Energetic Properties and Biomass Productivity of Switchgrass (Panicum virgatum L.) under Agroecological Conditions in Northwestern Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ultimate Analysis
2.2. Proximate Analysis
2.3. Heating Value
2.4. Micro and Macro Elements
2.5. Statistical Analysis
3. Results and Discussion
4. Discussion
5. Conclusions
- The average yield of dry matter (DM) was 19.08 t/ha for the autumn harvest, while it was 13.27 t/ha for the spring harvest.
- The percentage of dry matter was 89.22% in the spring harvest and 38.91% in the autumn harvest.
- The carbon content was 47.02% in the autumn harvest and 47.49% in the spring harvest, while the hydrogen content was 5.99% and 6.01%, respectively.
- The oxygen content was 46.70% for the autumn crop and 46.27% for the spring crop, while the sulfur content was 0.14% and 0.11% and the nitrogen content was 0.16% and 0.11%, respectively.
- The ash content was 4.59% in the autumn crop and 3.71% in the spring crop.
- The potassium content was higher in the autumn harvest (4781.68 mg kg−1) than in the spring harvest.
- The percentages of zinc, iron, sodium, potassium, manganese, magnesium, chromium, and nickel were generally higher in the autumn harvest, while the calcium content was higher in the spring harvest.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pickl, M.J. The renewable energy strategies of oil majors–From oil to energy? Energy Strategy Rev. 2019, 26, 100370. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G.; Morgan, T.J. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33. [Google Scholar] [CrossRef]
- Mitchell, R.B.; Schmer, M.R.; Anderson, W.F.; Jin, V.; Balkcom, K.S.; Kiniry, J.; Coffin, A.; White, P. Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. Bioenergy Res. 2016, 9, 384–398. [Google Scholar] [CrossRef]
- Scordia, D.; Cosentino, S. Perennial energy grasses: Resilient crops in a changing European agriculture. Agriculture 2019, 9, 169. [Google Scholar] [CrossRef]
- Allen, B.; Kretschmer, B.; Baldock, D.; Menadue, H.; Nanni, S.; Tucker, G. Space for Energy Crops–Assessing the Potential Contribution to Europe’s Energy Future; Report Produced for BirdLife Europe, European Environmental Bureau and Transport & Environment; IEEP: London, UK, 2014; p. 61. [Google Scholar]
- Sanderson, M.A.; Adler, P.R. Perennial forages as second generation bioenergy crops. Int. J. Mol. Sci. 2008, 9, 768–788. [Google Scholar] [CrossRef]
- Elbersen, H.W.; Poppens, R.P.; Bakker, R.R.C. Switchgrass (Panicum virgatum L.): A Perennial Biomass Grass for Efficient Production of Feedstock for the Biobased Economy; NL Agency: The Hague, The Netherlands, 2013. [Google Scholar]
- Young, H.A.; Sarath, G.; Tobias, C.M. Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass. BMC Plant Biol. 2012, 12, 117. [Google Scholar] [CrossRef]
- Zhang, Y.; Zalapa, J.; Jakubowski, A.R.; Price, D.L.; Acharya, A.; Wei, Y.; Brummer, E.C.; Kaeppler, S.M.; Casler, M.D. Natural hybrids and gene flow between upland and lowland switchgrass. Crop Sci. 2011, 51, 2626–2641. [Google Scholar] [CrossRef]
- Morris, G.P.; Grabowski, P.P.; Borevitz, J.O. Genomic diversity in switchgrass (Panicum virgatum): From the continental scale to a dune landscape. Mol. Ecol. 2011, 20, 4938–4952. [Google Scholar] [CrossRef]
- Casler, M.D. Switchgrass breeding, genetics, and genomics. In Switchgrass: A Valuable Biomass Crop for Energy; Springer: Berlin/Heidelberg, Germany, 2012; pp. 29–53. [Google Scholar]
- McLaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Karyotis, T.; Sakellariou-Makrantonaki, M.; Bastiaans, L.; Struik, P.C.; Danalatos, N.G. Switchgrass biomass partitioning and growth characteristics under different management practices. NJAS-Wagening. J. Life Sci. 2016, 78, 61–67. [Google Scholar] [CrossRef]
- Hancock, D.W. The Management and Use of Switchgrass in Georgia; The University of Georgia: Athens, GA, USA, 2009. [Google Scholar]
- Samson, R.; Delaquis, E.; Deen, B.; DeBruyn, J.; Eggimann, U. A Comprehensive Guide to Switchgrass Management; Ontario Biomass Producers Cooperative (OBPC): Markdale, ON, Canada, 2019. [Google Scholar]
- Adler, P.R.; Sanderson, M.A.; Boateng, A.A.; Weimer, P.J.; Jung, H.J.G. Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron. J. 2006, 98, 1518–1525. [Google Scholar] [CrossRef]
- Ashworth, A.; Rocateli, A.; West, P.C.; Brye, R.K.; Popp, M.P. Switchgrass growth and effects on biomass accumulation, moisture content, and nutrient removal. Agron. J. 2017, 109, 1359–1367. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Boateng, A.A.; Lee, D.K.; Casler, M.D. Switchgrass harvest time management can impact biomass yield and nutrient content. Crop Sci. 2016, 56, 1970–1980. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Cassida, K.A.; Hussey, M.A.; Muir, J.P.; Ocumpaugh, W.R.; Read, J.C.; Reed, R.L.; Sanderson, M.A.; Venuto, B.C.; Williams, J.R. Switchgrass simulation by the ALMANAC model at diverse sites in the southern US. Biomass Bioenergy 2005, 29, 419–425. [Google Scholar] [CrossRef]
- Tillman, D.A.; Duong, D.N.B.; Harding, N.S. Chapter 4—Blending Coal with Biomass: Cofiring Biomass with Coal. In Solid Fuel Blending; Tillman, D.A., Duong, D.N.B., Harding, N.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 125–200. [Google Scholar]
- Greinert, A.; Mrówczyńska, M.; Grech, R.; Szefner, W. The use of plant biomass pellets for energy production by combustion in dedicated furnaces. Energies 2020, 13, 463. [Google Scholar] [CrossRef]
- Finney, K.N.; Akram, M.; Diego, M.E.; Yang, X.; Pourkashanian, M. Carbon capture technologies. In Bioenergy with Carbon Capture and Storage; Academic Press: Cambridge, MA, USA, 2019; pp. 15–45. [Google Scholar]
- Retsch GM 300 Laboratory Mill, RETSCH GmbH: Haan, Germany.
- HRN EN ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. HZN: Zagreb, Croatia, 2015.
- HRN EN ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. HZN: Zagreb, Croatia, 2016.
- Vario, Macro CHNS Analyzer, Elementar Analysensysteme GmbH: Langenselbold, Germany.
- HRN EN ISO 18123:2015; Solid Biofuels—Determination of the Content of Volatile Matter. HZN: Zagreb, Croatia, 2015.
- HRN EN ISO 18134-2:2017; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method. HZN: Zagreb, Croatia, 2017.
- Laboratory Dryer, INKO ST-40, Inkolab d.o.o.: Zagreb, Croatia.
- HRN EN ISO 18122:2015; Solid Biofuels—Determination of Ash Content. HZN: Zagreb, Croatia, 2015.
- Muffle Furnace (Nabertherm Controller B170, Germany).
- HRN EN ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. HZN: Zagreb, Croatia, 2017.
- IKA C200 Adiabatic Calorimeter, IKA Analysentechnik GmbH: Staufen im Breisgau, Germany.
- HRN EN 14918:2010; Solid Biofuels—Determination of Calorific Value. HZN: Zagreb, Croatia, 2010.
- HRN EN ISO 16968:2015; Solid Biofuels—Determination of Minor Elements. HZN: Zagreb, Croatia, 2015.
- HRN EN ISO 16967:2015; Solid Biofuels—Determination of Major Elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti. HZN: Zagreb, Croatia, 2015.
- AAnalyst 400, PerkinElmer, Inc.: Waltham, MA, USA.
- SAS Institute Inc. SAS 9.1.2 Help and Documentation; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Williams, C.L.; Emerson, R.M.; Tumuluru, J.S. Biomass compositional analysis for conversion to renewable fuels and chemicals. In Biomass Volume Estimation and Valorization for Energy; IntechOpen: London, UK, 2017; pp. 251–270. [Google Scholar]
- Caraschi, J.C.; Goveia, D.; Dezajacomo, G.; Prates, G.A. Evaluation of biomass properties for the production of solid biofuels. Floresta E Ambiente 2019, 26, e20180433. [Google Scholar] [CrossRef]
- Bilandžija, N.; Leto, J.; Fabijanić, G.; Sito, S.; Smiljanović, I. Harvesting techniques of agricultural energy crops. Glas. Zaštite Bilja 2017, 40, 112–119. [Google Scholar] [CrossRef]
- Rakhmetova, S.O.; Vergun, O.M.; Kulyk, M.I.; Blume, R.Y.; Bondarchuk, O.P.; Blume, Y.B.; Rakhmetov, D.B. Efficiency of Switchgrass (L.) Cultivation in the Ukrainian Forest-Steppe Zone and Development of Its New Lines. Open Agric. J. 2020, 14, 273–289. [Google Scholar] [CrossRef]
- Alexopoulou, E.; Sharma, N.; Papatheohari, Y.; Christou, M.; Piscioneri, I.; Panoutsou, C.; Pignatelli, V. Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenergy 2008, 32, 926–933. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Davis, E.B.; Borsuk, M.E.; Gunderson, C.A.; Lynd, L.R. Biomass production in switchgrass across the United States: Database description and determinants of yield. Agron. J. 2010, 102, 1158–1168. [Google Scholar] [CrossRef]
- Fike, J.H.; Parrish, D.J.; Wolf, D.D.; Balasko, J.A.; Green, J.T., Jr.; Rasnake, M.; Reynolds, J.H. Switchgrass production for the upper southeastern USA: Influence of cultivar and cutting frequency on biomass yields. Biomass Bioenergy 2006, 30, 207–213. [Google Scholar] [CrossRef]
- Kemmerer, B.; Liu, J. Effect of harvesting time and moisture content on energy consumption of compressing switchgrass. Am. J. Plant Sci. 2014, 5, 3241. [Google Scholar] [CrossRef]
- Adamovics, A.; Platace, R.; Gulbe, I.; Ivanovs, S. The content of carbon and hydrogen in grass biomass and its influence on heating value. Eng. Rural Dev. 2018, 17, 1277–1281. [Google Scholar]
- Pilon, G.; Lavoie, J.M. Characterization of Switchgrass char produced in torrefaction and pyrolysis conditions. BioResources 2011, 6, 4824–4839. [Google Scholar]
- Clarke, S.; Eng, P.; Preto, F. Biomass Burn Characteristics; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2011; p. 11-033. [Google Scholar]
- David, K.; Ragauskas, A.J. Switchgrass as an energy crop for biofuel production: A review of its ligno-cellulosic chemical properties. Energy Environ. Sci. 2010, 3, 1182–1190. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, P. Sustainable bio-energy potential of perennial energy grass from reclaimed coalmine spoil (marginal sites) of India. Renew. Energy 2018, 123, 475–485. [Google Scholar] [CrossRef]
- Sadaka, S.; Sharara, A.M.; Ashworth, A.; Keyser, P.; Allen, F.; Wright, A. Characterization of biochar from switchgrass carbonization. Energies 2014, 7, 548–567. [Google Scholar] [CrossRef]
- Vainio, E. Fate of Fuel-Bound Nitrogen and Sulfur in Biomass-Fired Industrial Boilers. Ph.D. Thesis, Åbo Akademi University, Turku, Finland, 2014. [Google Scholar]
- Gorlitsky, L.E. Management of Switchgrass for the Production of Biofuel. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2012. [Google Scholar]
- Monti, A.; Di Virgilio, N.; Venturi, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef]
- Rybak, W.; Moroń, W.; Ferens, W. Dust ignition characteristics of different coal ranks, biomass and solid waste. Fuel 2019, 237, 606–618. [Google Scholar] [CrossRef]
- GowriShankar, G. Proximate and Ultimate Analysis of Cotton Pod Used in the Updraft Gasifier—A Review; Akshaya College of Engineering and Technology: Tamil Nadu, India, 2016. [Google Scholar]
- Sarkar, D.K. Thermal Power Plant: Pre-Operational Activities; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Özyuğuran, A.; Yaman, S. Prediction of calorific value of biomass from proximate analysis. Energy Procedia 2017, 107, 130–136. [Google Scholar] [CrossRef]
- Jackson, J.; Turner, A.; Mark, T.; Montross, M. Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Process. Technol. 2016, 148, 43–49. [Google Scholar] [CrossRef]
- Caillat, S.; Vakkilainen, E. Large-scale biomass combustion plants: An overview. In Biomass Combustion Science, Technology and Engineering; Woodhead Publishing: Sawston, UK, 2013; pp. 189–224. [Google Scholar]
- Gupta, G.K.; Mondal, K.M. Bioenergy generation from agricultural wastes and enrichment of end products. In Refining Biomass Residues for Sustainable Energy and Bioproducts; Academic Press: Cambridge, MA, USA, 2020; pp. 337–356. [Google Scholar]
- Bilandžija, N. Potencijal Vrste Miscanthus × Giganteus kao Energetske Kulture u Različitim Tehnološkim i Agroekološkim Uvjetima. Ph.D. Thesis, Agronomski Fakultet Sveučilišta u Zagrebu, Zagreb, Croatia, 2015. [Google Scholar]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Siggia, D.; Lasorella, M.V.; Kolte, A.; Pawar, A. Management of Energy Production with Thermochemical Combustion: The Case of Switchgrass Perennial Crop in Mediterranean Environment. J. Crit. Rev. 2020, 7, 1185–1192. [Google Scholar]
- Mitchell, R.B.; Lee, D.K.; Casler, M. Switchgrass. In Cellulosic Energy Cropping Systems; Wiley: Hoboken, NJ, USA, 2014; pp. 75–89. [Google Scholar]
- Massey, J.; Antonangelo, J.; Zhang, H. Nutrient dynamics in switchgrass as a function of time. Agronomy 2020, 10, 940. [Google Scholar] [CrossRef]
- Petrović, J.; Simić, M.; Mihajlović, M.; Koprivica, M.; Kojić, M.; Nuić, I. Upgrading fuel potentials of waste biomass via hydrothermal carbonization. Hem. Ind. 2021, 75, 297–305, 381. [Google Scholar] [CrossRef]
- Brown, A.E.; Hammerton, J.M.; Camargo-Valero, M.A.; Ross, A.B. Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass. Energies 2022, 15, 3495. [Google Scholar] [CrossRef]
Harvest Time | Yield DM (t/ha) | Dry Matter (%) |
---|---|---|
Autumn | 19.08 a | 38.91 b |
Spring | 13.27 b | 89.22 a |
Statistical difference | *** | *** |
Harvest Time | C (%) | H (%) | O (%) | S (%) | N (%) |
---|---|---|---|---|---|
Autumn | 47.02 b ± 0.227 | 5.99 a ± 0.014 | 46.70 a ± 0.229 | 0.14 a ± 0.011 | 0.16 a ± 0.008 |
Spring | 47.49 a ± 0.113 | 6.01 a ± 0.040 | 46.27 b ± 0.156 | 0.11 b ± 0.003 | 0.11 b ± 0.013 |
Statistical difference | *** | NS | *** | *** | *** |
Harvest Time | Ash (%) | Fixed Carbon (%) | Volatiles (%) | LHV (MJ kg−1) |
---|---|---|---|---|
Autumn | 4.59 a ± 0.252 | 10.16 a ± 0.789 | 79.78 a ± 0.562 | 17.29 a ± 0.123 |
Spring | 3.71 b ± 0.066 | 10.23 a ± 0.642 | 80.86 a ± 0.707 | 17.42 a ± 0.252 |
Statistical difference | *** | NS | NS | NS |
Harvest Time | Autumn | Spring | Statistical Difference |
---|---|---|---|
Zinc (Zn) | 5.77 a ± 0.006 | 4.14 b ± 0.089 | *** |
Iron (Fe) | 199.06 a ± 0.009 | 47.22 b ± 0.002 | *** |
Sodium (Na) | 99.68 a ± 0.005 | 67.67 b ± 0.005 | *** |
Potassium (K) | 4781.68 a ± 0.943 | 748.76 b ± 0.009 | *** |
Manganese (Mn) | 8.89 a ± 0.007 | 3.82 b ± 0.002 | *** |
Calcium (Ca) | 2353.50 b ± 0.005 | 2401.25 a ± 0.005 | *** |
Magnesium (Mg) | 487.67 a ± 0.943 | 464.13 b ± 0.047 | *** |
Chromium (Cr) | 4.38 a ± 0.005 | 2.99 b ± 0.002 | *** |
Nickel (Ni) | 42.85 a ± 0.008 | 2.58 b ± 0.004 | *** |
Cobalt (Co) | (<0.25 mg kg−1) n.d. | (<0.25 mg kg−1) n.d. | n.d. |
Lead (Pb) | (<0.25 mg kg−1) n.d. | (<0.25 mg kg−1) n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matin, B.; Leto, J.; Antonović, A.; Brandić, I.; Jurišić, V.; Matin, A.; Krička, T.; Grubor, M.; Kontek, M.; Bilandžija, N. Energetic Properties and Biomass Productivity of Switchgrass (Panicum virgatum L.) under Agroecological Conditions in Northwestern Croatia. Agronomy 2023, 13, 1161. https://doi.org/10.3390/agronomy13041161
Matin B, Leto J, Antonović A, Brandić I, Jurišić V, Matin A, Krička T, Grubor M, Kontek M, Bilandžija N. Energetic Properties and Biomass Productivity of Switchgrass (Panicum virgatum L.) under Agroecological Conditions in Northwestern Croatia. Agronomy. 2023; 13(4):1161. https://doi.org/10.3390/agronomy13041161
Chicago/Turabian StyleMatin, Božidar, Josip Leto, Alan Antonović, Ivan Brandić, Vanja Jurišić, Ana Matin, Tajana Krička, Mateja Grubor, Mislav Kontek, and Nikola Bilandžija. 2023. "Energetic Properties and Biomass Productivity of Switchgrass (Panicum virgatum L.) under Agroecological Conditions in Northwestern Croatia" Agronomy 13, no. 4: 1161. https://doi.org/10.3390/agronomy13041161
APA StyleMatin, B., Leto, J., Antonović, A., Brandić, I., Jurišić, V., Matin, A., Krička, T., Grubor, M., Kontek, M., & Bilandžija, N. (2023). Energetic Properties and Biomass Productivity of Switchgrass (Panicum virgatum L.) under Agroecological Conditions in Northwestern Croatia. Agronomy, 13(4), 1161. https://doi.org/10.3390/agronomy13041161