Chemical Composition, Antibacterial and Combinatorial Effects of the Essential Oils from Cymbopogon spp. and Mentha arvensis with Conventional Antibiotics
Abstract
:1. Introduction
2. Experimental Material Methods
2.1. Material
2.2. Chemical Profiling of EOs
2.3. Determination of Minimum Inhibitory Concentration (MIC)
2.4. Synergistic Studies of EOs with Synthetic Antibiotics
3. Results and Discussion
3.1. Chemical Composition of Plant EOs
3.2. Antibacterial Activity (MIC) of EOs
3.3. Synergistic Studies of EOs with Synthetic Antibiotics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.S.; Batool, S.A. Natural Antimicrobials, their Sources and Food Safety. In Food Additives; Karunaratne, D.N., Pamunuwa, G., Eds.; Intech Open: London, UK, 2017; pp. 87–102. [Google Scholar]
- Reddy, D.N. Essential oils extracted from medicinal plants and their applications. In Natural Bio-Active Compounds; Akhtar, M.S., Swamy, M.K., Sinniah, U.R., Eds.; Springer: Singapore, 2019; Volume 1, pp. 237–283. [Google Scholar]
- Molyneux, R.J.; Lee, S.T.; Gardner, D.R.; Panter, K.E.; James, L.F. Phytochemicals: The good, the bad and the ugly? Phytochemistry 2007, 68, 2973–2985. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Martino, L.D.; Coppola, R.; Feo, V.D. Effect of Essential oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Mancianti, F.; Ebani, V.V. Biological Activity of Essential oils. Molecules 2020, 25, 678. [Google Scholar] [CrossRef] [Green Version]
- Cava-Roda, R.; Taboada-Rodríguez, A.; López-Gómez, A.; Martínez-Hernández, G.B.; Marín-Iniesta, F. Synergistic antimicrobial activities of combinations of vanillin and essential oils of Cinnamon Bark, Cinnamon Leaves, and Cloves. Foods 2021, 10, 1406. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, Synergies and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Kasrati, A.; Jamali, C.A.; Fadli, M.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Antioxidative activity and synergistic effect of Thymuss aturejoides Coss. Essential oils with cefixime against selected food-borne bacteria. Ind. Crops. Prod. 2014, 61, 338–344. [Google Scholar] [CrossRef]
- Ozdemir, E.; Aslan, I.; Cakici, B.; Teurker, B.; Celik, C.E. Microbiological property evaluation of natural essential oils used in green cosmetic industry. Curr. Pers. MAPs 2018, 1, 111–116. [Google Scholar]
- Singh, G.; Katoch, M. Antimicrobial activities and mechanism of action of Cymbopogon khasianus (Munro ex Hackel) Bor essential oil. BMC Complement. Med. Ther. 2020, 20, 331. [Google Scholar] [CrossRef]
- Karami, S.; Yargholi, A.; Sadati, L.S.N.; Soleymani, S.; Shirbeigi, L. A review of ethnopharmacology, phytochemistry and pharmacology of Cymbopogon species. Res. J. Pharmacogn. 2021, 8, 83–112. [Google Scholar]
- Subramaniam, G.; Yew, X.Y.; Sivasamugham, L.A. Antibacterial activity of Cymbopogon citratus against clinically important bacteria. S. Afr. J. Chem. Eng. 2020, 34, 26–30. [Google Scholar] [CrossRef]
- Gogoi, R.; Loying, R.; Sarma, N.; Begum, T.; Pandey, S.K.; Lal, M. Comparative analysis of in-vitro biological activities of methyl eugenol rich Cymbopogon khasianus hack., leaf essential oil with pure methyl eugenol compound. Curr. Pharm. Biotechnol. 2020, 21, 927–938. [Google Scholar] [CrossRef]
- Bokhari, N.; Perveen, K.; Al, K.M.; Kumar, A.; Siddiqui, I. In Vitro Antibacterial activity and chemical composition of essential oil of Mentha arvensis Linn. Leaves. J. Essent. Plants. 2016, 19, 907–915. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mahomoodally, F.M.; Mollica, A.; Stefanucci, A.; Aumeeruddy, Z.M. Volatile components, pharmacological profile, and computational studies of essential oil from Aeglemarmelos (Bael) leaves: A functional approach. Ind. Crops Prod. 2018, 126, 13–21. [Google Scholar] [CrossRef]
- Wayne, P.A. Document M100-S11; NCCLS-National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing: Eleventh Informational Supplement. National Committee for Clinical Laboratory Standard: Albany, NY, USA, 2003.
- Didry, N.; Dubreuil, L.; Pinkas, M. Microbiological properties of protoanemonin isolated from Ranunculus bulbosus. Phytother. Res. 1993, 7, 21–24. [Google Scholar] [CrossRef]
- Sharma, N.; Guleria, S.; Majeed, A.; Salaria, K.H. Chemical composition and antibacterial activity of essential oil of Cymbopogon citratus (Lemon grass). J. Pharm. Innov. 2021, 10, 968–971. [Google Scholar]
- Choudhury, S.; Leclercq, P.A. Essential oil of Cymbopogon khasianus (Munro ex hack.) Bor from north eastern India. J. Essent. Oil Res. 1995, 7, 555. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, N.; Singh, H.; Devandra, S.K.; Vijaylata, P.; Singh, B.; Gupta, C.R. Comparative account on GC-MS analysis of Mentha Arvensis L. “Corn Mint” from three different locations of North India. Int. J. Drug Dev. Res. 2009, 1, 1–9. [Google Scholar]
- Rizzo, R.; Lo Verde, G.; Sinacori, M.; Maggi, F.; Cappellacci, L.; Petrelli, R.; Vittori, S.; Morshedloo, M.R.; Fofie, N.G.B.Y.; Benelli, G. Developing Green Insecticides to Manage Olive Fruit Flies? Ingestion Toxicity of Four Essential Oils in Protein Baits on Bactrocera Oleae. Ind. Crops Prod. 2020, 143, 111884. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. App. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-Present Status and FuturePerspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onawunmi, G.O.; Yisak, W.A.; Ogunlana, E.O. Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf. J. Ethnopharmacol. 1984, 12, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Nardoni, S.; Najar, B.; Fronte, B.; Pistelli, L.; Mancianti, F. In Vitro Activity of Essential Oils against Saprolegnia parasitica. Molecules 2019, 24, 1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Liu, G.; Li, J.; Chen, J.; Li, L.; Li, Z.; Zhang, S. Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-Species biofilms of Staphylococcus aureus and Candida Species. Front. Cell. Infect. Microbiol. 2020, 10, 603858. [Google Scholar] [CrossRef]
- Santamarta, S.; Aldavero, A.C.; Rojo, M.A. Essential oil of Cymbopogon martini, source of geraniol, as a potential antibacterial agent against Bacillus subtilis, a pathogen of the bakery industry review. F1000Research 2021, 10, 1027. [Google Scholar] [CrossRef]
- Bibiana, M.A.; Selvamani, P.; Latha, S. In-Vitro antimicrobial evaluation of extracts, oil and fractionated geraniol of Cymbopogan citratus—An aromatic grass. Int. J. Environ. Sci. 2012, 3, 583–590. [Google Scholar]
- Bhattamisra, S.K.; Kuean, C.H.; Chieh, L.B.; Yan, V.L.Y.; Lee, C.K.; Hooi, L.P.; Shyan, L.P.; Liew, Y.k.; Candasamy, M.; Sahu, P.S. Antibacterial activity of geraniol in combination with standard antibiotics against Staphylococcus aureus, Escherichia coli and Helico bacterpylori. Nat. Prod. Commun. 2018, 13, 791–793. [Google Scholar]
- Moro, I.J.; Gondo, G.D.G.A.; Pierri, E.G.; Pietro, R.C.L.R.; Soares, C.P.; de Sousa, D.P.; Santos, A.G. Evaluation of antimicrobial, cytotoxic and chemopreventive activities of carvone and its derivatives. Braz. J. Pharm. Sci. 2018, 53. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Sun, Z.; Chen, W. Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules 2019, 25, 33. [Google Scholar] [CrossRef] [Green Version]
- Reddy, D.N.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Reddy, G.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha Piperita L. (peppermint) essential oils. J. King Saud Univ. Sci. 2017, 31, 528–533. [Google Scholar] [CrossRef]
- Ulubelen, A.; Topcu, G.; Erig, C.; Sonmez, U.; Kartal, M.; Kurucu, S.; Bozok-Johansson, C. Terpenoids from Salvia sclarea. Phytochemistry. 1994, 36, 971–974. [Google Scholar] [CrossRef]
- Huang, J.; Qian, C.; Xu, H.; Huang, Y. Antibacterial activity of Artemisia asiatica essential oil against some common respiratory infection causing bacterial strains and its mechanism of action in Haemophilus influenzae. Microb. Pathog. 2018, 114, 470–475. [Google Scholar] [CrossRef]
- Joshi, R.K. Chemical composition, in vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, Ocimum sanctum and their major constituents. Indian J. Pharm. Sci. 2013, 75, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.M.; Costa, P.A.; Ribon, A.O.; Purgato, G.A.; Gaspar, D.M.; Diaz, M.A. Plant extracts display synergism with different classes of antibiotics. An. Acad. Bras. Cienc. 2019, 91, e20180117. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- Bassole, A.I.H.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Jugreet, B.S.; Mahomoodally, M.F. Essential oils from 9 exotic and endemic medicinal plants from Mauritius shows in vitro antibacterial and antibiotic potentiating activities. S. Afr. J. Bot. 2020, 132, 355–362. [Google Scholar] [CrossRef]
- Bag, A.; Chattopadhyay, R.R. Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination. PLoS ONE 2015, 10, e0131321. [Google Scholar] [CrossRef] [Green Version]
- Boonyanugomol, W.; Kraisriwattana, K.; Rukseree, K.; Boonsam, K.; Narachai, P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J. Infect. Public Health 2016, 10, 586–592. [Google Scholar] [CrossRef]
- Huang, W.; Wang, J.Q.; Song, H.Y.; Zhang, Q.; Liu, G.F. Chemical analysis of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine 2017, 22, 245–255. [Google Scholar]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine 2015, 22, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Paralikar, P.; Jogee, P.; Agarkar, G.; Ingle, A.P.; Derita, M.; Zacchino, S. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Int. J. Pharm. 2017, 519, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Fadli, M.; Bolla, J.M.; Mezrioui, N.E.; Pages, J.M.; Hassani, L. First evidence of antibacterial and synergistic effects of Thymus riatarum essential oil with conventional antibiotics. Ind. Crops Prod. 2014, 61, 370–376. [Google Scholar] [CrossRef]
- Magi, G.; Marini, E.; Facinelli, B. Antimicrobial activity of essential oils and carvacrol, and synergyof carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front. Microbiol. 2015, 6, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atki, Y.E.; Aouam, I.; Kamari, F.E.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaou, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. 2019, 10, 63–67. [Google Scholar] [CrossRef]
- Rocha, R.R.; Matos, M.N.C.; Guerrero, J.A.P.; Cavalcante, R.M.B.; Melo, R.S.; Azevedo, A.M.A.; Pereira, A.M.G.; Lopes, P.H.R.; Rodrigues, T.H.S.; Bandeira, P.N.; et al. Comparative study of the chemical composition, antibacterial activity and synergic effects of the essential oils of Croton tetradenius baill. and C. pulegiodorus baill. against Staphylococcus aureus isolates. Microb. Pathog. 2021, 156, 104934. [Google Scholar] [CrossRef]
KI | Compound | MAEO | CKEO |
---|---|---|---|
985 | α-pinene | 2.07 | - |
993 | Camphene | 0.05 | 0.07 |
1003 | Sabinene | 0.67 | - |
1005 | β-pinene | 1.88 | - |
1010 | β-myrcene | 0.36 | - |
1017 | α-phellandrene | - | 1.49 |
1024 | o-cymene | 0.28 | 0.73 |
1026 | Limonene | 12.83 | 1.45 |
1027 | Eucalyptol | 2.37 | - |
1032 | β-ocimene | - | 3.55 |
1037 | γ-terpinene | - | 0.26 |
1041 | α-citronellol | 0.11 | - |
1051 | Linalool | 0.15 | 2.16 |
1060 | cis-p-menth-2-en-1-ol | - | 4.68 |
1065 | Alloocimene | - | 0.16 |
1071 | 2-Hexen-1-al | 3.88 | - |
1075 | p-mentha-1,5-dien-8-ol | - | 0.23 |
1079 | Terpinen-4-ol | - | 0.14 |
1082 | α-terpineol | 0.66 | - |
1083 | γ-terpineol | 1.26 | |
1084 | cis-piperitol | - | 0.72 |
1085 | (E)-Isopiperitenol | 0.18 | - |
1095 | Neral | - | 0.39 |
1096 | Pulegone | 0.43 | - |
1098 | Geraniol | - | 57.66 |
1099 | (-)-carvone | 52.48 | - |
1100 | Isopulegol | 1.70 | - |
1101 | Piperitone | 0.83 | 1.89 |
1173 | Menthol | 7.96 | - |
1206 | Menthyl acetate | 3.04 | - |
1231 | Geranyl acetate | - | 8.24 |
1279 | Hexadec-7-yn-1-ol | 1.48 | - |
1404 | Caryophyllene | - | 1.61 |
1409 | Calarene | - | 0.18 |
1420 | Geranyl butyrate | 2.37 | |
1421 | Humulene | - | 0.10 |
1435 | GermacreneD | 0.28 | 0.08 |
1455 | B-cadinene | - | 0.49 |
1464 | Kessane | - | 0.21 |
1488 | Spathulenol | 0.12 | - |
1490 | Caryophyllene oxide | 0.43 | 0.12 |
1699 | Neryl hexanoate | - | 0.96 |
1724 | Diisobutylphthalate | - | 2.38 |
Total | 95.48% | 92.32% |
Component | Minimum Inhibitory Concentration (μg/mL) | ||||
---|---|---|---|---|---|
B. subtilis | E. coli | K. pneumoniae | M. luteus | S. aureus | |
CCEO | 800 | 1300 | 900 | 1150 | 1200 |
CKEO | 700 | 900 | 800 | 1000 | 1400 |
MAEO | 2500 | 3500 | 2500 | 5000 | 5000 |
Chloramphenicol | 2 | 2 | 2 | 1.5 | 1.5 |
Ampicillin | 0.50 | 0.50 | 0.50 | 0.40 | 0.40 |
Erythromycin | 1 | 1.5 | 1 | 1 | 1 |
Microorganisms | Combinations | MIC (μg/mL) | MICc (μg/mL) | FIC | FICI | Interaction |
---|---|---|---|---|---|---|
S. aureus | M. arvensis | 5000 | 1666.66 | 0.33 | 0.63 | Partial synergistic |
Chloramphenicol | 1.5 | 0.5 | 0.3 | |||
C. citratus | 1200 | 400 | 0.33 | 0.63 | Partial synergistic | |
Chloramphenicol | 1.5 | 0.5 | 0.3 | |||
C. khasianus | 1400 | 350 | 0.25 | 0.50 | Synergistic | |
Chloramphenicol | 1.5 | 0.3 | 0.25 | |||
M. luteus | M. arvensis | 5000 | 2500 | 0.5 | 1 | No effect |
Chloramphenicol | 1.5 | 0.75 | 0.5 | |||
C. citratus | 1150 | 575 | 0.5 | 1 | No effect | |
Chloramphenicol | 1.5 | 0.75 | 0.5 | |||
C. khasianus | 1000 | 500 | 0.5 | 1 | No effect | |
Chloramphenicol | 1.5 | 0.75 | 0.5 | |||
E. coli | M. arvensis | 3500 | 1166.66 | 0.33 | 0.63 | Partial synergistic |
Chloramphenicol | 2 | 0.6 | 0.3 | |||
C. citratus | 1300 | 325 | 0.2 | 0.4 | Synergistic | |
Chloramphenicol | 2 | 0.4 | 0.2 | |||
C. khasianus | 900 | 450 | 0.5 | 1 | No effect | |
Chloramphenicol | 2 | 1 | 0.5 | |||
B. subtilis | M. arvensis | 2500 | 833.33 | 0.33 | 0.63 | Partial synergistic |
Chloramphenicol | 2 | 0.6 | 0.3 | |||
C. citratus | 800 | 400 | 0.5 | 1 | No effect | |
Chloramphenicol | 2 | 1 | 0.5 | |||
C. khasianus | 700 | 350 | 0.5 | 1 | No effect | |
Chloramphenicol | 2 | 1 | 0.5 | |||
K. pneumoniae | M. arvensis | 2500 | 833.33 | 0.33 | 0.63 | Partial synergistic |
Chloramphenicol | 2 | 0.6 | 0.3 | |||
C. citratus | 900 | 450 | 0.5 | 1 | No effect | |
Chloramphenicol | 2 | 1 | 0.5 | |||
C. khasianus | 800 | 200 | 0.25 | 0.45 | Synergistic | |
Chloramphenicol | 2 | 0.4 | 0.2 |
Microorganisms | Combinations | MIC (μg/mL) | MICc (μg/mL) | FIC | FICI | Interaction |
---|---|---|---|---|---|---|
S. aureus | C. khasianus | 1400 | 350 | 0.25 | 0.5 | Synergistic |
Ampicillin | 0.40 | 0.1 | 0.25 | |||
C. citratus | 1200 | 600 | 0.5 | 1 | No effect | |
Ampicillin | 0.40 | 0.2 | 0.5 | |||
M. arvensis | 5000 | 1250 | 0.25 | 0.5 | Synergistic | |
Ampicillin | 0.40 | 0.1 | 0.25 | |||
M. luteus | C. khasianus | 1000 | 333 | 0.3 | 0.6 | Partial synergistic |
Ampicillin | 0.40 | 0.13 | 0.3 | |||
C. citratus | 1150 | 575 | 0.5 | 1 | No effect | |
Ampicillin | 0.40 | 0.2 | 0.5 | |||
M. arvensis | 5000 | 1250 | 0.25 | 0.5 | Synergistic | |
Ampicillin | 0.40 | 0.1 | 0.25 | |||
E. coli | C. khasianus | 700 | 352 | 0.5 | 1 | No effect |
Ampicillin | 0.50 | 0.25 | 0.5 | |||
C. citratus | 800 | 266 | 0.3 | 0.6 | Partial synergistic | |
Ampicillin | 0.50 | 0.16 | 0.3 | |||
M. arvensis | 2500 | 625 | 0.25 | 0.49 | Synergistic | |
Ampicillin | 0.50 | 0.12 | 0.24 | |||
B. subtilis | C. khasianus | 900 | 450 | 0.5 | 1 | No effect |
Ampicillin | 0.50 | 0.25 | 0.5 | |||
C. citratus | 1300 | 352 | 0.25 | 0.49 | Synergistic | |
Ampicillin | 0.50 | 0.12 | 0.24 | |||
M. arvensis | 3500 | 1166 | 0.3 | 0.6 | Partial synergistic | |
Ampicillin | 0.50 | 0.16 | 0.3 | |||
K. pneumoniae | C. khasianus | 800 | 400 | 0.5 | 1 | No effect |
Ampicillin | 0.50 | 0.25 | 0.5 | |||
C. citratus | 900 | 450 | 0.5 | 1 | No effect | |
Ampicillin | 0.50 | 0.25 | 0.5 | |||
M. arvensis | 2500 | 833 | 0.33 | 0.66 | Partial synergistic | |
Ampicillin | 0.50 | 0.16 | 0.33 |
Microorganisms | Combinations | MIC (μg/mL) | MICc (μg/mL) | FIC | FICI | Interaction |
---|---|---|---|---|---|---|
S. aureus | C. khasianus | 1400 | 466 | 0.33 | 0.66 | Partial synergistic |
Erythromycin | 1 | 0.33 | 0.33 | |||
C. citratus | 1200 | 400 | 0.33 | 0.66 | Partial synergistic | |
Erythromycin | 1 | 0.33 | 0.33 | |||
M. arvensis | 5000 | 1250 | 0.25 | 0.50 | Synergistic | |
Erythromycin | 1 | 0.25 | 0.25 | |||
M. luteus | C. khasianus | 1000 | 250 | 0.25 | 0.50 | Synergistic |
Erythromycin | 1 | 0.25 | 0.25 | |||
C. citratus | 1150 | 287.5 | 0.25 | 0.50 | Synergistic | |
Erythromycin | 1 | 0.25 | 0.25 | |||
M. arvensis | 5000 | 1666 | 0.33 | 0.66 | Partial synergistic | |
Erythromycin | 1 | 0.33 | 0.33 | |||
E. coli | C. khasianus | 700 | 233 | 0.33 | 0.66 | Partial synergistic |
Erythromycin | 1.5 | 0.5 | 0.33 | |||
C. citratus | 800 | 200 | 0.25 | 0.50 | Synergistic | |
Erythromycin | 1.5 | 0.37 | 0.25 | |||
M. arvensis | 2500 | 625 | 0.25 | 0.50 | Synergistic | |
Erythromycin | 1.5 | 0.37 | 0.25 | |||
B. subtilis | C. khasianus | 900 | 225 | 0.25 | 0.50 | Synergistic |
Erythromycin | 1 | 0.25 | 0.25 | |||
C. citratus | 1300 | 433 | 0.33 | 0.66 | Partial synergistic | |
Erythromycin | 1 | 0.33 | 0.33 | |||
M. arvensis | 3500 | 1166 | 0.33 | 0.66 | Partial synergistic | |
Erythromycin | 1 | 0.33 | 0.33 | |||
K. pneumoniae | C. khasianus | 800 | 266 | 0.33 | 0.66 | Partial synergistic |
Erythromycin | 1 | 0.33 | 0.33 | |||
C. citratus | 900 | 300 | 0.33 | 0.66 | Partial synergistic | |
Erythromycin | 1 | 0.33 | 0.33 | |||
M. arvensis | 2500 | 625 | 0.25 | 0.50 | Synergistic | |
Erythromycin | 1 | 0.25 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, N.; Sheikh, Z.N.; Alamri, S.; Singh, B.; Kesawat, M.S.; Guleria, S. Chemical Composition, Antibacterial and Combinatorial Effects of the Essential Oils from Cymbopogon spp. and Mentha arvensis with Conventional Antibiotics. Agronomy 2023, 13, 1091. https://doi.org/10.3390/agronomy13041091
Sharma N, Sheikh ZN, Alamri S, Singh B, Kesawat MS, Guleria S. Chemical Composition, Antibacterial and Combinatorial Effects of the Essential Oils from Cymbopogon spp. and Mentha arvensis with Conventional Antibiotics. Agronomy. 2023; 13(4):1091. https://doi.org/10.3390/agronomy13041091
Chicago/Turabian StyleSharma, Neha, Zahid Nabi Sheikh, Saud Alamri, Bikarma Singh, Mahipal Singh Kesawat, and Sanjay Guleria. 2023. "Chemical Composition, Antibacterial and Combinatorial Effects of the Essential Oils from Cymbopogon spp. and Mentha arvensis with Conventional Antibiotics" Agronomy 13, no. 4: 1091. https://doi.org/10.3390/agronomy13041091
APA StyleSharma, N., Sheikh, Z. N., Alamri, S., Singh, B., Kesawat, M. S., & Guleria, S. (2023). Chemical Composition, Antibacterial and Combinatorial Effects of the Essential Oils from Cymbopogon spp. and Mentha arvensis with Conventional Antibiotics. Agronomy, 13(4), 1091. https://doi.org/10.3390/agronomy13041091