar] [CrossRef]
- Jasdanwala, R.T.; Sing, Y.D.; Chinoy, J.J. Auxin metabolism in developing cotton hairs. J. Exp. Bot. 1977, 28, 1111–1116. [Google Scholar] [CrossRef]
- Ding, X.Y.; Li, X.B.; Wang, L.; Zeng, J.Y.; Huang, L.; Xiong, L.; Song, S.Q.; Zhao, J.; Hou, L.; Wang, F.L.; et al. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition. Plant Biotechnol. J. 2021, 19, 1092–1094. [Google Scholar] [CrossRef]
- Bruns, H.A. A survey of factors involved in crop maturity. Agron. J. 2009, 101, 60–66. [Google Scholar] [CrossRef]
- Gwathmey, C.O.; Bange, M.P.; Brodrick, R. Cotton crop maturity: A compendium of measures and predictors. Field Crops Res. 2016, 191, 41–53. [Google Scholar] [CrossRef]
- Mishra, A.; Khare, S.; Trivedi, P.K.; Nath, P. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. S. Afr. J. Bot. 2008, 74, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.L. Boosting seed development as a new strategy to increase cotton fiber yield and quality. J. Integr. Plant Biol. 2013, 55, 572–575. [Google Scholar] [CrossRef] [PubMed]
Year | Varieties | Dates of Marking the White Flowers (M/D) | Boll Period (d) |
---|---|---|---|
2020 | Su-K 202, Ba 1, Ba 2, Ba 4, Ba 6, Ba 8, Xinluzao 33, Xinluzao 50, Xinluzao 57, Xinluzao 61, Xinluzao 74, Xinluzao 80, 65-38, 16566, 2A0620, 80511, 80506, 3413 | 7/6, 7/11, 7/16 | 47, 48, 50, 51, 52, 57, 60, 62, 64, 66 |
2021 | Su-K 202, Ba 8, Xinluzao 33, Xinluzao 50, Xinluzao 80, 16566, 2A0620, 80506, 3413 | 7/11, 7/16, 7/21, 7/25 | 47, 50, 52, 57, 60, 61, 64, 66, 69 |
Harvest Aid Treatments | Rd/b Value | Boll Period (d) |
---|---|---|
CK | Rd/b 0.82 | 60.5 ± 4.9 a |
Rd/b 0.72 | 57.6 ± 4.4 b | |
Rd/b 0.62 | 55.2 ± 3.8 c | |
Rd/b 0.52 | 51.1 ± 3.6 d | |
Ethephon | Rd/b 0.82 | 57.0 ± 5.4 a |
Rd/b 0.72 | 53.7 ± 4.9 b | |
Rd/b 0.62 | 50.6 ± 5.0 c | |
Rd/b 0.52 | 45.4 ± 6.1 d | |
Thidiazuron | Rd/b 0.82 | 58.1 ± 4.3 a |
Rd/b 0.72 | 54.2 ± 3.9 b | |
Rd/b 0.62 | 51.0 ± 4.2 c | |
Rd/b 0.52 | 46.7 ± 3.6 d | |
Thid & Ethe | Rd/b 0.82 | 55.3 ± 3.8 a |
Rd/b 0.72 | 52.0 ± 3.8 b | |
Rd/b 0.62 | 48.5 ± 4.1 c | |
Rd/b 0.52 | 42.7 ± 4.0 d | |
Harvest aids (HA) | <0.0001 | |
Spraying time (Rd/b) | <0.0001 | |
HA × Rd/b | 0.6086 |
Harvest Aid Treatments | Rd/b Value | Fiber Weight (g/per Boll) | Seed Weight (g/per Boll) |
---|---|---|---|
CK | Rd/b 0.82 | 2.24 ± 0.25 a | 3.01 ± 0.38 a |
Rd/b 0.72 | 2.21 ± 0.21 a | 2.94 ± 0.27 ab | |
Rd/b 0.62 | 1.97 ± 0.31 b | 2.73 ± 0.44 c | |
Rd/b 0.52 | 1.75 ± 0.21 c | 2.80 ± 0.37 bc | |
Ethephon | Rd/b 0.82 | 2.06 ± 0.27 a | 2.81 ± 0.28 a |
Rd/b 0.72 | 1.86 ± 0.27 b | 2.80 ± 0.25 a | |
Rd/b 0.62 | 1.61 ± 0.29 c | 2.53 ± 0.31 b | |
Rd/b 0.52 | 1.07 ± 0.25 d | 2.36 ± 0.36 b | |
Thidiazuron | Rd/b 0.82 | 1.98 ± 0.30 a | 2.67 ± 0.31 a |
Rd/b 0.72 | 1.78 ± 0.30 b | 2.48 ± 0.32 a | |
Rd/b 0.62 | 1.45 ± 0.29 c | 2.23 ± 0.39 b | |
Rd/b 0.52 | 1.00 ± 0.23 d | 1.83 ± 0.37 c | |
Thid & Ethe | Rd/b 0.82 | 1.96 ± 0.33 a | 2.64 ± 0.27 a |
Rd/b 0.72 | 1.76 ± 0.33 b | 2.46 ± 0.26 a | |
Rd/b 0.62 | 1.42 ± 0.25 c | 2.18 ± 0.27 b | |
Rd/b 0.52 | 0.91 ± 0.26 d | 1.82 ± 0.43 c | |
Harvest aids (HA) | 0.0003 | 0.0004 | |
Spraying time (Rd/b) | <0.0001 | 0.0007 | |
HA × Rd/b | <0.0001 | <0.0001 |
Single Boll Component | Ethephon | Thidiazuron | Thid & Ethe | |
---|---|---|---|---|
Fiber weight | <0.0001 | <0.0001 | <0.0001 | |
Seed weight | 0.0047 | <0.0001 | <0.0001 | |
Fiber weight | Rd/b value when the damage amount is controlled at 0% | >0.83 | >0.86 | >0.84 |
Seed weight | >0.84 | >0.87 | >0.88 | |
Fiber weight | Rd/b value when the damage amount is controlled at 5% | >0.77 | >0.81 | >0.80 |
Seed weight | >0.71 | >0.81 | >0.82 |
Harvest Aid Treatments | Rd/b Value | Fiber Length (mm) | Fiber Strength (cN·tex−1) | Micronaire Value |
---|---|---|---|---|
CK | Rd/b 0.82 | 28.46 ± 2.00 a | 29.08 ± 2.18 c | 4.33 ± 0.50 a |
Rd/b 0.72 | 28.98 ± 1.55 a | 29.97 ± 1.94 b | 4.09 ± 0.52 ab | |
Rd/b 0.62 | 28.70 ± 1.54 a | 29.96 ± 2.57 b | 3.82 ± 0.57 b | |
Rd/b 0.52 | 29.13 ± 1.19 a | 31.15 ± 1.77 a | 3.35 ± 0.48 c | |
Ethephon | Rd/b 0.82 | 28.10 ± 1.69 a | 28.24 ± 2.09 ab | 3.80 ± 0.69 a |
Rd/b 0.72 | 28.54 ± 1.50 a | 28.60 ± 2.07 a | 3.42 ± 0.67 b | |
Rd/b 0.62 | 27.87 ± 1.37 a | 27.54 ± 2.30 b | 3.03 ± 0.47 c | |
Rd/b 0.52 | 28.20 ± 1.42 a | 25.77 ± 0.99 c | 2.34 ± 0.17 d | |
Thidiazuron | Rd/b 0.82 | 28.13 ± 1.54 ab | 28.39 ± 2.09 a | 3.72 ± 0.72 a |
Rd/b 0.72 | 28.75 ± 1.40 a | 28.38 ± 1.96 a | 3.21 ± 0.63 b | |
Rd/b 0.62 | 28.11 ± 1.12 ab | 27.39 ± 2.18 b | 2.82 ± 0.47 c | |
Rd/b 0.52 | 27.61 ± 1.16 b | 25.10 ± 1.96 c | 2.27 ± 0.06 d | |
Thid & Ethe | Rd/b 0.82 | 28.01 ± 1.64 ab | 28.01 ± 1.95 a | 3.67 ± 0.70 a |
Rd/b 0.72 | 28.64 ± 1.15 a | 28.01 ± 1.82 a | 3.22 ± 0.64 b | |
Rd/b 0.62 | 27.82 ± 1.09 bc | 26.62 ± 2.13 b | 2.77 ± 0.36 c | |
Rd/b 0.52 | 27.13 ± 0.56 c | 24.38 ± 1.04 c | 2.21 ± 0.03 d | |
Harvest aids (HA) | 0.0260 | 0.0139 | <0.0001 | |
Spraying time (Rd/b) | 0.0703 | 0.1138 | <0.0001 | |
HA × Rd/b | 0.0014 | <0.0001 | 0.0407 |
Fiber Quality Index | Ethephon | Thidiazuron | Thid & Ethe |
---|---|---|---|
Fiber length | 0.4628 | 0.7544 | 0.0553 |
Fiber strength | 0.0002 | 0.0060 | <0.0001 |
Micronaire | <0.0001 | <0.0001 | <0.0001 |
Rd/b value when the damage amount of fiber strength is controlled at [0.3, 0.0] cN·tex−1 | [0.80, 0.83] | [0.77, 0.79] | [0.82, 0.84] |
Rd/b value when Micronaire value is [3.7, 4.2] | [0.77, 0.90] | [0.78, 0.89] | [0.80, 0.91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Sun, Y.; Luo, D.; Li, P.; Liu, T.; Xiang, D.; Zhang, Y.; Yang, M.; Gou, L.; Tian, J.; et al. Harvest Aids Applied at Appropriate Time Could Reduce the Damage to Cotton Yield and Fiber Quality. Agronomy 2023, 13, 664. https://doi.org/10.3390/agronomy13030664
Zhang Q, Sun Y, Luo D, Li P, Liu T, Xiang D, Zhang Y, Yang M, Gou L, Tian J, et al. Harvest Aids Applied at Appropriate Time Could Reduce the Damage to Cotton Yield and Fiber Quality. Agronomy. 2023; 13(3):664. https://doi.org/10.3390/agronomy13030664
Chicago/Turabian StyleZhang, Qipeng, Yuanyuan Sun, Dan Luo, Peisong Li, Taofen Liu, Dao Xiang, Yali Zhang, Mingfeng Yang, Ling Gou, Jingshan Tian, and et al. 2023. "Harvest Aids Applied at Appropriate Time Could Reduce the Damage to Cotton Yield and Fiber Quality" Agronomy 13, no. 3: 664. https://doi.org/10.3390/agronomy13030664
APA StyleZhang, Q., Sun, Y., Luo, D., Li, P., Liu, T., Xiang, D., Zhang, Y., Yang, M., Gou, L., Tian, J., & Zhang, W. (2023). Harvest Aids Applied at Appropriate Time Could Reduce the Damage to Cotton Yield and Fiber Quality. Agronomy, 13(3), 664. https://doi.org/10.3390/agronomy13030664