Temporal Trends and Future Projections of Accumulated Temperature Changes in China
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.2.1. China Meteorological Forcing Dataset (1979–2018)
2.2.2. The ScenarioMIP Dataset
2.3. Methodology
3. Results
3.1. Trend Analysis of AT Change in China from 1979 to 2018
3.1.1. Changes in the Spatial Distribution of AT
3.1.2. Spatial Variation in the Rate of AT Change from 1979–2018
3.1.3. Analysis of the Change in the Area of AT Belt
3.1.4. Analysis of the Temporal Variation of Regional AT and the Factors Influencing the AT
3.2. Analysis of the Trend of China’s AT Change in 2015–2100 under Different Shared Socioeconomic Pathways
3.2.1. Comparative Analysis of the Spatial Distribution of Mean AT between 2090 and 2100 under Different Shared Socioeconomic Pathways
3.2.2. Analysis of Spatial Trends of AT from 2015 to 2100 under Different Shared Socioeconomic Pathways
3.2.3. Analysis of AT Belt Area Change from 2015 to 2100 under Different Shared Socioeconomic Pathways
3.2.4. Analysis of Temporal Variation of AT and Influence Factors under Different Shared Socioeconomic Pathways
4. Discussion
4.1. Contributors for the Changes in AT
4.2. Northern Shift of the AT Belt and Change in the Northern Boundary of Planting
4.3. Recommendations
4.4. Shortcomings and Prospects of This Study
5. Conclusions
- The AT in China from 1979 to 2018 mainly shows a trend of northward shift and retreat to higher elevations. The most significant northward trend is in the subtropics, and the trend of retreating to higher altitudes is most significant in the warm temperate zone. In 2090–2100, the trend of northward shift and retraction to higher altitudes of the AT belt remains unchanged;
- In the past forty years, with the northward shift of the AT belt, especially the northward expansion of the tropics and subtropics, the low AT belt has been continuously squeezed and eroded, resulting in the narrowing of the cold temperate zone and the middle temperate zone year by year. Among them, the area increase caused by the northward expansion of the subtropics is the most significant, and the middle temperate zone is most obviously affected by the northward shift of the AT belt. In the future scenario, the development pattern of the area of the AT belt remains basically the same, i.e., the high AT belt will continue to expand northward and continuously squeeze and erode the area of the low AT belt;
- Except for LP and SC, the main factor affecting the change of AT in 1979–2018 is the increase of ADD in all other agricultural regions, the main factor in LP is the advance of AFD, and the main factor in SC is the increase of TMP. In the future scenario, the influence of TMP on the nine agricultural regions increases sequentially from the lower radiative forcing type to the higher radiative forcing type and ADD is always the main influencing factor of the AT change in the nine agricultural regions. In addition, the contribution of the advance of AFD is larger than that of ALD in 1979–2018, while the opposite is true in the future scenario.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, D.; Achutarao, K.; Allen, M.; Bethke, I.; Zaaboul, R. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geosci. Model Dev. 2017, 10, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Nolan, C.J.; Overpeck, J.T.; Allen, J.R.M.; Anderson, P.M.; Betancourt, J.L.; Binney, H.A.; Brewer, S.C.; Bush, M.B.; Chase, B.M.; Cheddadi, R.; et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 2018, 361, 920–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overpeck, J.T.; Breshears, D.D. The growing challenge of vegetation change. Science 2021, 372, 786–787. [Google Scholar] [CrossRef] [PubMed]
- Mottl, O.; Flantua, S.G.A.; Bhatta, K.P.; Felde, V.A.; Giesecke, T.; Goring, S.J.; Grimm, E.C.; Haberle, S.G.; Hooghiemstra, H.; Ivory, S.J.; et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 2021, 372, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, S. Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 3 July 2022).
- Gilson, E.; Kenehan, S. Food, Environment, and Climate Change: Justice at the Intersections; Rowman & Littlefield: Lanham, MD, USA, 2018. [Google Scholar]
- Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Wang, Y. Temporal-spatial evolution and temporal difference of positive accumulated temperature in China. J. Arid Land Resour. Environ. 2021, 35, 103–110. [Google Scholar]
- Li, S.; Zhang, B.; Ma, B.; Hou, Q.; He, H. Spatiotemporal evolution of effective accumulated temperatures of ≥5 °C and ≥10 °C based on grid data in China from 1961 to 2016. J. Nat. Resour. 2020, 35, 1216–1227. [Google Scholar]
- Bai, L.; Zhang, F.; Shang, M.; Shi, C.; Sun, S.; Liu, L.; Wen, Y.; Su, C. Evolution of the Multiple Accumulated Temperature Across Mainland China in 1961-2018 with the Gridded Meteorological Dataset. J. Geo-Inf. Sci. 2021, 23, 1446–1460. [Google Scholar]
- Dai, S.; Li, H.; Luo, H.; Zhao, Y. The spatio-temporal change of active accumulated temperature ≥10 °C in Southern China from 1960 to 2011. Acta Geogr. Sin. 2014, 69, 650–660. [Google Scholar]
- Zhao, H.; Guo, L.; Zhao, N.; Su, F.; Zhou, B. Responses of Initial/Final Date and the Accumulated Temperature Steadily above the Agricultural Threshold Temperature to Climate Change in Gonghe Basin, Qinghai Province. Res. Soil Water Conserv. 2012, 19, 207–211. [Google Scholar]
- Li, Y.; Feng, J.; Yang, J.; Sun, Y.; Su, Z. Space-time evolution of ≥0 °C accumulated temperature in Ningxia and its cause analysis. Arid Land Geogr. 2012, 35, 732–737. [Google Scholar]
- Chen, H.; Guo, L.; Liu, Y.; Feng, X.; Li, J.; Meng, M. Spatial Difference of ≥10 °C and ≥18 °C Annual Accu-mulated Temperatures and the Day Number of ≥10 °C in the Yunnan Hot Region. Plateau Meteorol. 2007, 26, 396–401. [Google Scholar]
- Zhang, S.; Bai, H.; Qi, G.; Liang, J.; Zhao, T. Spatial Simulation of Active Accumulated Temperature ≥10 °C in Qinling-Daba Mountains Based on Anusplin and Multiple Linear Regression Model. Res. Soil Water Conserv. 2022, 29, 184–189, 196. [Google Scholar]
- Pu, J.; Li, X.; Li, R. Variation characteristics of accumulated temperature from 1961 to 2010 in Tianshui City. J. Arid Land Resour. Environ. 2013, 27, 151–156. [Google Scholar]
- Liu, S.; Yan, D.; Weng, B.; Xing, Z.; Wang, G. Spatiotemporal Evolution of Effective Accumulated Temperature ≥10 °C in China in Recent 50 Years. Arid Zone Res. 2013, 30, 689–696. [Google Scholar]
- Qin, L.I.U.; Chang-rong, Y.A.N.; Wen-qing, H.E.; Jian-tao, D.U.; Jie, Y. Dynamic Variation of Accumulated Temperature Data in Recent 40 Years in the Yellow River Basin. J. Nat. Resour. 2009, 24, 147–153. [Google Scholar]
- Meng, Y.; Duan, K.; Shang, W.; Li, S.; Xing, L.; Shi, P. Analysis on spatiotemporal variations of near-surface air temperature over the Tibetan Plateau from 1961 to 2100 based on CMIP6 models’ data. J. Glaciol. Geocryol. 2022, 44, 24–33. [Google Scholar]
- Huang, L.; Zhai, J.; Liu, J.; Sun, C. The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China. Agric. For. Meteorol. 2018, 260–261, 193–203. [Google Scholar] [CrossRef]
- Zhi, Z.; Li, L.I.N. Study on the accumulative temperature and the precipitation in the period of the accumulative temperature in Ningxia. Agric. Res. Arid Areas 2008, 26, 231–234, 239. [Google Scholar]
- Yue, S.; Pilon, P. A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.G.; Chen, H.; DeGrave, A.J.; Prutkin, J.M.; Nair, B.G.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Štrumbelj, E.; Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Li, W.; Migliavacca, M.; Forkel, M.; Denissen, J.M.C.; Reichstein, M.; Yang, H.; Duveiller, G.; Weber, U.; Orth, R. Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun. 2022, 13, 1–9. [Google Scholar]
- Luo, Y.; Zhang, Z.; Li, Z.; Chen, Y.; Zhang, L.; Cao, J.; Tao, F. Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources. Environ. Res. Lett. 2020, 15, 074003. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. China Meteorological Forcing Dataset (1979–2018). 2019. Available online: https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file (accessed on 3 July 2022).
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Progress. Inquisitiones De Mutat. Clim. 2019, 15, 445–456. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Li, X. Future Projection of Rainstorm and Flood Disaster Risk in Southwest China Based on CMIP6 Models. J. Appl. Meteorolgical Sci. 2022, 33, 231–243. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Ren, H.L.; Li, J.; Bao, Q.; Gao, M. Dynamical and Machine Learning Hybrid Seasonal Prediction of Summer Rainfall in China. J. Meteorol. Res. 2021, 35, 583–593. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Xu, H.; Wang, G. Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data. J. For. Res. 2018, 30, 1689–1706. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ruppert, D. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. J. Am. Stat. Assoc. 2004, 99, 567. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Ciais, P.; Peñuelas, J.; Dai, J.; Fu, Y.H.; Ge, Q.-S. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Hou, P.; Liu, Y.; Xie, R.; Ming, B.; Ma, D.; Li, S.; Mei, X. Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Res. 2014, 158, 55–64. [Google Scholar] [CrossRef]
- Shen, M.G.; Wang, S.P.; Jiang, N.; Sun, J.P.; Cao, R.Y.; Ling, X.F.; Fang, B.; Zhang, L.; Zhang, L.H.; Xu, X.Y.; et al. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 717. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, D.; Bai, H.; Tao, F. Research progress on the response and adaptation of crop phenology to climate change in China. Prog. Geogr. 2019, 38, 224–235. [Google Scholar]
- Chen, X.; Tan, X.; Li, L.; Chen, J.; Li, Q. The association between high-yield and stable-yield characteristics of winter wheat and its influencing factors in the main producing areas in Northern China. J. Nat. Resour. 2022, 37, 263–276. [Google Scholar] [CrossRef]
Agricultural Regions | The regression Formula | R2 |
---|---|---|
NEP | y = 11.533x – 20,380.439 | 0.721 |
NAS | y = 8.877x – 15,118.768 | 0.540 |
SC | y = 13.525x – 20,253.914 | 0.453 |
3HP | y = 12.950x – 21,683.497 | 0.613 |
LP | y = 14.166x – 25,063.953 | 0.669 |
QTP | y = 4.687x − 8904.137 | 0.702 |
SBS | y = 11.816x – 20,844.801 | 0.714 |
YGP | y = 13.180x – 21,046.067 | 0.602 |
MYP | y = 15.739x – 26,263.058 | 0.677 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yang, Q.; Bao, L.; Li, G.; Yu, J.; Chang, X.; Gao, X.; Yu, L. Temporal Trends and Future Projections of Accumulated Temperature Changes in China. Agronomy 2023, 13, 1203. https://doi.org/10.3390/agronomy13051203
Li X, Yang Q, Bao L, Li G, Yu J, Chang X, Gao X, Yu L. Temporal Trends and Future Projections of Accumulated Temperature Changes in China. Agronomy. 2023; 13(5):1203. https://doi.org/10.3390/agronomy13051203
Chicago/Turabian StyleLi, Xuan, Qian Yang, Lun Bao, Guangshuai Li, Jiaxin Yu, Xinyue Chang, Xiaohong Gao, and Lingxue Yu. 2023. "Temporal Trends and Future Projections of Accumulated Temperature Changes in China" Agronomy 13, no. 5: 1203. https://doi.org/10.3390/agronomy13051203
APA StyleLi, X., Yang, Q., Bao, L., Li, G., Yu, J., Chang, X., Gao, X., & Yu, L. (2023). Temporal Trends and Future Projections of Accumulated Temperature Changes in China. Agronomy, 13(5), 1203. https://doi.org/10.3390/agronomy13051203