Effect of Salicylic Acid on the Growth and Development of Sweet Pepper (Capsicum annum L.) under Standard and High EC Nutrient Solution in Aeroponic Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Research
2.2. Plant Material and Growing Conditions
2.2.1. SA Concentration Optimized for Foliar and Root Treatment
2.2.2. Aeroponic Growing System
2.3. Experimental Design and Treatments
- (1)
- Low EC—plants were fed a standard nutrient solution for peppers with an EC of 3.3 dS m−1;
- (2)
- Low EC + SA-f—plants were fed with a standard nutrient solution as in combination (1) and treated with foliar SA (SA-f);
- (3)
- High EC—plants were fed with a nutrient solution 2 × concentrated compared to Low EC, with an EC of 7 dS m−1;
- (4)
- High EC + SA-f + SA-r—plants were supplied with a nutrient solution as in the High EC combination (3), treated with foliar SA (SA-f) as in the combination (2), and SA was also applied to the roots (SA-r).
2.4. Evaluated Parameters
2.4.1. Morphological Characteristics
2.4.2. Chlorophyll Fluorescence and Chlorophyll Content (SPAD)
2.4.3. Soluble Protein and H2O2 Content
2.4.4. Assays of Antioxidant Enzymes
2.5. Statistical Analysis
3. Results
3.1. SA Concentration for Foliar and Root Treatment
3.2. SPAD Index
3.3. Morphological Characteristics
3.4. Chlorophyll a Fluorescence
3.5. Content of Soluble Protein and H2O2, the Activity of SOD and CAT
4. Discussion
4.1. Selection of a Proper SA Concentration for Foliar and Root Treatment in Peppers
4.2. Effect of SA on the Morphology, SPAD Index, and Chlorophyll Fluorescence of Pepper Cultivated under Different EC
4.3. SA-Dependent Effect on the Soluble Protein and H2O2 Content, SOD and CAT Activity in Pepper Cultivated under Different EC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sikha, S.; Sunil, P.; Arti, J.; Sujata, B. Impact of water-deficit and salinity stress on seed germination and seedling growth of Capsicum annuum ‘Solan Bharpur’. Int. Res. J. Biol. Sci. 2013, 2, 9–15. [Google Scholar]
- FAOSTAT. Available online: www.fao.org/faostat/en/#home (accessed on 15 December 2022).
- Wu, L.; Yang, H.; Li, Z.; Wang, L.; Peng, Q. Effects of Salinity-Stress on Seed Germination and Growth Physiology of Quinclorac-Resistant Echinochloa crus-galli (L.) Beauv. Agronomy 2022, 12, 1193. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, N.; Hasib, A.; Eddine, K.C.; Dehbi, F.; El Batal, H.; Ouatmane, A. Comparative Evaluation of the Phytochemical Constituents and the Antioxidant Activities of Five Moroccan Pepper Varieties (Capsicum Annuum L.). JCBPS 2017, 7, 1294–1306. [Google Scholar]
- Sanati, S.; Razavi, B.M.; Hosseinzadeh, H. A review of the e_ects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran. J. Basic Med. Sci. 2018, 21, 439–448. [Google Scholar]
- García-Mier, L.; Guevara-González, R.G.; Mondragón-Olguín, V.M.; Del Rocío Verduzco-Cuellar, B.; Torres-Pacheco, I. Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals. Int. J. Mol. Sci. 2013, 14, 4203–4222. [Google Scholar] [CrossRef]
- Munshi, M.H.; Issak, H.; Kabir, K.; Hosain, M.T.; Fazle Bari, A.S.M.; Rahman, M.S.; Tamanna, M. Enhancement of growth, yield and fruit quality of sweet pepper (Capsicum annuum L.) by foliar application of salicylic acid. Int. J. Biosci. 2020, 17, 49–56. [Google Scholar]
- Hagassou, D.; Francia, E.; Ronga, D.; Buti, M. Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Sci. Hortic. 2019, 249, 49–58. [Google Scholar] [CrossRef]
- Hepler, P.K.; Winship, L.J. Calcium at the Cell Wall-Cytoplast Interface. J. Integr. Plant Biol. 2010, 52, 147–160. [Google Scholar] [CrossRef]
- Hocking, B.; Tyerman, S.D.; Burton, R.A.; Gilliham, M. Fruit calcium: Transport and physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, H.; Qian, T.; He, L.; Jin, H.; Zhou, Q.; Yu, J. Nutrient Concentrations Induced Abiotic Stresses to Sweet Pepper Seedlings in Hydroponic Culture. Plants 2022, 11, 1098. [Google Scholar] [CrossRef]
- Pérez-Vazquez, E.L.; Monserrat Gaucín-Delgado, J.; Ramírez-Rodríguez, S.C.; de los Ángeles Sariñana-Aldaco, M.; Zapata Sifuentes, G.; Zuñiga-Valenzuela, E. Conductividad eléctrica De La solución Nutritiva Efecto En El Rendimiento Y La Calidad nutracéutica De Pimiento morrón. Rev. Mex. De Cienc. Agrícolas 2020, 11, 1669–1675. [Google Scholar] [CrossRef]
- Rekhter, D.; Lüdke, D.; Ding, Y.; Feussner, K.; Zienkiewicz, K.; Lipka, V.; Wiermer, M.; Zhang, Y.; Petit-Houdenot, Y. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 2019, 365, 498–502. [Google Scholar] [CrossRef]
- Ding, P.; Ding, Y. Stories of Salicylic Acid: A Plant Defense Hormone. Trends Plant Sci. 2020, 25, 549–565. [Google Scholar] [CrossRef]
- Veloso, L.L.A.; Lima, G.S.; Silva, A.A.R.; Souza, L.P.; Lacerda, C.N.; Silva, I.J.; Chaves, L.H.G.; Fernandes, P.D. Attenuation of salt stress on the physiology and production of bell peppers by treatment with salicylic acid. Semin. Ciências Agrárias Londrina 2021, 42, 2751–2768. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abdel-Razzak, H.; Wahb-Allah, M.; Alenazi, M.; Alsadon, A.; Dewir, Y.H. Improvement in Growth, Yield, and Fruit Quality of Three Red Sweet Pepper Cultivars by Foliar Application of Humic and Salicylic Acids. HortTechnology 2019, 29, 170–178. [Google Scholar] [CrossRef]
- Mahdavian, K.; Ghorbanli, M.; Kalantari, K.M. Role of Salicylic Acid in Regulating Ultraviolet Radiation Induced Oxidative Stress in Pepper Leaves. Russ. J. Plant Physiol. 2008, 55, 560–563. [Google Scholar] [CrossRef]
- Abou El-Yazied, A. Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (Capsicum annuum L.) under autumn planting. Res. J. Agric. Biol. Sci. 2011, 7, 423–433. [Google Scholar]
- Haytova, D. A review of foliar fertilization of some vegetables crops. Annu. Rev. Res. Biol. 2013, 3, 455–465. [Google Scholar]
- Shaar-Moshe, L.; Blumwald, E.; Peleg, Z. Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat. Plant Physiol. 2017, 174, 421–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torun, H. Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Physiol. Plant. 2018, 165, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Hwang, B.K. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 2014, 65, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Wang, Y.; Li, X.; Zhang, Y. Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. Mol. Plant. 2020, 13, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Janda, T.; Szalai, G.; Pál, M. Salicylic Acid Signalling in Plants. Int. J. Mol. Sci. 2020, 21, 2655. [Google Scholar] [CrossRef] [Green Version]
- Vicente, M.R.S.; Plasencia, J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, D.A.; Klessig, D.F. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol. 2017, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Strasser, R.J. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 445–483. [Google Scholar]
- Sieczko, L.; Dąbrowski, P.; Kowalczyk, K.; Gajc-Wolska, J.; Borucki, W.; Janaszek-Mańkowska, M.; Kowalczyk, W.; Farci, D.; Kalaji, H.M. Early detection of phosphorus deficiency stress in cucumber at the cellular level using chlorophyll fluorescence signals. J. Water Land Dev. 2022, 176–186. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wilmowicz, E.; Frankowski, K.; Glazinska, P.; Kesy, J.; Kopcewicz, J. Involvement of ABA in flower induction of Pharbitis nil. Acta So. Bot. Pol. 2011, 80, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–152. [Google Scholar] [CrossRef]
- Canakci, S. Effects of Salicylic Acid on Growth, Biochemical Constituents in Pepper (Capsicum annuum L.) Seedlings. PJBS 2011, 14, 300–304. [Google Scholar] [CrossRef] [Green Version]
- Souri, M.K.; Tohidloo, G. Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem. Biol. Technol. Agric. 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, E.; Dursun, A. Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. Acta Hort. 2009, 807, 395–400. [Google Scholar] [CrossRef]
- Kowalska, I.; Smoleń, S. Effect of foliar application of salicylic acid on the response of tomato plants to oxidative stress and salinity. J. Elem. 2013, 18, 239–254. [Google Scholar] [CrossRef]
- Aktas, H.; Abak, K.; Cakmak, I. Genotypic variation in the response of pepper to salinity. Sci. Hortic. 2006, 110, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.; Souri, M.K. Growth characteristics and fruit quality of chili pepper under higher electrical conductivity of nutrient solution induced by various salts. AJAS 2020, 42, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Kamanga, R.M.; Mndala, L. Crop abiotic stresses and nutrition of harvested food crops: A review of impacts, interventions and their effectiveness. Afr. J. Agric. Res. 2019, 14, 118–135. [Google Scholar]
- Osama, S.; Sherei, M.; Al-Mahdy, D.A.; Bishr, M.; Salama, O. Effect of salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind. Crops Prod. 2019, 134, 1–10. [Google Scholar] [CrossRef]
- Tahjib-Ul-Arif, M.; Siddiqui, M.N.; Sohag, A.A.M.; Sakil, M.A.; Rahman, M.M.; Polash, M.A.S.; Mostofa, M.G.; Tran, L.S.P. Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J. Plant Growth Regul. 2018, 37, 1318–1330. [Google Scholar] [CrossRef]
- Oliveira, V.K.N.; Lima, G.S.; Soares, M.D.M.; Soares, L.A.A.; Gheyi, H.R.; Silva, A.A.R.; Paiva, F.J.S.; Mendonca, A.J.T.; Fernandes, P.D. Salicylic acid does not mitigate salt stress on the morphophysiology and production of hydroponic melon. Braz. J. Biol. 2022, 82, e262664. [Google Scholar] [CrossRef]
- Huang, C.; Wang, D.; Sun, L.; Wei, L. Effects of exogenous salicylic acid on the physiological characteristics of Dendrobium officinale under chilling stress. Plant Growth Regul. 2016, 79, 199–208. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, X.; Wen, T.; Liu, M.; Yang, M.; Chen, X. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress. Plant Physiol. Biochem. 2017, 112, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi-Golezani, K.; Farhangi-Abriz, S. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicol. Environ. Saf. 2018, 166, 18–25. [Google Scholar] [CrossRef]
- Saleem, M.; Fariduddin, Q.; Castroverde, C.D.M. Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 2021, 168, 381–397. [Google Scholar] [CrossRef]
- Agamy, R.A.; Hafez, E.E.; Taha, T.H. Acquired resistant motivated by salicylic acid applications on salt stressed tomato (Lycopersicum esculentum Mill.). Am. Eur. J. Agric. Environ. Sci. 2013, 13, 50–57. [Google Scholar]
- Ahmed, H.B.; Dhaou, N.; Wasti, S.; Mimouni, H.; Zid, E. Effects of Salicylic Acid on the Growth and Some Physiological Characters in Salt Stressed Tomato Plants (Solanum Lycopersicum). J. Life Sci. 2011, 5, 838–843. [Google Scholar]
- Shahba, Z.; Baghizadeh, A.; Ali, V.S.M.; Ali, Y.; Mehdi, Y. The salicylic acid effect on the tomato (Lycopersicon esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J. Biophy. Struct. Bio. 2010, 2, 35–41. [Google Scholar]
- El–Tayeb, M.A. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 2005, 45, 215–224. [Google Scholar] [CrossRef]
- Krantev, A.; Yordanova, R.; Janda, T.; Szalai, G.; Popova, L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol. 2008, 165, 920–931. [Google Scholar] [CrossRef]
- Alsahli, A.; Mohamed, A.K.; Alaraidh, I.; Al-Ghamdi, A.; Al-Watban, A.; El-Zaidy, M.; Alzahrani, S.M. Salicylic acid alleviates salinity stress through the modulation of biochemical attributes and some key antioxidants in wheat seedlings. Pak. J. Bot. 2019, 51, 1551–1559. [Google Scholar] [CrossRef]
- Farhadi, N.; Ghassemi-Golezani, K. Physiological changes of Mentha pulegium in response to exogenous salicylic acid under salinity. Sci. Hortic. 2020, 267, 109325. [Google Scholar] [CrossRef]
- Petrov, V.D.; Van Breusegem, F. Hydrogen peroxide—A central hub for information flow in plant cells. AoB Plants 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rodrıguez-Rosales, M.; Kerkeb, L.; Bueno, P.; Donaire, J. Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum Mill) calli. Plant Sci. 1999, 143, 143–150. [Google Scholar] [CrossRef]
- Jini, D.; Joseph, B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci. 2017, 24, 97–108. [Google Scholar] [CrossRef]
- Gechev, T.S.; van Breusegem, F.; Stone, J.M.; Denev, I.; Laloi, C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 2006, 28, 1091–1101. [Google Scholar] [CrossRef]
- Van Breusegem, F.; Dat, J.F. Reactive oxygen species in plant cell death. Plant Physiol. 2006, 141, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 2005, 89, 1113–1121. [Google Scholar]
- Pitzschke, A.; Hirt, H. Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol. 2006, 141, 351–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Measurement Dates | Combinations of EC Medium and SA Treatment | |||
---|---|---|---|---|---|
Low EC | Low EC + SA-f | High EC | High EC + SA-f + SA-r | ||
Total weight of set fruits (g/plant) | Term 1. | 423.75 ± 51.45 a* | 342.50 ± 38.39 b | 421.25 ± 40.62 a | 362.50 ± 23.36 ab |
Term 2. | 713.75 ± 29.93 a | 632.50 ± 38.39 b | 711.25 ± 40.62 a | 652.50 ± 23.36 ab | |
Mean | 568.75 ± 42.66 A | 487.50 ± 45.71 B | 566.25 ± 46.60 A | 507.50 ± 40.69 AB | |
Total number of set fruits (No./plant) | Term 1. | 3.75 ± 0.61 b | 5.25 ± 0.67 ab | 6.25 ± 0.70 a | 5.75 ± 0.37 ab |
Term 2. | 6.75 ± 0.36 b | 8.25 ± 0.67 ab | 9.25 ± 0.70 a | 8.75 ± 0.37 ab | |
Mean | 5.25 ± 0.46 B | 6.75 ± 0.60 AB | 7.75 ± 0.62 A | 7.25 ± 0.46 AB | |
Mean weight of fruit set (g) | Term 1. | 113.00 ± 4.54 a | 65.24 ± 5.43 b | 67.40 ± 4.63 b | 63.04 ± 5.90 b |
Term 2. | 105.74 ± 2.16 a | 76.67 ± 8.39 b | 76.89 ± 3.56 b | 74.57 ± 4.03 b | |
Mean | 109.38 ± 2.64 A | 70.96 ± 4.95 B | 72.15 ± 3.05 B | 68.81 ± 3.71 B | |
Weight of set fruits with BER (g/plant) | Term 1. | 423.75 ± 30.43 a | 146.63 ± 52.47 b | 87.5 ± 48.51 bc | 0.00 ± 0.00 c |
Term 2. | 448.75 ± 29.94 a | 171.62 ± 52.47 b | 112.5 ± 48.51 bc | 25.00 ± 0.00 c | |
Mean | 436.25 ± 20.70 A | 159.13 ± 35.99 B | 100.00 ± 33.30 BC | 12.50 ± 3.20 C | |
Number of set fruits with BER (No./plant) | Term 1. | 3.75 ± 0.43 a | 1.88 ± 0.48 b | 1.25 ± 0.64 bc | 0.00 ± 0.00 c |
Term 2. | 4.75 ± 0.37 a | 2.88 ± 0.48 b | 2.25 ± 0.64 bc | 1.00 ± 0.00 c | |
Mean | 4.25 ± 0.28 A | 2.38 ± 0.35 B | 1.75 ± 0.46 BC | 0.50 ± 0.13 C | |
% set fruit with BER in total weight of set fruits (%) | Term 1. | 18.4 ± 3.95a ** | 14.40 ± 11.24 b | 12.50 ± 12.80 bc | 0.00 ± 0.00 c |
Term 2. | 16.30 ± 1.85 a | 12.90 ± 6.74 b | 11.50 ± 7.26 bc | 8.10 ± 0.14 c | |
Mean | 17.50 ± 4.94 A | 13.70 ± 6.54 B | 12.10 ± 7.16 BC | 6.80 ± 0.50 C | |
Total weight of plant (leaves, shoots, set fruits and roots) (g/plant) | Term 1. | 1227.50 ± 65.14 a | 1059.75 ± 42.59 ab | 977.88 ± 73.71 b | 969.25 ± 45.88 b |
Term 2. | 1677.50 ± 56.25 a | 1509.75 ± 42.59 ab | 1427.88 ± 73.71 b | 1419.25 ± 45.88 b | |
Mean | 1452.50± 69.65 A | 1284.75 ± 64.97 AB | 1202.88 ± 76.88 B | 1194.25 ± 66.01 B | |
Weight of green parts of the plant (leaves, shoots and set fruits) (g/plant) | Term 1. | 823.75 ± 83.19 a | 672.50 ± 40.17 b | 720.63 ± 71.17 ab | 661.25 ± 43.39 b |
Term 2. | 1123.75 ± 51.37 a | 972.50 ± 40.17 b | 1020.63 ± 71.17 ab | 961.25 ± 43.39 b | |
Mean | 973.75 ± 52.27 A | 822.50 ± 47.46 B | 870.63 ± 62.16 AB | 811.25 ± 48.77 B | |
Weight of roots (g/plant) | Term 1. | 403.75 ± 19.58 a | 387.25 ± 7.24 a | 257.25 ± 31.35 b | 308.00 ± 10.21 ab |
Term 2. | 553.75 ± 8.92 a | 537.25 ± 7.24 a | 407.25 ± 31.35 b | 458.00 ± 10.21 ab | |
Mean | 478.75 ± 20.30 A | 462.25 ± 19.98 A | 332.25 ± 28.80 B | 383.00 ± 20.59 AB | |
Ratio of green parts of the plant to the weight of roots | Term 1. | 2.04 ± 0.08 b | 1.74 ± 0.02 c | 4.29 ± 0.68 a | 2.15 ± 0.09 b |
Term 2. | 2.03 ± 0.06 ab | 1.81 ± 0.01 b | 2.73 ± 0.15 a | 2.10 ± 0.06 ab | |
Mean | 2.03 ± 0.06 B | 1.77 ± 0.03 C | 3.51 ± 0.36 A | 2.13 ± 0.07 B |
Parameter | Combination | |||
---|---|---|---|---|
Low EC | Low EC + SA-f | High EC | High EC + SA-f + SA-r | |
Fs | 484.66 ± 5.55 a* | 493.66 ± 2.87 a | 438.33 ± 4.50 b | 486.00 ± 5.09 ab |
Fm’ | 1763.66 ± 1.69 c | 2003.33 ± 2.36 a | 1649.67 ± 0.47 d | 1835.33 ± 1.24 b |
ΦPSII | 0.72 ± 0.00 a | 0.72 ± 0.03 a | 0.74 ± 0.02 a | 0.71 ± 0.01 a |
Fv/Fm | 0.80 ± 0.00 a | 0.80 ± 0.01 a | 0.79 ± 0.03 a | 0.81 ± 0.00 a |
PI | 4.95 ± 0.17 a | 4.78 ± 0.49 a | 4.23 ± 1.00 b | 4.67 ± 0.58 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczak, A.; Kućko, A.; Pióro-Jabrucka, E.; Gajc-Wolska, J.; Kowalczyk, K. Effect of Salicylic Acid on the Growth and Development of Sweet Pepper (Capsicum annum L.) under Standard and High EC Nutrient Solution in Aeroponic Cultivation. Agronomy 2023, 13, 779. https://doi.org/10.3390/agronomy13030779
Sobczak A, Kućko A, Pióro-Jabrucka E, Gajc-Wolska J, Kowalczyk K. Effect of Salicylic Acid on the Growth and Development of Sweet Pepper (Capsicum annum L.) under Standard and High EC Nutrient Solution in Aeroponic Cultivation. Agronomy. 2023; 13(3):779. https://doi.org/10.3390/agronomy13030779
Chicago/Turabian StyleSobczak, Anna, Agata Kućko, Ewelina Pióro-Jabrucka, Janina Gajc-Wolska, and Katarzyna Kowalczyk. 2023. "Effect of Salicylic Acid on the Growth and Development of Sweet Pepper (Capsicum annum L.) under Standard and High EC Nutrient Solution in Aeroponic Cultivation" Agronomy 13, no. 3: 779. https://doi.org/10.3390/agronomy13030779
APA StyleSobczak, A., Kućko, A., Pióro-Jabrucka, E., Gajc-Wolska, J., & Kowalczyk, K. (2023). Effect of Salicylic Acid on the Growth and Development of Sweet Pepper (Capsicum annum L.) under Standard and High EC Nutrient Solution in Aeroponic Cultivation. Agronomy, 13(3), 779. https://doi.org/10.3390/agronomy13030779