A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Modelling of Partial Adoption
2.3. Weighting of Principles of Conservation Agriculture: Analytical Hierarchy Process
3. Results
3.1. Weighting Process: The AHP Results
3.2. Computing Composite Index of Adoption of CA
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Observation | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
UCIACA 2020 | 144 | 0.74 a | 0.27 | 0 | 1 |
UCIACA 2019 | 144 | 0.75 a | 0.26 | 0 | 1 |
UCIACA 2018 | 144 | 0.71 | 0.28 | 0 | 1 |
UCIACA | 144 | 0.73 | 0.25 | 0 | 1 |
Farmers | CIACA | Rank | UCIACA | Rank |
---|---|---|---|---|
A1 | 1 | 1 | 1 | 1 |
A2 | 1 | 1 | 1 | 1 |
A3 | 1 | 1 | 1 | 1 |
A4 | 1 | 1 | 1 | 1 |
A5 | 1 | 1 | 1 | 1 |
A6 | 1 | 1 | 1 | 1 |
A7 | 1 | 1 | 1 | 1 |
A8 | 1 | 1 | 1 | 1 |
A9 | 1 | 1 | 1 | 1 |
A10 | 1 | 1 | 1 | 1 |
A11 | 1 | 1 | 1 | 1 |
A12 | 1 | 1 | 1 | 1 |
A13 | 1 | 1 | 1 | 1 |
A14 | 1 | 1 | 1 | 1 |
A15 | 1 | 1 | 1 | 1 |
A16 | 1 | 1 | 1 | 1 |
A17 | 1 | 1 | 1 | 1 |
A18 | 1 | 1 | 1 | 1 |
A19 | 1 | 1 | 1 | 1 |
A20 | 1 | 1 | 1 | 1 |
A21 | 1 | 1 | 1 | 1 |
A22 | 1 | 1 | 1 | 1 |
A23 | 1 | 1 | 1 | 1 |
A24 | 1 | 1 | 1 | 1 |
A25 | 1 | 1 | 1 | 1 |
A26 | 1 | 1 | 1 | 1 |
A27 | 1 | 1 | 1 | 1 |
A28 | 1 | 1 | 1 | 1 |
A29 | 1 | 1 | 1 | 1 |
A30 | 1 | 1 | 1 | 1 |
A31 | 1 | 1 | 1 | 1 |
A32 | 0.999 | 2 | 0.998 | 2 |
A33 | 0.998 | 3 | 0.997 | 3 |
A34 | 0.985 | 4 | 0.978 | 4 |
A35 | 0.982 | 5 | 0.978 | 4 |
A36 | 0.977 | 6 | 0.967 | 5 |
A37 | 0.977 | 6 | 0.967 | 5 |
A38 | 0.977 | 6 | 0.967 | 5 |
A39 | 0.966 | 7 | 0.959 | 6 |
A40 | 0.963 | 8 | 0.956 | 7 |
A41 | 0.961 | 9 | 0.945 | 9 |
A42 | 0.958 | 10 | 0.95 | 8 |
A43 | 0.958 | 10 | 0.95 | 8 |
A44 | 0.953 | 11 | 0.934 | 10 |
A45 | 0.953 | 11 | 0.934 | 10 |
A46 | 0.951 | 12 | 0.934 | 10 |
A47 | 0.941 | 13 | 0.917 | 12 |
A48 | 0.93 | 14 | 0.917 | 12 |
A49 | 0.93 | 14 | 0.917 | 12 |
A50 | 0.922 | 15 | 0.923 | 11 |
A51 | 0.921 | 16 | 0.889 | 15 |
A52 | 0.919 | 17 | 0.887 | 16 |
A53 | 0.906 | 18 | 0.912 | 13 |
A54 | 0.9 | 19 | 0.9 | 14 |
A55 | 0.898 | 20 | 0.885 | 17 |
A56 | 0.889 | 21 | 0.867 | 18 |
A57 | 0.884 | 22 | 0.838 | 22 |
A58 | 0.883 | 23 | 0.85 | 20 |
A59 | 0.881 | 24 | 0.834 | 23 |
A60 | 0.881 | 24 | 0.834 | 23 |
A61 | 0.877 | 25 | 0.867 | 18 |
A62 | 0.865 | 26 | 0.812 | 25 |
A63 | 0.863 | 27 | 0.856 | 19 |
A64 | 0.862 | 28 | 0.867 | 18 |
A65 | 0.86 | 29 | 0.867 | 18 |
A66 | 0.854 | 30 | 0.834 | 23 |
A67 | 0.851 | 31 | 0.823 | 24 |
A68 | 0.849 | 32 | 0.789 | 27 |
A69 | 0.843 | 33 | 0.795 | 26 |
A70 | 0.841 | 34 | 0.834 | 23 |
A71 | 0.829 | 35 | 0.784 | 29 |
A72 | 0.817 | 36 | 0.823 | 24 |
A73 | 0.814 | 37 | 0.778 | 30 |
A74 | 0.813 | 38 | 0.777 | 31 |
A75 | 0.81 | 39 | 0.789 | 27 |
A76 | 0.789 | 40 | 0.728 | 36 |
A77 | 0.788 | 41 | 0.839 | 21 |
A78 | 0.775 | 42 | 0.789 | 28 |
A79 | 0.769 | 43 | 0.695 | 40 |
A80 | 0.761 | 44 | 0.778 | 30 |
A81 | 0.76 | 45 | 0.834 | 23 |
A82 | 0.756 | 46 | 0.767 | 33 |
A83 | 0.75 | 47 | 0.773 | 32 |
A84 | 0.744 | 48 | 0.823 | 24 |
A85 | 0.708 | 49 | 0.684 | 42 |
A86 | 0.704 | 50 | 0.727 | 37 |
A87 | 0.701 | 51 | 0.712 | 39 |
A88 | 0.699 | 52 | 0.745 | 35 |
A89 | 0.695 | 53 | 0.756 | 34 |
A90 | 0.694 | 54 | 0.684 | 42 |
A91 | 0.689 | 55 | 0.684 | 42 |
A92 | 0.689 | 55 | 0.6 | 49 |
A93 | 0.685 | 56 | 0.639 | 45 |
A94 | 0.681 | 57 | 0.723 | 38 |
A95 | 0.673 | 58 | 0.689 | 41 |
A96 | 0.664 | 59 | 0.617 | 47 |
A97 | 0.661 | 60 | 0.6 | 50 |
A98 | 0.648 | 61 | 0.667 | 43 |
A99 | 0.645 | 62 | 0.65 | 44 |
A100 | 0.641 | 63 | 0.667 | 43 |
A101 | 0.628 | 64 | 0.599 | 51 |
A102 | 0.603 | 65 | 0.557 | 55 |
A103 | 0.577 | 66 | 0.623 | 46 |
A104 | 0.566 | 67 | 0.567 | 53 |
A105 | 0.565 | 68 | 0.562 | 54 |
A106 | 0.565 | 68 | 0.562 | 54 |
A107 | 0.561 | 69 | 0.556 | 56 |
A108 | 0.537 | 70 | 0.512 | 58 |
A109 | 0.521 | 71 | 0.5 | 60 |
A110 | 0.52 | 72 | 0.667 | 43 |
A111 | 0.504 | 73 | 0.612 | 48 |
A112 | 0.5 | 74 | 0.5 | 60 |
A113 | 0.478 | 75 | 0.524 | 57 |
A114 | 0.475 | 76 | 0.35 | 71 |
A115 | 0.473 | 77 | 0.506 | 59 |
A116 | 0.461 | 78 | 0.445 | 63 |
A117 | 0.457 | 79 | 0.456 | 61 |
A118 | 0.45 | 80 | 0.584 | 52 |
A119 | 0.449 | 81 | 0.45 | 62 |
A120 | 0.427 | 82 | 0.445 | 63 |
A121 | 0.427 | 82 | 0.434 | 64 |
A122 | 0.401 | 83 | 0.5 | 60 |
A123 | 0.383 | 84 | 0.367 | 69 |
A124 | 0.372 | 85 | 0.395 | 66 |
A125 | 0.361 | 86 | 0.389 | 67 |
A126 | 0.361 | 86 | 0.423 | 65 |
A127 | 0.36 | 87 | 0.334 | 73 |
A128 | 0.334 | 88 | 0.334 | 73 |
A129 | 0.333 | 89 | 0.289 | 75 |
A130 | 0.331 | 90 | 0.334 | 73 |
A131 | 0.313 | 91 | 0.356 | 70 |
A132 | 0.307 | 92 | 0.384 | 68 |
A133 | 0.293 | 93 | 0.35 | 71 |
A134 | 0.281 | 94 | 0.334 | 73 |
A135 | 0.281 | 94 | 0.334 | 73 |
A136 | 0.281 | 94 | 0.334 | 73 |
A137 | 0.266 | 95 | 0.339 | 72 |
A138 | 0.257 | 96 | 0.317 | 74 |
A139 | 0.186 | 97 | 0.22 | 77 |
A140 | 0.18 | 98 | 0.25 | 76 |
A141 | 0.141 | 99 | 0.167 | 78 |
A142 | 0.094 | 100 | 0.112 | 79 |
A143 | 0 | 101 | 0 | 80 |
A144 | 0 | 101 | 0 | 80 |
References
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2018, 76, 29–51. [Google Scholar] [CrossRef]
- Sharma, P.; Abrol, V.; Sharma, R.K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols, India. Eur. J. Agron. 2011, 34, 46–51. [Google Scholar] [CrossRef]
- Pratibha, G.; Srinivas, I.; Rao, K.V.; Raju, B.M.K.; Thyagaraj, C.R.; Korwar, G.R.; Venkateswarlu, B.; Shanker, A.K.; Choudhary, D.K.; Rao, K.S.; et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeonpea–castor systems. Eur. J. Agron. 2015, 66, 30–40. [Google Scholar] [CrossRef]
- Mango, N.; Siziba, S.; Makate, C. The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa. Agric. Food Secur. 2017, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Khonje, M.G.; Manda, J.; Mkandawire, P.; Tufa, A.H.; Alene, A.D. Adoption and welfare impacts of multiple agricultural technologies: Evidence from eastern Zambia. Agric. Econ. 2018, 49, 599–609. [Google Scholar] [CrossRef]
- Tambo, J.A.; Mockshell, J. Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa. Ecol. Econ. 2018, 151, 95–105. [Google Scholar] [CrossRef]
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef]
- Fisher, M.; Holden, S.T.; Thierfelder, C.; Katengeza, S.P. Awareness and adoption of conservation agriculture in Malawi: What difference can farmer-to-farmer extension make? Int. J. Agric. Sustain. 2018, 16, 310–325. [Google Scholar] [CrossRef]
- Ward, P.S.; Bell, A.R.; Droppelmann, K.; Benton, T.G. Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Pol. 2018, 70, 27–37. [Google Scholar] [CrossRef]
- Grabowski, P.P.; Kerr, J.M. Resource constraints and partial adoption of conservation agriculture by hand-hoe farmers in Mozambique. Int. J. Agric. Sustain. 2013, 12, 37–53. [Google Scholar] [CrossRef]
- Llewellyn, R.S.; D’Emden, F.H.; Kuehne, G. Extensive use of no-tillage in grain growing regions of Australia. Field Crop. Res. 2012, 132, 204–212. [Google Scholar] [CrossRef]
- Higgins, V.; Love, C.; Dunn, T. Flexible adoption of conservation agriculture principles: Practices of care and the management of crop residue in Australian mixed farming systems. Int. J. Agric. Sustain. 2018, 17, 49–59. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Conyers, M.K.; Hunt, J.R.; Kirkby, C.A.; Watt, M.; Rebetzke, G. Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 2014, 187, 133–145. [Google Scholar] [CrossRef]
- Conyers, M.; van der Rijt, V.; Oates, A.; Poile, G.; Kirkegaard, J.; Kirkby, C. The strategic use of minimum tillage within conservation agriculture in southern New South Wales, Australia. Soil Tillage Res. 2019, 193, 17–26. [Google Scholar] [CrossRef]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Dupras, J.; Laurent-Lucchetti, J.; Revéret, J.-P.; DaSilva, L. Using contingent valuation and choice experiment to value the impacts of agri-environmental practices on landscapes aesthetics. Landsc. Res. 2018, 43, 679–695. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 2010, 69, 1062–1075. [Google Scholar] [CrossRef]
- Fallah-Alipour, S.; Boshrabadi, H.M.; Mehrjerdi, M.R.Z.; Hayati, D. A Framework for Empirical Assessment of Agricultural Sustainability: The Case of Iran. Sustainability 2018, 10, 4823. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2011, 7, 292–320. [Google Scholar] [CrossRef]
- Singh, A.S.; Eanes, F.R.; Prokopy, L.S. Assessing Conservation Adoption Decision Criteria Using the Analytic Hierarchy Process: Case Studies from Three Midwestern Watersheds. Soc. Nat. Resour. 2018, 31, 503–507. [Google Scholar] [CrossRef]
- Pashaei Kamali, F.; Borges, J.A.R.; Meuwissen, M.P.M.; de Boer, I.J.M.; Oude Lansink, A.G.J.M. Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agric. Syst. 2017, 157, 118–128. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Interfaces 1994, 24, 19–43. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Limon, J.A.; Riesgo, L. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. J. Environ. Manag. 2009, 90, 3345–3362. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1998, 108, 5. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Muchaonyerwa, P.; Mnkeni, P.N.S. Mulch effects on soil moisture and nitrogen, weed growth and irrigated maize productivity in a warm-temperate climate of South Africa. Soil Tillage Res. 2011, 112, 58–65. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Hurley, E.G.; Andrews, S.S.; Cambardella, C.A.; Meek, D.W.; Duffy, M.D.; Mallarino, A.P. Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Belt Locations. Agron. J. 2006, 98, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C. A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crop. Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- Wade, T.; Claassen, R. Modeling No-Till Adoption by Corn and Soybean Producers: Insights into Sustained Adoption. J. Agric. Appl. Econ. 2017, 49, 186–210. [Google Scholar] [CrossRef] [Green Version]
- Takam-Fongang, G.M.; Kamdem, C.B.; Kane, G.Q. Adoption and impact of improved maize varieties on maize yields: Evidence from central Cameroon. Rev. Dev. Econ. 2019, 23, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, Y.; Di Pasquale, J.; Del Giudice, T.; Pauselli, G.; Masi, M.; Adinolfi, F. Precision farming: What do Italian farmers really think? An application of the Q methodology. Agric. Syst. 2022, 201, 103466. [Google Scholar] [CrossRef]
Variables | Observation | Mean | Std Dev | Min | Max |
---|---|---|---|---|---|
Proportion of maize and soybean farm under no or minimum mechanical soil disturbance in 2020 | 144 | 72.44 | 36.34 | 0 | 100 |
Proportion of maize and soybean farm under no or minimum mechanical soil disturbance in 2019 | 144 | 72.04 | 36.19 | 0 | 100 |
Proportion of maize and soybean farm under no or minimum mechanical soil disturbance in 2018 | 144 | 68.85 | 37.50 | 0 | 100 |
Proportion of maize and soybean farm under permanent mulch soil cover in 2020 | 144 | 68.49 | 39.18 | 0 | 100 |
Proportion of maize and soybean farm under permanent mulch soil cover in 2019 | 144 | 69.15 | 37.08 | 0 | 100 |
Proportion of maize and soybean farm under permanent mulch soil cover in 2018 | 144 | 64.76 | 38.66 | 0 | 100 |
Proportion of maize and soybean farm under crop rotation in 2020 | 144 | 82.38 | 28.90 | 0 | 100 |
Proportion of maize and soybean farm under crop rotation in 2019 | 144 | 82.46 | 28.30 | 0 | 100 |
Proportion of maize and soybean farm under crop rotation in 2018 | 144 | 80.54 | 30.60 | 0 | 100 |
Definitions | Principles of CA | |
---|---|---|
1 if the farmer has used direct seeding or minimum tillage on the parcel and 0 otherwise. | 1—No or minimum mechanical soil disturbance. | |
1 if the farmer has left crop residues or has planted cover crops on the parcel and 0 otherwise. | 2—Permanent mulch soil cover/cover crop. | |
1 if the farmer has applied crop rotation on the parcel and 0 otherwise | 3—Crop rotation. |
Principles | Extreme Importance | Very Strong Importance | Strong Importance | Moderate Importance | Equal Importance | Moderate Importance | Strong Importance | Very Strong Importance | Extreme Importance | Principles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No or minimum mechanical soil disturbance | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Permanent mulch soil cover/cover crop |
No or minimum mechanical soil disturbance | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Crop rotation |
Permanent mulch soil cover/cover crop | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Crop rotation |
Expert | Weight | Inconsistency Ratio | ||
---|---|---|---|---|
No or Minimum Mechanical Soil Disturbance | Permanent Mulch Soil Cover | Crop Rotation | ||
Expert 1 | 71.72 | 8.81 | 19.47 | 0.09 |
Expert 2 | 76.62 | 7.59 | 15.79 | 0.13 |
Expert 3 | 21.85 | 71.47 | 6.68 | 0.17 |
Expert 4 | 33.33 | 33.33 | 33.33 | 0.00 |
Expert 5 | 66.67 | 16.67 | 16.67 | 0.00 |
G-mean * | 48.44 | 19.27 | 16.27 | |
G-mean ** | 44.63 | 22.24 | 26.06 | |
Normalised * weight | 57.68 | 22.95 | 19.37 | |
Normalised ** weight | 48.03 | 23.93 | 28.04 |
Variable | Observation | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
CIACA2020 | 144 | 0.74 a | 0.28 | 0 | 1 |
CIACA2019 | 144 | 0.74 a | 0.27 | 0 | 1 |
CIACA2018 | 144 | 0.71 | 0.29 | 0 | 1 |
CIACA | 144 | 0.73 | 0.27 | 0 | 1 |
Type | Relative Frequencies | Definitions |
---|---|---|
Trend 1 | 8.33 | Increasing trend |
Trend 2 | 10.42 | Broken line trend |
Trend 3 | 4.17 | Broken line trend |
Trend 4 | 6.25 | Decreasing trend |
Trend 5 | 46.53 | Constant trend |
Trend 6 | 6.94 | Semi-increasing trend |
Trend 7 | 4.17 | Semi-decreasing trend |
Trend 8 | 7.64 | Semi-increasing trend |
Trend 9 | 5.56 | Semi-decreasing trend |
Total | 100 |
Category | Number of Farmers | Relative Frequencies |
---|---|---|
Full adopters of CA | 31 | 21.53 |
Non-adopters of CA | 2 | 1.39 |
Partial adopters of CA | 111 | 77.08 |
Total | 144 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takam Fongang, G.M.; Guay, J.-F.; Séguin, C. A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec. Agronomy 2023, 13, 777. https://doi.org/10.3390/agronomy13030777
Takam Fongang GM, Guay J-F, Séguin C. A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec. Agronomy. 2023; 13(3):777. https://doi.org/10.3390/agronomy13030777
Chicago/Turabian StyleTakam Fongang, Guy Martial, Jean-François Guay, and Charles Séguin. 2023. "A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec" Agronomy 13, no. 3: 777. https://doi.org/10.3390/agronomy13030777
APA StyleTakam Fongang, G. M., Guay, J. -F., & Séguin, C. (2023). A Composite Index Measuring Adoption of Conservation Agriculture among Maize and Soybean Farmers in Québec. Agronomy, 13(3), 777. https://doi.org/10.3390/agronomy13030777