Late Pruning and Forced Vine Regrowth in Chardonnay and Pinot Noir: Benefits and Drawbacks in the Trento DOC Basin (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Plant Material
2.2. Experimental Design
2.3. Treatments Application
2.4. Phenology, Morphology, and Physiology
2.5. Berry Quality Analysis
2.6. Statistical Analysis
3. Results
3.1. Seasonal Weather Pattern
3.2. Phenological Progression
3.3. Vine Vegetative Growth, Yield, and Pruning Wood
3.4. Leaf Stomatal Conductance and Chlorophyll Fluorescence
3.5. Berry Chemical Composition
4. Discussion
4.1. The Effectiveness of Delayed Pruning Is Variety- and/or Season-Dependent
4.2. Forcing Vine Regrowth Significantly Postponed Phenological Progression and Improved Juice Quality but Reduced Yield
4.3. Forcing Double Harvest May Be Limited by Constraining Environmental Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Alikadic, A.; Pertot, I.; Eccel, E.; Dolci, C.; Zarbo, C.; Caffarra, A.; De Filippi, R.; Furlanello, C. The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agric. For. Meteorol. 2019, 271, 73–82. [Google Scholar] [CrossRef]
- Ramos, M.C.; Yuste, J. Grapevine Phenology of White Cultivars in Rueda Designation of Origin (Spain) in Response to Weather Conditions and Potential Shifts under Warmer Climate. Agronomy 2023, 13, 146. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine responses to heat stress and global warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A. Potential and Actual Bud Fruitfulness:A Tool for Predicting and Managing the Yield of Table Grape Varieties. Agronomy 2021, 11, 841. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Sci. Hortic. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Faralli, M.; Zanzotti, R.; Bertamini, M. Maintaining Canopy Density under Summer Stress Conditions Retains PSII Efficiency and Modulates Must Quality in Cabernet Franc. Horticulturae 2022, 8, 679. [Google Scholar] [CrossRef]
- Jones, J.E.; Kerslake, F.L.; Close, D.C.; Dambergs, R.G. Viticulture for sparkling wine production: A review. Am. J. Enol. Vitic. 2014, 65, 407–416. [Google Scholar] [CrossRef]
- Marcuzzo, P.; Gaiotti, F.; Lucchetta, M.; Lovat, L.; Tomasi, D. Tuning potassium fertilization to improve ph and acidity in Glera Grapevine (Vitis vinifera L.) under a Warming Climate. Appl. Sci. 2021, 11, 11869. [Google Scholar] [CrossRef]
- Buesa, I.; Caccavello, G.; Basile, B.; Merli, M.C.; Poni, S.; Chirivella, C.; Intrigliolo, D.S. Delaying berry ripening of Bobal and Tempranillo grapevines by late leaf removal in a semi-arid and temperate-warm climate under different water regimes. Aust. J. Grape Wine Res. 2019, 25, 70–82. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am. J. Enol. Vitic. 2008, 59, 30–38. [Google Scholar] [CrossRef]
- Carlin, S.; Lotti, C.; Vrhovsek, U.; Bontempo, L.; Mattivi, F. Analysis of Trento DOC sparkling wines using comprehensive two-dimensional gas chromatography ToF-MS with HS-SPME. In Proceedings of the 38th International Symposium on Capillary Chromatography (ISCC) and 11th GCxGC Symposium, Riva del Garda, Italy, 18–23 May 2014; p. 374–K45. [Google Scholar]
- Previtali, P.; Giorgini, F.; Mullen, R.S.; Dookozlian, N.K.; Wilkinson, K.L.; Ford, C.M. A systematic review and meta-analysis of vineyard techniques used to delay ripening. Hortic. Res. 2022, 9, uhac118. [Google Scholar] [CrossRef]
- Poni, S.; Sabbatini, P.; Palliotti, A. Facing spring frost damage in grapevine: Recent developments and the role of delayed winter pruning—A review. Am. J. Enol. Vitic. 2022, 73, 211–226. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Sanz, F.; Yeves, A.; Gil-Muñoz, R.; Martínez, V.; Intrigliolo, D.S.; Buesa, I. Forcing bud growth by double-pruning as a technique to improve grape composition of Vitis vinifera L. cv. Tempranillo in a semi-arid Mediterranean climate. Sci. Hortic. 2019, 256, 108614. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Tombesi, S.; Squeri, C.; Sabbatini, P.; Lavado Rodas, N.; Frioni, T. Double cropping in Vitis vinifera L. pinot noir: Myth or reality? Agronomy 2020, 10, 799. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Martin, S.R.; Dunn, G.M. Effect of pruning time and hydrogen cyanamide on bud break and subsequent phenology of Vitis vinifera L. variety Cabernet Sauvignon in central Victoria. Austr. J. Grape Wine Res. 2000, 6, 31–39. [Google Scholar] [CrossRef]
- Friend, A.P.; Trought, M.C.T. Delayed winter spur-pruning in New Zealand can alter yield components of Merlot grapevines. Austr. J. Grape Wine Res. 2007, 13, 157–164. [Google Scholar] [CrossRef]
- Gatti, M.; Pirez, F.J.; Frioni, T.; Squeri, C.; Poni, S. Calibrated, delayed-cane winter pruning controls yield and significantly postpones berry ripening parameters in Vitis vinifera L. cv. Pinot Noir. Aust. J. Grape Wine Res. 2018, 24, 305–316. [Google Scholar] [CrossRef]
- Zapata, C.; Deléens, E.; Chaillou, S.; Magné, C. Partitioning and mobilization of starch and N reserves in grapevine (Vitis vinifera L.). J. Plant Physiol. 2004, 161, 1031–1040. [Google Scholar] [CrossRef]
- Moran, M.A.; Sadras, V.O.; Petrie, P.R. Late pruning and carry-over effects on phenology, yield components and berry traits in Shiraz. Aust. J. Grape Wine Res. 2017, 23, 390–398. [Google Scholar] [CrossRef]
- Petrie, P.R.; Brooke, S.J.; Moran, M.A.; Sadras, V.O. Pruning after budburst to delay and spread grape maturity. Aust. J. Grape Wine Res. 2017, 23, 378–389. [Google Scholar] [CrossRef]
- Palliotti, A.; Frioni, T.; Tombesi, S.; Sabbatini, P.; Cruz-Castillo, J.G.; Lanari, V.; Silvestroni, O.; Gatti, M.; Poni, S. Double-pruning grapevines as a management tool to delay berry ripening and control yield. Am. J. Enol. Vitic. 2017, 68, 412–421. [Google Scholar] [CrossRef]
- Dry, P. How to grow ‘cool climate’grapes in hot regions. Austr. Grapegrow. Winemak. 1987, 283, 25–26. [Google Scholar]
- Gu, S.; Jacobs, S.D.; McCarthy, B.S.; Gohil, H.L. Forcing vine regrowth and shifting fruit ripening in a warm region to enhance fruit quality in ‘Cabernet Sauvignon’ grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 2012, 87, 287–292. [Google Scholar] [CrossRef]
- Martinez, F.; Toda, J.G.; Balda, P. Preliminary results on forcing vine regrowth to delay ripening to a cooler period. Vitis 2019, 58, 17–22. [Google Scholar]
- Luchaire, N.; Rienth, M.; Romieu, C.; Nehe, A.; Chatbanyong, R.; Houel, C.; Ageorges, A.; Gibon, Y.; Turc, O.; Muller, B.; et al. Microvine: A new model to study grapevine growth and developmental patterns and their responses to elevated temperature. Am. J. Enol. Vitic. 2017, 68, 283–292. [Google Scholar] [CrossRef]
- Ugliano, M.; Henschke, P.A.; Herderich, M.J.; Pretorius, I.S. Nitrogen management is critical for wine flavour and style. Wine Ind. J. 2007, 22, 24–30. [Google Scholar]
- Hendgen, M.; Schubert, S.; Löhnertz, O. Ethephon-induced leaf senescence increases the concentration of yeast-assimilable nitrogen in grape must (Vitis vinifera cv. Riesling). Aust. J. Grape Wine Res. 2021, 27, 472–482. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Scagel, C.F.; Baham, J. Nutrient Uptake and Distribution in a MaturePinot noir’Vineyard. HortScience 2006, 41, 336–345. [Google Scholar] [CrossRef]
- Gregan, S.M.; Winefield, C.; Jordan, B. Amino acid metabolism and accumulation in ‘Sauvignon Blanc’grapes-investigating berry composition in response to canopy manipulation. In Proceedings of the X International Symposium on Grapevine Physiology and Biotechnology, Verona, Italy, 13–18 June 2016; pp. 9–14. [Google Scholar]
- Vergara, R.; Noriega, X.; Aravena, K.; Prieto, H.; Pérez, F.J. ABA represses the expression of cell cycle genes and may modulate the development of endodormancy in grapevine buds. Front. Plant Sci. 2017, 8, 812. [Google Scholar] [CrossRef]
- Vandeleur, R.K.; Sullivan, W.; Athman, A.; Jordans, C.; Gilliham, M.; Kaiser, B.N.; Tyerman, S.D. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins. Plant Cell Environ. 2014, 37, 520–538. [Google Scholar] [CrossRef] [PubMed]
- Molitor, D.; Baron, N.; Sauerwein, T.; André, C.M.; Kicherer, A.; Döring, J.; Stoll, M.; Beyer, M.; Hoffmann, L.; Evers, D. Postponing first shoot topping reduces grape cluster compactness and delays bunch rot epidemic. Am. J. Enol. Vitic. 2015, 66, 164–176. [Google Scholar] [CrossRef]
- Lu, H.-C.; Hu, L.; Liu, Y.; Cheng, C.-F.; Chen, W.; Li, S.-D.; He, F.; Duan, C.-Q.; Wang, J. Manipulating the severe shoot topping delays the harvest date and modifies the flavor composition of Cabernet Sauvignon wines in a semi-arid climate. Food Chem. 2023, 405, 135008. [Google Scholar] [CrossRef]
- Teker, T. A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Sci. Hortic. 2023, 311, 111824. [Google Scholar] [CrossRef]
Experiment 1 (Chardonnay) | |||||
---|---|---|---|---|---|
Treatment | Number of Shoots (Vine−1) | Number of Bunches (Vine−1) | Fertility (Bunches Shoot−1) | Mean Bunch Weight (g) | Vine Yield (kg) |
CP | 18.3a | 21.8a | 1.2a | 124.5a | 2.72a |
GDP | 12.7bc | 13.3bc | 1.1a | 141.1a | 1.87b |
CDP | 15.0b | 17.0b | 0.8b | 97.7ab | 1.66b |
GFP | 7.8d | 9.0c | 1.1a | 74.2b | 0.67c |
CFP | 10.8b | 9.1c | 0.8b | 48b | 0.44c |
SEM | 1.8 | 1.3 | 0.1 | 22.5 | 0.10 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Experiment 2 (Pinot noir) | |||||
Treatment | Number of shoots (vine−1) | Number of bunches (vine−1) | Fertility (bunches/shoot) | Mean bunch weight (g) | Vine yield (kg) |
CP | 11.0a | 12.5a | 1.1a | 87.1a | 1.16a |
GDP | 9.12b | 8.4b | 0.8b | 88.3a | 0.72b |
GFP | 7.1c | 4.5c | 0.6c | 36.2b | 0.15c |
CFP | 9.0b | 6.0c | 0.7bc | 37.7b | 0.22c |
SEM | 0.8 | 1.1 | 0.1 | 10.2 | 0.11 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Experiment 3 (Pinot noir) | |||||
Treatment | Number of shoots (vine−1) | Number of bunches (vine−1) | Fertility (bunches/shoot) | Mean bunch weight (g) | Vine yield (kg) |
CP | 10.8 | 15.5 | 1.4 | 178.8 | 2.79 |
FG5 | 10.2 | 14.7 | 1.3 | 185.5 | 2.74 |
FG3 | 10.3 | 13.2 | 1.2 | 221.4 | 2.92 |
FG1 | 9.8 | 12.8 | 1.2 | 191.7 | 2.50 |
SEM | 1.1 | 1.3 | 0.1 | 18.3 | 0.15 |
p-value | 0.539 | 0.183 | 0.382 | 0.537 | 0.872 |
Experiment 2 (Pinot Noir) | ||
---|---|---|
Treatment | Pruning Weight (kg) | Ravaz Index |
CP | 0.23a | 5.21a |
GDP | 0.20a | 3.72b |
GFP | 0.13b | 1.48c |
CFP | 0.07c | 3.74b |
SEM | 0.01 | 0.53 |
p-value | <0.001 | <0.001 |
Experiment 3 (Pinot noir) | ||
Treatment | Pruning weight (kg) | Ravaz Index |
CP | 0.31a | 10.51 |
FG5 | 0.23ab | 12.03 |
FG3 | 0.20ab | 16.35 |
FG1 | 0.13b | 20.10 |
SEM | 0.04 | 3.32 |
p-value | 0.041 | 0.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertamini, M.; Faralli, M. Late Pruning and Forced Vine Regrowth in Chardonnay and Pinot Noir: Benefits and Drawbacks in the Trento DOC Basin (Italy). Agronomy 2023, 13, 1202. https://doi.org/10.3390/agronomy13051202
Bertamini M, Faralli M. Late Pruning and Forced Vine Regrowth in Chardonnay and Pinot Noir: Benefits and Drawbacks in the Trento DOC Basin (Italy). Agronomy. 2023; 13(5):1202. https://doi.org/10.3390/agronomy13051202
Chicago/Turabian StyleBertamini, Massimo, and Michele Faralli. 2023. "Late Pruning and Forced Vine Regrowth in Chardonnay and Pinot Noir: Benefits and Drawbacks in the Trento DOC Basin (Italy)" Agronomy 13, no. 5: 1202. https://doi.org/10.3390/agronomy13051202
APA StyleBertamini, M., & Faralli, M. (2023). Late Pruning and Forced Vine Regrowth in Chardonnay and Pinot Noir: Benefits and Drawbacks in the Trento DOC Basin (Italy). Agronomy, 13(5), 1202. https://doi.org/10.3390/agronomy13051202