Sustainable Management of Sewage Sludge Using Dhaincha (Sesbania bispinosa (Jacq.) W.Wight) Cultivation: Studies on Heavy Metal Uptake and Characterization of Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Experimental Materials
2.2. Experimental Design and Conditions
2.3. Analytical Methods
2.3.1. Physicochemical and Heavy Metal Analyses
2.3.2. Growth, Biochemical, Proximate, and Fiber Analyses of S. bispinosa
2.4. Data Analysis
3. Results and Discussion
3.1. Properties of Soil and Sewage Sludge Used in This Study
3.2. Effects of Sewage Sludge on the Growth and Biochemical Traits of S. bispinosa
3.3. Effects of Sewage Sludge on Heavy Metal Uptake by S. bispinosa
3.4. Effects of Sewage Sludge on Proximate and Fiber Properties of S. bispinosa
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banjoko, B.; Sridhar, C.M.K. Upgrading Wastewater Treatment Systems for Urban Water Reuse. In Urban Water Reuse Handbook; CRC Press: Boca Raton, FL, USA, 2016; pp. 497–516. [Google Scholar]
- Adelodun, B.; Kumar, P.; Odey, G.; Ajibade, F.O.; Ibrahim, R.G.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Kumar, V.; Adeyemi, K.A.; et al. A Safe Haven of SARS-CoV-2 in the Environment: Prevalence and Potential Transmission Risks in the Effluent, Sludge, and Biosolids. Geosci. Front. 2022, 13, 101373. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage Sludge Disposal Strategies for Sustainable Development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Kelessidis, A.; Stasinakis, A.S. Comparative Study of the Methods Used for Treatment and Final Disposal of Sewage Sludge in European Countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Przydatek, G.; Wota, A.K. Analysis of the Comprehensive Management of Sewage Sludge in Poland. J. Mater. Cycles Waste Manag. 2020, 22, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Kominko, H.; Gorazda, K.; Wzorek, Z.; Wojtas, K. Sustainable Management of Sewage Sludge for the Production of Organo-Mineral Fertilizers. Waste Biomass Valorization 2018, 9, 1817–1826. [Google Scholar] [CrossRef]
- Xue, T.; Huang, X. Releasing Characteristics of Phosphorus and Other Substances during Thermal Treatment of Excess Sludge. J. Environ. Sci. 2007, 19, 1153–1158. [Google Scholar] [CrossRef]
- Adam, C.; Kley, G.; Simon, F.-G. Thermal Treatment of Municipal Sewage Sludge Aiming at Marketable P-Fertilisers. Mater. Trans. 2007, 48, 3056–3061. [Google Scholar] [CrossRef] [Green Version]
- Cieślik, B.; Konieczka, P. A Review of Phosphorus Recovery Methods at Various Steps of Wastewater Treatment and Sewage Sludge Management. The Concept of “No Solid Waste Generation” and Analytical Methods. J. Clean. Prod. 2017, 142, 1728–1740. [Google Scholar] [CrossRef]
- Świerczek, L.; Cieślik, B.M.; Konieczka, P. The Potential of Raw Sewage Sludge in Construction Industry—A Review. J. Clean. Prod. 2018, 200, 342–356. [Google Scholar] [CrossRef]
- Breda, C.C.; Soares, M.B.; Tavanti, R.F.R.; Viana, D.G.; Freddi, O.D.S.; Piedade, A.R.; Mahl, D.; Traballi, R.C.; Guerrini, I.A. Successive Sewage Sludge Fertilization: Recycling for Sustainable Agriculture. Waste Manag. 2020, 109, 38–50. [Google Scholar] [CrossRef]
- Kirchmann, H.; Börjesson, G.; Kätterer, T.; Cohen, Y. From Agricultural Use of Sewage Sludge to Nutrient Extraction: A Soil Science Outlook. Ambio 2017, 46, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, W.R.; do Nascimento, C.W.A.; da Silva, F.B.V.; de Souza, A.A.B.; Fracetto, G.G.M.; de Sá Veloso Ximenes, D.H. Effects of Sewage Sludge Stabilization Processes on Soil Fertility, Mineral Composition, and Grain Yield of Maize in Successive Cropping. J. Soil. Sci. Plant. Nutr. 2021, 21, 1076–1088. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Hussain, A.A.; Sewelam, N.; El-Bebany, A.F.; Alfarhan, A.H.; Picó, Y.; Barcelo, D. Prediction Models Based on Soil Properties for Evaluating the Uptake of Eight Heavy Metals by Tomato Plant (Lycopersicon esculentum Mill.) Grown in Agricultural Soils Amended with Sewage Sludge. J. Environ. Chem. Eng. 2021, 9, 105977. [Google Scholar] [CrossRef]
- Eid, E.M.; El-Bebany, A.F.; Taher, M.A.; Alrumman, S.A.; Galal, T.M.; Shaltout, K.H.; Sewelam, N.A.; Ahmed, M.T. Heavy Metal Bioaccumulation, Growth Characteristics, and Yield of Pisum sativum L. Grown in Agricultural Soil-Sewage Sludge Mixtures. Plants 2020, 9, 1300. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Effect of Different Sewage Sludge Applications on Growth and Yield of Vigna radiata L. Field Crop: Metal Uptake by Plant. Ecol. Eng. 2010, 36, 969–972. [Google Scholar] [CrossRef]
- Kumar, P.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Adelodun, B.; Goala, M.; Choi, K.S.; Kumar, V. Foliar Use of TiO2-Nanoparticles for Okra (Abelmoschus esculentus L. Moench) Cultivation on Sewage Sludge–Amended Soils: Biochemical Response and Heavy Metal Accumulation. Environ. Sci. Pollut. Res. 2022, 29, 66507–66518. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Khedher, K.M.; Ayed, H.; Arshad, M.; Mouldi, A.; Shaltout, K.H.; Sewelam, N.A.; Galal, T.M.; El-Bebany, A.F.; Alshehri, A.M.A. Prediction Models Based on Soil Properties for Evaluating the Heavy Metal Uptake into Hordeum vulgare L. Grown in Agricultural Soils Amended with Different Rates of Sewage Sludge. Int. J. Environ. Health Res. 2022, 32, 106–120. [Google Scholar] [CrossRef]
- Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Hussain, A.A.; Sewelam, N.; Eid, E.M. Evaluation of Uptake of Eight Metals by Sorghum bicolor Grown in Arable Soil Combined with Sewage Sludge Based on Prediction Models. Environ. Monit. Assess. 2021, 193, 510. [Google Scholar] [CrossRef]
- Chanda, S.; Hossain, M.; Uddin, M.; Islam, M.; Sarwar, A.G. Fiber Yield, Physical and Biochemical Properties of Three Species of Sesbania. Bangladesh Agron. J. 2019, 21, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Bunma, S.; Balslev, H. A Review of the Economic Botany of Sesbania (Leguminosae). Bot. Rev. 2019, 85, 185–251. [Google Scholar] [CrossRef]
- Gomase, P.; Gomase, P.; Anjum, S.; Shakil, S.; Shahnavaj, K.M. Sesbania Sesban Linn: A Review on Its Ethnobotany, Phytochemical and Pharmacological Profile. Asian J. Biomed. Pharm. Sci. 2012, 2, 11–14. [Google Scholar]
- Akram, M.; Siddique, A.; Laila, U.; Ghotekar, S. Traditional Use, Phytochemistry and Pharmacology of Genus Sesbania: A Review. Adv. J. Sci. Eng. 2021, 2, 64–68. [Google Scholar]
- Dwivedi, A.; Singh, A.; Naresh, R.K.; Kumar, M.; Kumar, V.; Bankoti, P.; Sharma, D.K.; Thaneshwar; Singh, A.; Singh, O. Towards Sustainable Intensification of Maize (Zea mays L.) + Legume Intercropping Systems; Experiences; Challenges and Opportunities in India; A Critical Review. J. Pure Appl. Microbiol. 2016, 10, 725–740. [Google Scholar]
- Kumar, R.; Mahajan, G.; Srivastava, S.; Sinha, A. Green Manuring: A Boon for Sustainable Agriculture and Pest Management—A Review. Agric. Rev. 2014, 35, 196. [Google Scholar] [CrossRef]
- Shahid-ul-Islam; Shahid, M.; Mohammad, F. Perspectives for Natural Product Based Agents Derived from Industrial Plants in Textile Applications—A Review. J. Clean. Prod. 2013, 57, 2–18. [Google Scholar] [CrossRef]
- Singh, N.; Rani, A. Needle Punched Non Woven of Sesbania aculeate (Dhaincha) Fibre. Int. J. Text. Fash. Technol. (IJTFT) 2014, 4, 7–12. [Google Scholar]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil. Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Chromý, V.; Vinklárková, B.; Šprongl, L.; Bittová, M. The Kjeldahl Method as a Primary Reference Procedure for Total Protein in Certified Reference Materials Used in Clinical Chemistry. I. A Review of Kjeldahl Methods Adopted by Laboratory Medicine. Crit. Rev. Anal. Chem. 2015, 45, 106–111. [Google Scholar] [CrossRef]
- AL-Huqail, A.A.; Kumar, P.; Eid, E.M.; Adelodun, B.; Abou Fayssal, S.; Singh, J.; Arya, A.K.; Goala, M.; Kumar, V.; Širić, I. Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent. Agriculture 2022, 12, 1864. [Google Scholar] [CrossRef]
- Krishnan, H.B.; Oehrle, N.W.; Alaswad, A.A.; Stevens, W.G.; Maria John, K.M.; Luthria, D.L.; Natarajan, S.S. Biochemical and Anatomical Investigation of Sesbania herbacea (Mill.) Mcvaugh Nodules Grown under Flooded and Non-Flooded Conditions. Int. J. Mol. Sci. 2019, 20, 1824. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.K.; Dave, R.S.; Shah, K.R. Proximate Analysis and Evolution of Energy Value from Leaves and Stem of Sword Fern: Nephrolepis Exaltata. Int. Res. J. Pure Appl. Chem. 2020, 21, 10–17. [Google Scholar] [CrossRef]
- Mukul, M.M.; Akter, N.; Islam, M.M.; Bhuiyan, M.S.H.; Mostofa, M.G.; Ghosh, R.K.; Saha, C.K.; Ali, M.A. Morpho-Phenetical Study Of High Yielding Tossa Jute Variety Bjri Tossa Pat 7 (Mg-1) For Bast Fibre Yield And Qualities. Heliyon 2021, 7, e08129. [Google Scholar] [CrossRef] [PubMed]
- Chanda, S.C.; Abdullah, M.R.; Razzak, M.A.; Sarwar, A.K.M.G. Morphological and Physiological Characterization of Sesbania Genotypes. Legume Res. 2021, 44, 1087–1091. [Google Scholar] [CrossRef]
- Singh, N.; Rani, A. Extraction and Processing of Fiber from Sesbania aculeata (Dhaincha) for Preparation of Needle Punched Nonwoven Fabric. Natl. Acad. Sci. Lett. 2013, 36, 489–492. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H. Bioaccumulation and Translocation of Heavy Metals by Nine Native Plant Species Grown at a Sewage Sludge Dump Site. Int. J. Phytoremediat. 2016, 18, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Iticescu, C.; Georgescu, P.L.; Arseni, M.; Rosu, A.; Timofti, M.; Carp, G.; Cioca, L.I. Optimal Solutions for the Use of Sewage Sludge on Agricultural Lands. Water 2021, 13, 585. [Google Scholar] [CrossRef]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A.J. A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya, 2009; Volume 4. [Google Scholar]
- Yost, R.; Evans, D. Green Manures and Legume Covers in the Tropics; University of Hawaii: Honolulu, HI, USA, 1988. [Google Scholar]
- Zhu, G.; Xu, Y.; Xu, Z.; Ahmad, I.; Nimir, N.E.A.; Zhou, G. Improving Productivity of Sesbania Pea in Saline Soils by Enhancing Antioxidant Capacity with Optimum Application of Nitrogen and Phosphate Combination. Front. Plant. Sci. 2022, 13, 1027227. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Bioresource Potential of Sesbania Bispinosa (Jacq.) W.F. Wight. Bioresour. Technol. 1993, 44, 251–254. [Google Scholar] [CrossRef]
- Romanos, D.; Nemer, N.; Khairallah, Y.; Abi Saab, M.T. Assessing the Quality of Sewage Sludge as an Agricultural Soil Amendment in Mediterranean Habitats. Int. J. Recycl. Org. Waste Agric. 2019, 8, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Roig, N.; Sierra, J.; Martí, E.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Long-Term Amendment of Spanish Soils with Sewage Sludge: Effects on Soil Functioning. Agric. Ecosyst. Environ. 2012, 158, 41–48. [Google Scholar] [CrossRef]
- Solt, G. An Introduction for Environmental Scientists and Engineers, 3rd ed.; IWA Publishing: London, UK, 2000; Volume 78. [Google Scholar]
- Sun, J.; Li, W.; Li, C.; Chang, W.; Zhang, S.; Zeng, Y.; Zeng, C.; Peng, M. Effect of Different Rates of Nitrogen Fertilization on Crop Yield, Soil Properties and Leaf Physiological Attributes in Banana Under Subtropical Regions of China. Front. Plant. Sci. 2020, 11, 613760. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, T.E.; Liu, J.; Li, Q.; Xue, H.; Wang, G.; Li, L.; Fontana, J.E.; Davis, K.E.; Liu, W.; Zhang, B.; et al. Potassium Deficiency Significantly Affected Plant Growth and Development as Well as MicroRNA-Mediated Mechanism in Wheat (Triticum aestivum L.). Front. Plant. Sci. 2020, 11, 1219. [Google Scholar] [CrossRef]
- Meng, X.; Chen, W.W.; Wang, Y.Y.; Huang, Z.R.; Ye, X.; Chen, L.S.; Yang, L.T. Effects of Phosphorus Deficiency on the Absorption of Mineral Nutrients, Photosynthetic System Performance and Antioxidant Metabolism in Citrus Grandis. PLoS ONE 2021, 16, e0246944. [Google Scholar] [CrossRef] [PubMed]
- Mitran, T.; Meena, R.S.; Lal, R.; Layek, J.; Kumar, S.; Datta, R. Role of Soil Phosphorus on Legume Production. In Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018; pp. 487–510. [Google Scholar]
- Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Front. Plant. Sci. 2020, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant. Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation. Front. Plant. Sci. 2016, 7, 755. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, S.K. Prevention of Food Adulteration Act. No. 37 of 1954. Central and State Rules as Amended for 1999, 3rd ed.; Ashoka Law House: New Delhi, India, 2000. [Google Scholar]
- Holm, O.; Hansen, E.; Lassen, C.; Stuer-Lauridsen, F.; Jesper, K. Heavy Metals in Waste–Final Report. European Commission DG ENV. E3, Project ENV. E; COWI: Lyngby, Denmark, 2002. [Google Scholar]
- Ferreiro-Domínguez, N.; Rigueiro-Rodríguez, A.; Bianchetto, E.; Mosquera-Losada, M.R. Effect of Lime and Sewage Sludge Fertilisation on Tree and Understory Interaction in a Silvopastoral System. Agric. Ecosyst. Environ. 2014, 188, 72–79. [Google Scholar] [CrossRef]
- Kadam, V.B.; Ahire, P.P.; Wadikar, M.S.; Sumia, F. Evaluation of Carbohydrate Content in Three Medicinal Plants of Genus Sesbania in Maharashtra. J. Drug. Deliv. Ther. 2013, 3, 49–51. [Google Scholar] [CrossRef]
- Rathod, V.K.; Keerthiga, G.; Gharat, N.N. Kinetics of Extraction of Total Phenolic Content from Sesbania grandiflora L. Leaves Using Ultrasound. Indian Chem. Eng. 2022, 64, 266–276. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghufran, R.; Zularisam, A.W. Phytosequestration of Metals in Selected Plants Growing on a Contaminated Okhla Industrial Areas, Okhla, New Delhi, India. Water Air Soil. Pollut. 2011, 217, 255–266. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, F.; Xu, X.; Kuang, Y.; Fu, K.; Hitz, E.; Hu, L. Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Adv. Mater. 2017, 29, 1702498. [Google Scholar] [CrossRef] [PubMed]
- Poletto, M.; Ornaghi Júnior, H.L.; Zattera, A.J. Native Cellulose: Structure, Characterization and Thermal Properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D.O.; Rotar, P.P. Sesbania in Agriculture; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429305856. [Google Scholar]
- Pan, Z.; Sun, D.; Sun, J.; Zhou, Z.; Jia, Y.; Pang, B.; Ma, Z.; Du, X. Effects of Fiber Wax and Cellulose Content on Colored Cotton Fiber Quality. Euphytica 2010, 173, 141–149. [Google Scholar] [CrossRef]
- Kabir, A.K.M.A.; Moniruzzaman, M.; Gulshan, Z.; Rahman, A.B.M.M.; Sarwar, A.K.M.G. Biomass Yield, Chemical Composition and In Vitro Gas Production of Different Dhaincha (Sesbania spp.) Accessions from Bangladesh. Indian J. Anim. Nutr. 2018, 35, 397. [Google Scholar] [CrossRef]
Properties | Sewage Sludge (SS) | Arable Soil (T0: AS) | Experimental Treatments | ||
---|---|---|---|---|---|
T1: 5% SS | T2: 10% SS | T3: 15% SS | |||
pH | 8.13 ± 0.09 d | 7.31 ± 0.05 a | 7.40 ± 0.04 a | 7.57 ± 0.03 b | 7.89 ± 0.06 c |
Electrical conductivity (EC: dS/m) | 6.26 ± 0.19 e | 2.19 ± 0.13 a | 2.50 ± 0.02 b | 2.82 ± 0.05 c | 3.13 ± 0.11 d |
Organic matter (OM: %) | 18.95 ± 3.30 e | 2.55 ± 0.15 a | 3.42 ± 0.07 b | 4.63 ± 0.09 c | 5.38 ± 0.17 d |
Nitrogen (N: g/kg) | 25.03 ± 4.75 e | 1.72 ± 0.09 a | 2.97 ± 0.10 b | 4.20 ± 0.03 c | 5.46 ± 0.09 d |
Phosphorus (P: g/kg) | 11.57 ± 0.23 e | 1.49 ± 0.10 a | 2.07 ± 0.04 b | 2.65 ± 0.08 c | 3.23 ± 0.16 d |
Potassium (K: g/kg) | 1.58 ± 0.03 d | 0.21 ± 0.02 a | 0.39 ± 0.12 a | 0.62 ± 0.02 b | 0.81 ± 0.02 c |
Cadmium (Cd: mg/kg) | 1.94 ± 0.04 d | 0.17 ± 0.01 a | 0.27 ± 0.04 b | 0.36 ± 0.05 b | 0.46 ± 0.05 c |
Chromium (Cr: mg/kg) | 9.40 ± 0.10 e | 3.80 ± 0.08 a | 4.25 ± 0.12 b | 4.72 ± 0.08 c | 5.13 ± 0.10 d |
Copper (Cu: mg/kg) | 32.16 ± 1.29 c | 5.73 ± 0.13 a | 7.36 ± 0.18 b | 8.95 ± 0.26 b | 10.21 ± 1.88 b |
Iron (Fe: mg/kg) | 54.33 ± 4.72 d | 15.04 ± 1.46 a | 17.10 ± 0.52 a | 20.40 ± 0.95 b | 23.26 ±0.61 c |
Manganese (Mn: mg/kg) | 17.81 ± 0.53 d | 9.17 ± 0.06 a | 10.22 ± 0.10 b | 11.12 ± 0.43 c | 11.94 ± 0.16 c |
Zinc (Zn: mg/kg) | 48.33 ± 3.90 e | 3.98 ± 0.17 a | 6.40 ± 0.35 b | 8.81 ± 0.51 c | 11.23 ± 1.05 d |
Characteristics | Experimental Treatments | |||
---|---|---|---|---|
T0 (Control) | T1 (5% SS) | T2 (10% SS) | T3 (15% SS) | |
Plant height (cm) | 342.87 ± 6.06 a | 350.01 ± 10.50 ab | 376.87 ± 15.07 bc | 380.59 ± 12.29 c |
Fresh weight (kg/plant) | 1.32 ± 0.03 a | 1.39 ± 0.04 ab | 1.42 ± 0.06 bc | 1.47 ± 0.05 c |
Dry weight (kg/plant) | 0.24 ± 0.01 a | 0.25 ± 0.01 a | 0.26 ± 0.01 ab | 0.27 ± 0.01 b |
Base diameter (cm) | 2.87 ± 0.06 a | 3.01 ± 0.09 ab | 3.07 ± 0.12 bc | 3.19 ± 0.10 c |
Seed yield (g/plant) | 40.28 ± 0.81 a | 42.29 ± 1.27 ab | 43.10 ± 1.50 bc | 44.71 ± 1.44 c |
Chlorophyll (mg/g fwt) | 2.87 ± 0.05 a | 2.99 ± 0.04 ab | 3.06 ± 0.11 b | 3.15 ± 0.07 b |
Carotenoids (mg/g) | 0.34 ± 0.03 a | 0.42 ± 0.02 b | 0.57 ± 0.06 c | 0.88 ± 0.09 d |
Carbohydrates (mg/g) | 9.03 ± 0.08 a | 9.14 ± 0.12 ab | 9.25 ± 0.07 b | 9.40 ± 0.14 c |
Total phenol (mg/g) | 0.10 ± 0.01 a | 0.12 ± 0.01 ab | 0.14 ± 0.02 b | 0.13 ± 0.02 b |
Characteristics | Plant Parts | Experimental Treatments | |||
---|---|---|---|---|---|
T0 (Control) | T1 (5% SS) | T2 (10% SS) | T3 (15% SS) | ||
Cd | Leaves | 0.06 ± 0.02 a | 0.07 ± 0.01 a | 0.07 ± 0.02 a | 0.08 ± 0.02 a |
Fiber stems | 0.11 ± 0.01 a | 0.12 ± 0.02 ab | 0.14 ± 0.01 b | 0.15 ± 0.02 b | |
Roots | 0.18 ± 0.03 a | 0.21 ± 0.01 a | 0.23 ± 0.02 ab | 0.24 ± 0.01 b | |
Seeds | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.05 ± 0.01 ab | 0.05 ± 0.02 b | |
Cr | Leaves | 0.28 ± 0.04 a | 0.34 ± 0.03 ab | 0.36 ± 0.02 b | 0.37 ± 0.03 b |
Fiber stems | 0.38 ± 0.02 a | 0.43 ± 0.02 b | 0.45 ± 0.03 b | 0.46 ± 0.02 bc | |
Roots | 0.42 ± 0.05 a | 0.74 ± 0.07 b | 0.96 ± 0.09 bc | 1.07 ± 0.06 c | |
Seeds | 0.12 ± 0.01 a | 0.15 ± 0.01 b | 0.17 ± 0.02 b | 0.18 ± 0.02 b | |
Cu | Leaves | 10.81 ± 0.17 a | 12.51 ± 0.20 b | 14.09 ± 0.41 c | 15.48 ± 0.36 c |
Fiber stems | 11.28 ± 0.44 a | 14.07 ± 0.15 b | 15.71 ± 0.83 bc | 16.14 ± 0.39 c | |
Roots | 21.50 ± 0.70 a | 25.18 ± 1.26 b | 29.65 ± 1.09 c | 34.30 ± 2.28 d | |
Seeds | 1.93 ± 0.04 a | 2.04 ± 0.05 b | 2.12 ± 0.03 bc | 2.18 ± 0.04 c | |
Fe | Leaves | 69.33 ± 2.93 a | 74.25 ± 5.72 ab | 88.06 ± 3.86 c | 100.94 ± 6.21 d |
Fiber stems | 110.71 ± 9.10 a | 126.80 ± 12.06 ab | 141.78 ± 8.61 b | 145.10 ± 10.04 b | |
Roots | 148.02 ± 7.12 a | 201.10 ± 23.50 b | 262.82 ± 14.19 c | 367.26 ± 45.70 d | |
Seeds | 12.60 ± 0.44 a | 16.29 ± 1.93 b | 19.53 ± 1.60 bc | 21.24 ± 1.02 c | |
Mn | Leaves | 35.17 ± 2.37 a | 41.65 ± 0.54 b | 49.69 ± 2.21 c | 53.04 ± 3.09 c |
Fiber stems | 44.09 ± 1.16 a | 53.06 ± 2.49 b | 59.50 ± 1.82 c | 64.12 ± 0.92 d | |
Roots | 60.20 ± 4.90 a | 74.47 ± 3.08 b | 78.29 ± 2.37 bc | 82.30 ± 4.11 c | |
Seeds | 1.37 ± 0.05 a | 1.50 ± 0.03 b | 1.62 ± 0.07 c | 1.66 ± 0.03 c | |
Zn | Leaves | 14.02 ± 0.29 a | 17.01 ± 0.30 b | 19.82 ± 0.65 c | 21.36 ± 1.05 c |
Fiber stems | 19.44 ± 1.04 a | 22.67 ± 0.86 b | 24.58 ± 1.40 c | 25.21 ± 0.59 c | |
Roots | 20.95 ± 0.36 a | 25.32 ± 0.43 b | 29.45 ± 0.91 c | 32.19 ± 1.27 d | |
Seeds | 1.10 ± 0.02 a | 1.15 ± 0.02 b | 1.21 ± 0.06 bc | 1.24 ± 0.03 c |
Parameters | Experimental Treatments | |||
---|---|---|---|---|
T0 (Control) | T1 (5% SS) | T2 (10% SS) | T3 (15% SS) | |
Ash (%) | 7.20 ± 0.01 a | 7.21 ± 0.03 a | 7.24 ± 0.02 ab | 7.25 ± 0.03 ab |
Crude fiber (%) | 26.03 ± 0.25 a | 28.14 ± 0.67 b | 31.67 ± 1.09 bc | 32.70 ± 0.12 c |
Crude protein (%) | 13.97 ± 0.09 a | 14.10 ± 0.05 a | 15.28 ± 0.48 b | 15.94 ± 0.25 bc |
Lignin (%) | 21.09 ± 0.10 a | 22.83 ± 0.40 b | 24.01 ± 1.37 bc | 24.60 ± 0.56 c |
Cellulose (%) | 33.07 ± 0.51 a | 35.09 ± 1.77 ab | 36.82 ± 0.42 bc | 37.25 ± 0.90 c |
Fiber weight (g/plant) | 2.76 ± 0.06 a | 2.90 ± 0.09 ab | 2.95 ± 0.12 ab | 3.06 ± 0.10 bc |
Stick weight (g/plant) | 28.90 ± 0.58 a | 30.35 ± 0.91 a | 30.92 ± 1.24 ab | 32.08 ± 1.04 b |
Fiber: stick ratio | 0.10 ± 0.02 a | 0.10 ± 0.01 a | 0.10 ± 0.02 a | 0.10 ± 0.02 a |
Fiber diameter (µm) | 24.30 ± 0.49 a | 25.52 ± 0.77 a | 26.03 ± 1.04 ab | 26.97 ± 0.87 ab |
Ultimate tensile (MPa) | 780.16 ± 15.60 a | 819.10 ± 24.57 ab | 834.74 ± 33.39 bc | 855.98 ± 27.65 bc |
Strength (g/tex) | 53.98 ± 1.08 a | 55.54 ± 1.67 ab | 57.70 ± 2.31 bc | 58.92 ± 1.90 bc |
Density (g/cm3) | 1.39 ± 0.03 a | 1.46 ± 0.04 ab | 1.49 ± 0.06 bc | 1.54 ± 0.05 c |
Luster (%) | 41.08 ± 0.82 a | 43.13 ± 1.29 ab | 43.93 ± 1.76 ab | 45.65 ± 1.47 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Širić, I.; AL-Huqail, A.A.; Kumar, P.; Goala, M.; Abou Fayssal, S.; Adelodun, B.; Ajibade, F.O.; Alrumman, S.A.; Alamri, S.A.M.; Taher, M.A.; et al. Sustainable Management of Sewage Sludge Using Dhaincha (Sesbania bispinosa (Jacq.) W.Wight) Cultivation: Studies on Heavy Metal Uptake and Characterization of Fibers. Agronomy 2023, 13, 1066. https://doi.org/10.3390/agronomy13041066
Širić I, AL-Huqail AA, Kumar P, Goala M, Abou Fayssal S, Adelodun B, Ajibade FO, Alrumman SA, Alamri SAM, Taher MA, et al. Sustainable Management of Sewage Sludge Using Dhaincha (Sesbania bispinosa (Jacq.) W.Wight) Cultivation: Studies on Heavy Metal Uptake and Characterization of Fibers. Agronomy. 2023; 13(4):1066. https://doi.org/10.3390/agronomy13041066
Chicago/Turabian StyleŠirić, Ivan, Arwa A. AL-Huqail, Pankaj Kumar, Madhumita Goala, Sami Abou Fayssal, Bashir Adelodun, Fidelis O. Ajibade, Sulaiman A. Alrumman, Saad A. M. Alamri, Mostafa A. Taher, and et al. 2023. "Sustainable Management of Sewage Sludge Using Dhaincha (Sesbania bispinosa (Jacq.) W.Wight) Cultivation: Studies on Heavy Metal Uptake and Characterization of Fibers" Agronomy 13, no. 4: 1066. https://doi.org/10.3390/agronomy13041066
APA StyleŠirić, I., AL-Huqail, A. A., Kumar, P., Goala, M., Abou Fayssal, S., Adelodun, B., Ajibade, F. O., Alrumman, S. A., Alamri, S. A. M., Taher, M. A., Singh, J., Kumar, V., & Eid, E. M. (2023). Sustainable Management of Sewage Sludge Using Dhaincha (Sesbania bispinosa (Jacq.) W.Wight) Cultivation: Studies on Heavy Metal Uptake and Characterization of Fibers. Agronomy, 13(4), 1066. https://doi.org/10.3390/agronomy13041066