The Effect of N and KH2PO4 on Skin Color, Sugars, and Organic Acids of “Flame Seedless” Grape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Determination of Mineral Contents
2.3. Determination of Grape Quality Parameters
2.4. Berry Skin Color Evaluation
2.5. Determination of Fruit Pigment Content
2.6. Determination of Anthocyanin Composition
2.7. Determination of Soluble Sugar and Organic Acid Contents
2.8. Statistical Analysis
3. Results
3.1. Effect of N and KH2PO4 on Mineral Nutrient Contents in Grape Berries
3.2. Effect of N and KH2PO4 on the Physicochemical Indices in Grape Berries
3.3. Effect of N and KH2PO4 on CIRG of Grape Berries
3.4. Effect of N and KH2PO4 on the Pigment Content of Grape Skin
3.5. Effect of N and KH2PO4 on the Anthocyanin Composition of ‘Flane Seedless’ Grape Skin
3.6. Effect of N and KH2PO4 on the Soluble Sugar Contents in Grape Berries
3.7. Effect of N and KH2PO4 on the Organic Acid Contents in Grape Berries
3.8. Correlation Analysis of Sugar and Acid Contents and Color Index
4. Discussion
4.1. Effect of N and KH2PO4 on Color and Anthocyanin Composition
4.2. Effect of N and KH2PO4 on Sugar and Organic Acid Contents
4.3. Correlation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, H.; Shen, Y.; Deng, H.; Wang, J.; Lin, L.; Deng, Q.; Lv, X.; Liang, D.; Hu, R.; Wang, Z.; et al. Melatonin application improves berry coloration, sucrose synthesis, and nutrient absorption in ‘Summer Black’ grape. Food Chem. 2021, 356, 129713. [Google Scholar] [CrossRef]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Horti. 2020, 259, 108859. [Google Scholar] [CrossRef]
- Huang, T.; Yu, D.; Wang, X. VvWRKY22 transcription factor interacts with VvSnRK1.1/VvSnRK1.2 and regulates sugar accumulation in grape. Biochem. Biophy. Res. Commun. 2021, 554, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Pinillos, V.; Ibanez, S.; Cunha, J.M.; Hueso, J.; Cuevas, J. Postveraison Deficit Irrigation Effects on Fruit Quality and Yield of “Flame Seedless” Table Grape Cultivated under Greenhouse and Net. Plants 2020, 9, 9111437. [Google Scholar] [CrossRef]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among color development, anthocyanin and pigment-related gene expression in ‘Crimson Seedless’ grapes treated with abscisic acid and sucrose. Plant Physiol. Bioch. 2017, 115, 286–297. [Google Scholar] [CrossRef]
- Shi, P.; Song, C.; Chen, H.; Duan, B.; Zhang, Z.; Meng, J. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil. Food Chem. 2018, 253, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Perez-Alvarez, E.P.; Martinez-Vidaurre, J.M.; Garde-Cerdan, T. Anthocyanin composition of grapes from three different soil types in cv. Tempranillo, A.O.C. Rioja vineyards. J. Sci. Food Agric. 2019, 99, 4833–4841. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically bound aroma precursors in fruits: A comprehensive review. Crit. Rev. Food Sci. 2022, 62, 215–243. [Google Scholar] [CrossRef]
- Yang, B.; Yao, H.; Zhang, J.; Li, Y.; Ju, Y.; Zhao, X.; Sun, X.; Fang, Y. Effect of regulated deficit irrigation on the content of soluble sugars, organic acids and endogenous hormones in Cabernet Sauvignon in the Ningxia region of China. Food Chem. 2020, 312, 126020. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, Y.; Zhang, A.; Wang, P.; He, S.; Zhang, K.; Wang, J.; Fang, Y.; Sun, X. Using foliar nitrogen application during veraison to improve the flavor components of grape and wine. J. Sci. Food Agric. 2021, 101, 1288–1300. [Google Scholar] [CrossRef]
- Zarrouk, O.; Brunetti, C.; Egipto, R.; Pinheiro, C.; Genebra, T.; Gori, A.; Lopes, C.M.; Tattini, M.; Chaves, M.M. Grape Ripening Is Regulated by Deficit Irrigation/Elevated Temperatures According to Cluster Position in the Canopy. Front. Plant Sci. 2016, 7, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Sha, J.; Chen, Q.; Xu, X.; Zhu, Z.; Ge, S.; Jiang, Y. Exogenous Abscisic Acid Regulates Distribution of 13C and 15N and Anthocyanin Synthesis in ‘Red Fuji’ Apple Fruit Under High Nitrogen Supply. Front. Plant Sci. 2019, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Qin, H.; Liu, C.; Liu, J.; Lyu, M.; Wang, F.; Xing, Y.; Tian, G.; Zhu, Z.; Jiang, Y.; et al. Transcriptome and Metabolome Analysis Reveals the Effect of Nitrogen-Potassium on Anthocyanin Biosynthesis in ‘Fuji’ Apple. J. Agric. Food Chem. 2022, 70, 15057–15068. [Google Scholar] [CrossRef] [PubMed]
- Ullah Khan, S.; Ahmad Alizai, A.; Ahmed, N.; Sayed, S.; Junaid, M.; Kanwal, M.; Ahmed, S.; Alqubaie, A.I.; Alamer, K.H.; Ali, E.F. Investigating the role of potassium and urea to control fruit drop and to improve fruit quality of ‘Dhakki’ date palm. Saudi. J. Biol. Sci. 2022, 29, 3806–3814. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, P.; Jia, H.; Phillip, F.O.; Bao, X.; Zhao, F.; Zhao, B.; Feng, J.; Yu, K. The Effect of Foliar Application of K2SO4 or KH2PO4 on Skin Color of the ‘Kyoho’ Grape. Agronomy 2021, 11, 2361. [Google Scholar] [CrossRef]
- Chen, L.N.; Liu, X.C.; Sun, Z.X.; Rong, C.S.; Zhou, Y.Q.; Shu, L.Z. Effects of different nitrogen application rates on dry matter accumulation, distribution and yield of grape under alternate partial root-zone drip irrigation. Ying Yong Sheng Tai Xue Bao 2021, 32, 1807–1815. [Google Scholar]
- Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; Drescher, G.L.; De Conti, L.; Pott, L.P.; Tassinari, A.; Kulmann, M.; Da Silva, I.; Brunetto, G. Ideal nitrogen concentration in leaves for the production of high-quality grapes cv ‘Alicante Bouschet’ (Vitis vinifera L.) subjected to modes of application and nitrogen doses. Eur. J. Agron. 2021, 123, 126200. [Google Scholar] [CrossRef]
- Soubeyrand, E.; Basteau, C.; Hilbert, G.; van Leeuwen, C.; Delrot, S.; Gomes, E. Nitrogen supply affects anthocyanin biosyn thetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 2014, 103, 38–49. [Google Scholar] [CrossRef]
- Su, X.; Bai, C.; Wang, X.; Liu, H.; Zhu, Y.; Wei, L.; Cui, Z.; Yao, L. Potassium Sulfate Spray Promotes Fruit Color Preference via Regulation of Pigment Profile in Litchi Pericarp. Front. Plant Sci. 2022, 13, 925609. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, S.; Liang, Y.; Li, B.; Ma, S.; Wang, Z.; Ma, B.; Li, M. Nitrogen Levels Regulate Sugar Metabolism and Transport in the Shoot Tips of Crabapple Plants. Front. Plant Sci. 2021, 12, 626149. [Google Scholar] [CrossRef]
- Liu, Y.; Che, F.; Wang, L.; Meng, R.; Zhang, X.; Zhao, Z. Fruit coloration and anthocyanin biosynthesis after bag removal in non-red and red apples (Malus × domestica Borkh.). Molecules 2013, 18, 1549–1563. [Google Scholar] [CrossRef]
- Cheng, X.; Ma, T.; Wang, P.; Liang, Y.; Zhang, J.; Zhang, A.; Chen, Q.; Li, W.; Ge, Q.; Sun, X.; et al. Foliar nitrogen application from veraison to preharvest improved flavonoids, fatty acids and aliphatic volatiles composition in grapes and wines. Food Res. Int. 2020, 137, 109566. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhu, M.; Wang, M.; Xu, Y.; Chen, W.; Yang, G. Transcriptome analysis of calcium-induced accumulation of anthocyanins in grape skin. Sci. Hortic. 2020, 260, 108871. [Google Scholar] [CrossRef]
- Guo, Y.; Bai, J.; Duan, X.; Wang, J. Accumulation characteristics of carotenoids and adaptive fruit color variation in ornamental pepper. Sci. Hortic. 2021, 275, 109699. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, B.; Fan, P.; Yang, C.; Duan, W.; Zheng, X.; Liu, C.; Li, S. Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chem. 2008, 111, 837–844. [Google Scholar] [CrossRef]
- Wu, S.; Li, M.; Zhang, C.; Tan, Q.; Yang, X.; Sun, X.; Pan, Z.; Deng, X.; Hu, C. Effects of phosphorus on fruit soluble sugar and citric acid accumulations in citrus. Plant Physiol. Biochnol. 2021, 160, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Shen-chun, Q.U. Effect of bag removal on Fuji apple coloration. Afr. J. Agric. Res. 2012, 7, 2770–2776. [Google Scholar] [CrossRef]
- Shaomin, W.; Huajun, G.; Xiaobing, Z. Effects of bagging on pigment, sugar and acid development in ‘Red Fuji’apple fruits. Acta Hortic. Sin. 2002, 29, 263. [Google Scholar]
- Okba, S.K.; Mazrou, Y.; Elmenofy, H.M.; Ezzat, A.; Salama, A.M. New Insights of Potassium Sources Impacts as Foliar Application on ‘Canino’ Apricot Fruit Yield, Fruit Anatomy, Quality and Storability. Plants 2021, 10, 10061163. [Google Scholar] [CrossRef]
- Solhjoo, S.; Gharaghani, A.; Fallahi, E. Calcium and Potassium Foliar Sprays Affect Fruit Skin Color, Quality Attributes, and Mineral Nutrient Concentrations of ‘Red Delicious’ Apples. Int. J. Fruit Sci. 2017, 17, 358–373. [Google Scholar] [CrossRef]
- Xu, L.; Yue, Q.; Xiang, G.; Bian, F.; Yao, Y. Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Hortic. Res. 2018, 5, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.F.; Yu, Y.; Shi, T.C.; Fu, Y.S.; Zhao, T.; Zhang, Z.W. Melatonin treatment of pre-veraison grape berries modifies phenolic components and antioxidant activity of grapes and wine. Food Sci. Tech-Brazil. 2019, 39, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Crupi, P.; Alba, V.; Masi, G.; Caputo, A.R.; Tarricone, L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Res. Int. 2019, 126, 108667. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Brouard, E.; Prodhomme, D.; Hilbert, G.; Renaud, C.; Petit, J.P.; Edwards, E.; Betts, A.; Delrot, S.; Ollat, N.; et al. Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exogenous ABA application. Food Res. Int. 2022, 160, 111478. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Guo, S.H.; Niu, Y.; Du, Y.P. Analysis of anthocyanin compositions and contents in eight grape cultivars. J. Fruit Sci. 2017, 34, 444–453. [Google Scholar]
- Lopes-da-Silva, F.; de Pascual-Teresa, S.; Rivas-Gonzalo, J.; Santos-Buelga, C. Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur. Food Res. Technol. 2001, 214, 248–253. [Google Scholar] [CrossRef]
- Deis, L.; Baldo, Y.; Cavagnaro, J.B.; Cavagnaro, P.F. High Temperature Alters Anthocyanin Concentration and Composition in Grape Berries of Malbec, Merlot, and Pinot Noir in a Cultivar-Dependent Manner. Plants 2022, 11, 926. [Google Scholar]
- Benard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Genard, M. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 2009, 57, 4112–4123. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sun, S.; Zhang, L.; Yang, J.; Wang, Z.; Ma, F.; Li, M. Carbohydrate metabolism and transport in apple roots under nitrogen deficiency. Plant Physiol. Biochem. 2020, 155, 455–463. [Google Scholar] [CrossRef]
- Wang, F.; Ge, S.; Xu, X.; Xing, Y.; Du, X.; Zhang, X.; Lv, M.; Liu, J.; Zhu, Z.; Jiang, Y. Multiomics Analysis Reveals New Insights into the Apple Fruit Quality Decline under High Nitrogen Conditions. J. Agric. Food Chem. 2021, 69, 5559–5572. [Google Scholar] [CrossRef]
- Moreira, L.C.J.; Da Silva, L.D.; Do Nascimento, B.M.; Da Silva, A.J.B.; Teixeira, A.D.; De Oliveira, M.R.R. Agronomic Performance and Fruit Quality of Yellow Melon Fertilized with Doses of Nitrogen and Potassium. Rev. Caatinga. 2022, 35, 320–330. [Google Scholar] [CrossRef]
- Obenland, D.; Feliziani, E.; Zhu, S.; Zhao, X.; Margosan, D.A.; Mlikota Gabler, F.; Van Zyl, S.; Romanazzi, G.; Smilanick, J.L.; Beno-Moualem, D.; et al. Potassium application to table grape clusters after veraison increases soluble solids by enhancing berry water loss. Sci. Hortic. 2015, 187, 58–64. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Wang, Y.; Zhang, N.; Guo, Y.; Ren, X.; Zhao, Z. Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit. Biol. Open 2018, 7, bio024745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Razek, E.; Treutter, D.; Saleh, M.M.S.; El-Shammaa, M.; Amera, A.F.; Abdel-Hamid, N. Effect of nitrogen and potassium fertilization on productivity and fruit quality of ‘crimson seedless’ grape. Agric. Biol. J. N. Am. 2011, 2, 330–340. [Google Scholar] [CrossRef]
- Karimi, R. Potassium-induced freezing tolerance is associated with endogenous abscisic acid, polyamines and soluble sugars changes in grapevine. Sci. Hortic. 2017, 215, 184–194. [Google Scholar] [CrossRef]
- Villette, J.; Cuellar, T.; Verdeil, J.L.; Delrot, S.; Gaillard, I. Grapevine Potassium Nutrition and Fruit Quality in the Context of Climate Change. Front. Plant Sci. 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Bin, L.; Zhixia, H.; Junfeng, Y.; Lu, C.; Rumeng, W. Variations of flavonoids and soluble sugars in‘Northland’ blueberry leaf during the color changing process. J. Agric. Sci. Technol. 2018, 20, 20–29. [Google Scholar]
- Yu, Z.; Rikui, W.; Mingyang, H.; Min, H.; Xiaosong, Y.; Jing, W.; Yu, F.; Zhigang, W. Correlation between Anthocyanin Accumulation and Sugar and Acid Contents in ‘Tarocco’ Blood Oranges during Ripening. Food Sci. 2020, 41, 105–114. [Google Scholar]
- Natalia, B.; Stefano, P.; Ghislaine, H.; Christel, R.; Eric, G.; Serge, D.; Zhanwu, D. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Front. Plant Sci. 2015, 6, 00382. [Google Scholar]
- Dai, Z.W.; Meddar, M.; Renaud, C.; Merlin, I.; Hilbert, G.; Delrot, S.; Gomes, E. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. J. Exp. Bot. 2014, 65, 4665–4677. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Z.; Lv, Z.; Qv, S. Changes of peel pigments and flesh sugar contents in bagging malus pumila during development stage. Acta Bot. Boreal. Occident. Sin. 2010, 30, 1675–1680. [Google Scholar]
- Zifkin, M.; Jin, A.; Ozga, J.A.; Zaharia, L.I.; Schernthaner, J.P.; Gesell, A.; Abrams, S.R.; Kennedy, J.A.; Constabel, C.P. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid me tabolism and activation of abscisic acid metabolism. Plant Physiol. 2012, 158, 200–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Total N | Total P | Total K | ||||
---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
LN | 5.20 ± 0.35b | 5.23 ± 0.31b | 3.52 ± 0.36c | 3.62 ± 0.31c | 7.37 ± 0.65c * | 7.44 ± 0.56b * | |
LNK | 5.38 ± 0.45C | 5.58 ± 0.41B | 4.14 ± 0.34C | 4.34 ± 0.49C | 11.10 ± 0.78C | 11.54 ± 0.96B | |
56d | MN | 5.45 ± 0.45ab | 5.59 ± 0.34a | 4.57 ± 0.49b | 4.61 ± 0.34b | 10.56 ± 0.65b * | 10.68 ± 0.61b * |
MNK | 5.58 ± 0.49B | 5.62 ± 0.41B | 4.82 ± 0.46B | 4.87 ± 0.44B | 12.54 ± 0.96B | 13.10 ± 0.78A | |
HN | 5.55 ± 0.51a | 5.62 ± 0.53a | 5.37 ± 0.52a | 5.43 ± 0.42a | 11.75 ± 0.91a * | 11.96 ± 0.52a * | |
HNK | 5.75 ± 0.59A | 6.22 ± 0.59A | 5.44 ± 0.48A | 5.48 ± 0.57A | 13.62 ± 0.98A | 13.88 ± 0.56A | |
LN | 5.74 ± 0.62c | 5.77 ± 0.60b | 3.92 ± 0.21b | 3.96 ± 0.13b | 7.76 ± 0.80b * | 7.79 ± 0.68b * | |
LNK | 5.95 ± 0.13C | 5.95 ± 0.34C | 4.29 ± 0.32C | 4.43 ± 0.31B | 11.29 ± 0.79C | 12.18 ± 0.75B | |
70d | MN | 5.78 ± 0.45b | 5.81 ± 0.45a | 4.52 ± 0.38a | 4.55 ± 0.43a | 10.95 ± 0.88ab * | 11.03 ± 0.44a * |
MNK | 6.09 ± 0.56B | 6.13 ± 0.16B | 5.24 ± 0.49B | 5.29 ± 0.37B | 12.62 ± 0.76B | 13.29 ± 0.79B | |
HN | 5.81 ± 0.24a | 5.85 ± 0.12a | 4.55 ± 0.34a * | 4.59 ± 0.41a * | 12.73 ± 0.59a * | 12.98 ± 0.51a * | |
HNK | 6.22 ± 0.54A | 6.28 ± 0.55A | 5.71 ± 0.45A | 5.76 ± 0.43A | 13.89 ± 0.79AB | 14.10 ± 0.76A | |
LN | 6.19 ± 0.57b | 6.23 ± 0.34b | 4.30 ± 0.23b * | 4.37 ± 0.35b * | 10.36 ± 0.75b * | 10.41 ± 0.57b * | |
LNK | 6.74 ± 0.61B | 6.78 ± 0.45B | 5.19 ± 0.51B | 5.21 ± 0.15B | 11.72 ± 0.88B | 12.62 ± 0.76B | |
84d | MN | 6.49 ± 0.32b | 6.53 ± 0.43b | 4.35 ± 0.44b * | 4.38 ± 0.54b * | 12.98 ± 0.79a * | 13.21 ± 0.47a * |
MNK | 7.52 ± 0.61A | 7.58 ± 0.34A | 5.49 ± 0.51AB | 5.52 ± 0.25AB | 15.56 ± 0.87A | 15.88 ± 0.98A | |
HN | 7.53 ± 0.29a | 7.62 ± 0.12a | 5.02 ± 0.46a * | 5.18 ± 0.43a * | 13.67 ± 0.89a * | 13.96 ± 0.58a * | |
HNK | 7.69 ± 0.48A | 7.76 ± 0.44A | 5.95 ± 0.45A | 6.05 ± 0.41A | 15.88 ± 0.98A | 15.99 ± 0.87A |
CIRG | 56 d | 70 d | 84 d | |
---|---|---|---|---|
LN | 2.34 ± 0.33c | 3.82 ± 0.11b | 4.67 ± 0.26a | |
LNK | 2.43 ± 0.36B | 4.50 ± 0.35A | 4.70 ± 0.19A | |
2020 | MN | 2.75 ± 0.18a | 4.07 ± 0.36a | 4.50 ± 0.11a |
MNK | 2.89 ± 0.26A | 4.18 ± 0.41B | 4.64 ± 0.27A | |
HN | 2.54 ± 0.26b | 3.53 ± 0.24b | 3.96 ± 0.18b | |
HNK | 2.54 ± 0.19B | 3.69 ± 0.37C | 3.93 ± 0.23B | |
LN | 2.63 ± 0.36ab | 3.00 ± 0.22b * | 3.98 ± 0.35a * | |
LNK | 2.62 ± 0.41B | 3.29 ± 0.16B | 4.49 ± 0.31A | |
2021 | MN | 2.85 ± 0.22a | 3.31 ± 0.18a | 3.76 ± 0.23a * |
MNK | 2.99 ± 0.18A | 3.42 ± 0.20A | 4.18 ± 0.28B | |
HN | 2.15 ± 0.41b | 2.90 ± 0.21b | 3.63 ± 0.17a | |
HNK | 2.54 ± 0.39B | 3.24 ± 0.11B | 3.76 ± 0.23C |
Anthocyanin Composition | LN | LNK | MN | MNK | HN | HNK | |
---|---|---|---|---|---|---|---|
Cyanidin derivatives | |||||||
1 | Cyanidin-3-O-glucoside | 42.01 ± 5.37b | 60.21 ± 0.25B | 62.85 ± 11.76a | 140.98 ± 29.83A | 29.77 ± 2.59c | 38.00 ± 3.65C |
2 | cyanidin-3-O-(6-O-p-coumaryl)-glucoside | 2.88 ± 0.09a | 3.71 ± 0.64B | 3.31 ± 0.62a | 6.17 ± 1.33A | 1.47 ± 0.21b | 2.22 ± 0.34B |
3 | Cyanidin-3-O-(6-O-acetyl)-glucoside | 0.36 ± 0.05a | 0.38 ± 0.01B | 0.36 ± 0.08a | 0.65 ± 0.15A | 0.19 ± 0.01b | 0.25 ± 0.03B |
Subtotal | 45.25 ± 2.33b | 64.3 ± 4.01B | 66.52 ± 3.45a | 147.8 ± 8.67A | 31.43 ± 1.32c | 40.47 ± 3.12B | |
% | 28.30 | 36.76 | 42.06 | 46.58 | 35.07 | 36.83 | |
Delphinidin derivatives | |||||||
4 | Delphinidin-3-O-glucoside | 7.80 ± 0.80a | 3.79 ± 0.64B | 5.18 ± 0.87b | 17.02 ± 5.12A | 1.59 ± 0.10c | 2.63 ± 0.84B |
5 | Delphinidin-3-O-(6-O-p-coumaryl)-glucoside | 0.51 ± 0.08a | 0.16 ± 0.08B | 0.25 ± 0.04b | 0.62 ± 0.13A | 0.00 ± 0.00c | 0.14 ± 0.02B |
Subtotal | 8.31 ± 0.57a | 3.95 ± 0.56B | 5.43 ± 0.33b | 17.64 ± 0.87A | 1.59 ± 0.23c | 2.77 ± 0.11B | |
% | 5.20 | 2.26 | 3.43 | 5.56 | 1.77 | 2.52 | |
Malvidin derivatives | |||||||
6 | Malvidin-3-O-glucoside | 30.49 ± 0.17a | 18.69 ± 2.02B | 13.92 ± 2.85b | 33.25 ± 4.54A | 7.87 ± 0.66c | 9.97 ± 0.47C |
7 | Malvidin-3-O-(6-O-acetyl)-glucoside | 0.81 ± 0.07a | 1.23 ± 0.13B | 0.50 ± 0.09b | 2.18 ± 0.08A | 0.42 ± 0.08b | 0.68 ± 0.11C |
8 | Malvidin-3-O-(t-6-O-p-coumaryl)-glucoside | 1.19 ± 0.26a | 0.63 ± 0.20B | 0.50 ± 0.14b | 1.97 ± 0.27A | 0.28 ± 0.03c | 0.42 ± 0.10B |
9 | Malvidin-3-O-(c-6-O-p-coumaryl)-glucoside | 0.22 ± 0.04a | 0.00 ± 0.00B | 0.00 ± 0.00b | 0.21 ± 0.02A | 0.00 ± 0.00b | 0.00 ± 0.00B |
Subtotal | 32.71 ± 1.55a | 20.55 ± 0.98B | 14.92 ± 0.63b | 37.61 ± 1.01A | 8.57 ± 0.67c | 11.07 ± 0.69C | |
% | 20.45 | 11.75 | 9.43 | 11.85 | 9.56 | 10.08 | |
Peonidin derivatives | |||||||
10 | Peonidin-3-O-glucoside | 60.83 ± 7.49a | 76.49 ± 2.26A | 62.40 ± 11.96a | 87.96 ± 26.73A | 43.57 ± 4.35b | 49.28 ± 6.67B |
11 | Peonidin-3-O-(t-6-O-p-coumaryl)-glucoside | 2.36 ± 0.07a | 3.01 ± 0.60B | 2.30 ± 0.52a | 8.19 ± 1.63A | 1.34 ± 0.21b | 1.72 ± 0.38B |
12 | Peonidin-3-O-(6-O-acetyl)-glucoside | 0.64 ± 0.07a | 0.98 ± 0.14B | 0.61 ± 0.18a | 1.75 ± 0.31A | 0.43 ± 0.09b | 0.67 ± 0.15B |
13 | Peonidin-3-O-(c-6-O-p-coumaryl)-glucoside | 0.37 ± 0.01a | 0.35 ± 0.08B | 0.31 ± 0.08a | 0.83 ± 0.14A | 0.21 ± 0.02b | 0.28 ± 0.05B |
14 | Peonidin-3-O-(6-O-acetyl)-glucoside | 0.19 ± 0.01a | 0.00 ± 0.00B | 0.00 ± 0.00b | 0.32 ± 0.06A | 0.00 ± 0.00B | 0.00 ± 0.00b |
Subtotal | 64.39 ± 6.20a | 80.83 ± 5.23A | 65.62 ± 4.55a | 99.05 ± 6.23A | 45.55 ± 3.32b | 51.95 ± 2.12B | |
% | 40.26 | 46.21 | 41.48 | 31.22 | 50.83 | 47.28 | |
Petunidin derivatives | |||||||
15 | Petunidin-3-O-glucoside | 8.90 ± 0.38a | 5.10 ± 0.57B | 5.51 ± 1.17b | 14.60 ± 3.11A | 2.39 ± 0.26c | 3.45 ± 1.02B |
16 | Petunidin-3-O-(6-O-acetyl)-glucoside | 0.69 ± 0.02a | 1.13 ± 0.17A | 0.65 ± 0.05a | 1.23 ± 0.06A | 0.41 ± 0.06b | 0.66 ± 0.14B |
17 | Petunidin-3-O-(6-O-p-coumaryl)-glucoside | 0.37 ± 0.07a | 0.19 ± 0.04B | 0.18 ± 0.02b | 0.61 ± 0.12A | 0.09 ± 0.00c | 0.16 ± 0.06B |
Subtotal | 9.27 ± 0.23a | 5.29 ± 0.23B | 5.69 ± 0.15b | 15.21 ± 0.67A | 2.48 ± 0.11c | 3.61 ± 0.21B | |
% | 5.79 | 3.02 | 3.60 | 4.79 | 2.77 | 3.29 | |
Total | 159.93 ± 11.09a | 174.92 ± 13.64B | 158.18 ± 30.42a | 317.31 ± 23.64A | 89.62 ± 8.64b | 109.87 ± 6.11C |
Treatment | Methylation | Acetylation | Coumarylation | Total Anthocyanins Modification | ||||
---|---|---|---|---|---|---|---|---|
mg·kg−1 | % | mg·kg−1 | % | mg·kg−1 | % | mg·kg−1 | % | |
LN | 106.37 ± 6.54a | 66.51 | 2.69 ± 0.56a | 1.68 | 7.90 ± 0.89a | 4.94 | 110.12 ± 4.12a | 68.86 |
LNK | 106.67 ± 4.55B | 60.98 | 3.72 ± 0.12B | 2.13 | 8.05 ± 0.42B | 4.60 | 110.92 ± 2.03B | 63.41 |
MN | 86.23 ± 3.54b | 54.51 | 2.12 ± 0.32a | 1.34 | 6.85 ± 0.37a | 4.33 | 90.15 ± 1.57b | 57.00 |
MNK | 151.87 ± 7.32A * | 47.86 | 6.13 ± 0.46A * | 1.93 | 18.60 ± 1.01A * | 5.86 | 159.31 ± 3.59A * | 50.21 |
HN | 56.60 ± 2.34c | 63.16 | 1.45 ± 0.37b | 1.62 | 3.39 ± 0.12b | 3.78 | 58.26 ± 1.08c | 65.01 |
HNK | 66.63 ± 2.13C | 60.65 | 2.26 ± 0.28C | 2.06 | 4.94 ± 0.36C | 4.50 | 69.24 ± 1.05C | 63.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Wang, F.; Sha, R.; Li, X.; Yu, K.; Feng, J. The Effect of N and KH2PO4 on Skin Color, Sugars, and Organic Acids of “Flame Seedless” Grape. Agronomy 2023, 13, 902. https://doi.org/10.3390/agronomy13030902
Wu L, Wang F, Sha R, Li X, Yu K, Feng J. The Effect of N and KH2PO4 on Skin Color, Sugars, and Organic Acids of “Flame Seedless” Grape. Agronomy. 2023; 13(3):902. https://doi.org/10.3390/agronomy13030902
Chicago/Turabian StyleWu, Linnan, Fangxia Wang, Riye Sha, Xujiao Li, Kun Yu, and Jianrong Feng. 2023. "The Effect of N and KH2PO4 on Skin Color, Sugars, and Organic Acids of “Flame Seedless” Grape" Agronomy 13, no. 3: 902. https://doi.org/10.3390/agronomy13030902
APA StyleWu, L., Wang, F., Sha, R., Li, X., Yu, K., & Feng, J. (2023). The Effect of N and KH2PO4 on Skin Color, Sugars, and Organic Acids of “Flame Seedless” Grape. Agronomy, 13(3), 902. https://doi.org/10.3390/agronomy13030902