Population Dynamics and Effect of Seed Treatment on Plutella xylostella Control in Romania
Abstract
:Simple Summary
Abstract
1. Introduction
- (i)
- To evaluate if there are registered higher attacks of DBM on OSR crops in Southeast Romania, in the autumn, in the conditions of higher temperatures, compared with the long-term average;
- (ii)
- To evaluate the effectiveness of the seed treatment with the cyantraniliprole active ingredient in protecting the OSR crop, when plants were in early vegetation stages, against the attack of the DBM larvae in conditions of the warm autumns from Southeast Romania;
- (iii)
- To evaluate if the higher temperatures from the southeast of Romania influenced the flight dynamics of the diamondback moths from the OSR field.
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Field Assessments
2.3.1. DBM Larvae Attack at OSR Plants
2.3.2. DBM Larvae Count at OSR Plants
2.3.3. OSR Plants Density
2.4. DiamondbackMoths’ Flight Pattern
2.5. Statistical Analyses
3. Results
3.1. DBM Larvae Attack at OSR Plants
3.2. DBM Larvae Count
3.3. OSR Plants Density
3.4. The Monitoring of the DBM Flight
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Faostat Database, Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 January 2023).
- Taylor, G. Biofuels and the biorefinery concept. Energy Policy 2008, 36, 4406–4409. [Google Scholar] [CrossRef]
- Zhang, M.; Malhi, S.S. Perspectives of oilseed rape as a bioenergy crop. Biofuels 2010, 1, 621–630. [Google Scholar] [CrossRef]
- Carré, P.; Pouzet, A. Rapeseed market, worldwide and in Europe. OCL 2014, 21, D102. [Google Scholar] [CrossRef]
- Banerjee, S.; Kaushik, S.; Tomar, R.S. Global scenario of biofuel production: Past, present and future. In Prospects of Renewable Bioprocessing in Future Energy Systems; Biofuel and Biorefinery Technologies Series; Soccol, C.R., Ed.; Springer: Cham, Switzerland, 2019; pp. 499–518. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Wang, J.; Le, S.; Wang, M.; Zhao, Y. Variations in cadmium accumulation and distribution among different oilseed rape cultivars in Chengdu Plain in China. Environ. Sci. Pollut. Res. 2019, 26, 3415–3427. [Google Scholar] [CrossRef] [PubMed]
- Xuerui, C.; Xiaozi, W.; Wenbin, T.; Hanumanth, K.G.; Min, L.; Yasir, H.; Ying, F.; He, Z.; Yang, X. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 2019, 252, 733–741. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Tong, W.; Gurajala, H.K.; He, Z.; Yang, X. Accumulation and distribution of cadmium and lead in 28 oilseed rape cultivars grown in a contaminated field. Environ. Sci. Pollut. Res. 2020, 27, 2400–2411. [Google Scholar] [CrossRef] [PubMed]
- Eurostat Database. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00100/default/bar?lang=en (accessed on 30 January 2023).
- Ministry of Agriculture and Rural Development. Data Concerning the Evolution of Areas and Yields from Romania. Available online: https://www.madr.ro/culturi-de-camp/plante-tehnice/rapita-pentru-ulei.html (accessed on 31 January 2023).
- Andrei, T. Agriculture and forestry. In Romanian Statistical Yearbook; National Institute of Statistics: Bucharest, Romania, 2022; pp. 455–484. Available online: https://insse.ro/cms/sites/default/files/field/publicatii/anuarul_statistic_al_romaniei_carte-ed.2022.pdf (accessed on 30 January 2023).
- Popescu, A. Oilseeds crops: Sunflower, rape and soybean cultivated surface and production in Romania in the period 2010–2019 and forecast for 2020–2024 horizon. Sci. Pap. Manag. Econ. Eng. Agric. Rural. Dev. 2020, 20, 467–478. [Google Scholar]
- Ministry of Agriculture and Rural Development. Organic Agriculture in Romania. Information request note, nr. 242787/2020. Available online: https://www.madr.ro/en/ (accessed on 28 January 2023).
- Pullens, J.W.M.; Sharif, B.; Trnka, M.; Balek, J.; Semenov, M.A.; Olesen, J.E. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 2019, 272, 30–39. [Google Scholar] [CrossRef]
- Zheng, X.; Koopmann, B.; Ulber, B.; von Tiedemann, A. A global survey on diseases and pests in oilseed rape—Current challenges and innovative strategies of control. Front. Agron. 2020, 2, 590908. [Google Scholar] [CrossRef]
- Hălmăjan, H.V.; Ghiță, G.; Andrei, L.G.; Spinciu, A.I.; Georgescu, M.; Scăețeanu, G. Oilseed rape production under the autumn water stress conditions in Romania. Sci. Pap.-Ser. A Agron. 2012, 55, 158–161. [Google Scholar]
- Constantin, D.M.; Grigore, E.; Bogan, E.; Antonescu, M.A. Aspects regarding requirements of the rapeseed culture towards the climatic conditions. Case study: The Ialomița county, Romania. Sci. Pap. Ser.-Manag. Econ. Eng. Agric. Rural. Dev. 2018, 18, 131–134. [Google Scholar]
- Popescu, A.; Dinu, T.A.; Stoian, E.; Serban, V. Variation of the main agricultural crops yield due to drought in Romania and Dobrogea region in the period 2000–2019. Sci. Pap. Ser.-Manag. Econ. Eng. Agric. Rural. Dev. 2020, 20, 397–416. [Google Scholar]
- Buzdugan, L.; Nastase, D. Oilseed Rape [Rapița de toamnă]; Romanian Academy Publishing House: Bucharest, Romania, 2013; pp. 347–458. (In Romanian) [Google Scholar]
- Šařec, O.; Šařec, P. Results of fifteen-year monitoring of winter oilseed rape (Brassica napus L.) production in selected farm businesses of the Czech Republic from the viewpoint of technological and economic parameters. Agron. Res. 2017, 15, 2100–2112. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Bojariu, R.; Birsan, M.V.; Marin, L.; Manea, A. Recent climatic changes in Romania from observational data (1961–2013). Theor. Appl. Climatol. 2015, 122, 111–119. [Google Scholar] [CrossRef]
- Marinică, A.F.; Marinică, I.; Chimișliu, C. The warm winter of 2020–2021 in south-west Romania in the context of climate change. Olten. Museum. Stud. Communications. Nat. Sci. 2021, Tom 37, 165–178. [Google Scholar]
- Marinică, A.F.; Marinică, I.; Chimișliu, C.; Diaconu, L. The Mediterranean winter 2021–2022 in southwestern Romania in the context of climate changes. Olten. Museum. Stud. Communications. Nat. Sci. 2022, Tom 38, 143–154. [Google Scholar]
- Grădilă, M.; Jalobă, D.; Şerban, M.; Petcu, V. Management measures for Veronica persica (Plantaginaceae), an invasive alien species and a weed in rapeseed crops in Southeast Romania. Phytol. Balc. 2021, 27, 305–312. [Google Scholar]
- Brachaczek, A.; Kaczmarek, J.; Jedryczka, M. Warm and wet autumns favour yield losses of oilseed rape caused by phoma stem canker. Agronomy 2021, 11, 1171. [Google Scholar] [CrossRef]
- Schmidt, C.S.; Mrnka, L.; Lovecká, P.; Frantík, T.; Fenclová, M.; Demnerová, K.; Vosátka, M. Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease. Sci. Rep. 2021, 11, 3810. [Google Scholar] [CrossRef]
- Williams, I.H. The Major Insect Pests of Oilseed Rape in Europe and Their Management:An Overview. Biocontrol-Based Integrated Management of Oilseed Rape Pests; Springer: Dordrecht, The Netherlands, 2013; pp. 1–43. [Google Scholar] [CrossRef]
- Sekulic, G.; Rempel, C.B. Evaluating the role of seed treatments in canola/oilseed rape production: Integrated pest management, pollinator health, and biodiversity. Plants 2016, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.V. Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops; CABI: Wallingford, UK, 2017; pp. 1–129. [Google Scholar]
- Skellern, M.P.; Cook, S.M. The potential of crop management practices to reduce pollen beetle damage in oilseed rape. Arthropod-Plant Interact. 2018, 12, 867–879. [Google Scholar] [CrossRef]
- Pickering, F.; White, S.; Ellis, S.; Collins, L.; Corkley, I.; Leybourne, D.; Kendall, S.; Newbert, M.; Phillips, R. Integrated Pest Management of Cabbage Stem Flea Beetle in Oilseed Rape. Out. Pest Manag. 2020, 31, 284–290. [Google Scholar] [CrossRef]
- Tixeront, M.; Dupuy, F.; Cortesero, A.M.; Hervé, M.R. Understanding crop colonization of oilseed rape crops by the cabbage stem flea beetle (Psylliodeschrysocephala L. (Coleoptera: Chrysomelidae)). Pest Manag. Sci. 2023, 79. [Google Scholar] [CrossRef]
- Myron, P.Z.; Asad, S.; Rehan, S.; David, A.; Liu, S.S.; Michael, J.F. Estimating the Economic Cost of One of the World’s Major Insect Pests, Plutella xylostella (Lepidoptera: Plutellidae): Just How Long Is a Piece of String? J. Econ. Entomol. 2012, 105, 1115–1129. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Liu, S.S.; You, M.; Furlong, M.J. Biology, ecology, and management of the diamondback moth in China. Annu. Rev. Entomol. 2016, 61, 277–296. [Google Scholar] [CrossRef]
- Fathipour, Y.; MirhosseinI, M.A. Diamondback moth (Plutella xylostella) management. In Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops; CABI: Wallingford, UK, 2017; pp. 13–43. [Google Scholar] [CrossRef]
- Mason, P. Plutella xylostella (diamondback moth). In CABI Compendium; CABI International: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- Chapman, J.W.; Reynolds, D.R.; Smith, A.D.; Riley, J.R.; Pedgley, D.E.; Woiwod, I.P. High-altitude migration of the diamondback moth Plutella xylostella to the UK: A study using radar, aerial netting, and ground trapping. Ecol. Entomol. 2002, 27, 641–650. [Google Scholar] [CrossRef]
- Coulson, S.J.; Hodkinson, I.D.; Webb, N.R.; Mikkola, K.; Harrison, J.A.; Pedgley, D.E. Aerial colonization of high Arctic islands by invertebrates: The diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) as a potential indicator species. Divers. Distrib. 2002, 8, 327–334. [Google Scholar] [CrossRef]
- Chen, M.Z.; Cao, L.J.; Li, B.Y.; Chen, J.C.; Gong, Y.J.; Yang, Q.; Schmidt, T.L.; Yue, L.; Zhu, J.Y.; Li, H.; et al. Migration trajectories of the diamondback moth Plutella xylostella in China inferred from population genomic variation. Pest Manag. Sci. 2021, 77, 1683–1693. [Google Scholar] [CrossRef]
- Leskinen, M.; Markkula, I.; Koistinen, J.; Pylkkö, P.; Ooperi, S.; Siljamo, P.; Ojanen, H.; Raiskio, S.; Tiilikkala, K. Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. J. Appl. Entomol. 2011, 135, 55–67. [Google Scholar] [CrossRef]
- Munir, S.; Dosdall, L.M.; O’Donovan, J.T. Evolutionary ecology of diamondback moth, Plutella xylostella (L.) and Diadegmainsulare (Cresson) in North America: A review. Annu. Res. Rev. Biol. 2014, 5, 189–206. [Google Scholar] [CrossRef]
- Mason, P.; Dancau, T.; Abram, P.; Noronha, C.; Dixon, P.; Parsons, C.; Haye, T. The parasitoid complex of diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), in Canada: Impact and status. Can. Entomol. 2022, 154, E12. [Google Scholar] [CrossRef]
- Wainwright, C.; Jenkins, S.; Wilson, D.; Elliott, M.; Jukes, A.; Collier, R. Phenology of the Diamondback Moth (Plutella xylostella) in the UK and Provision of Decision Support for Brassica Growers. Insects 2020, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Farias, E.S.; Santos, A.A.; Ribeiro, A.V.; Carmo, D.G.; Paes, J.S.; Picanço, M.C. Climate and host plants mediating seasonal dynamics and within-plant distribution of the diamondback moth (Plutella xylostella). Crop Prot. 2020, 134, 105172. [Google Scholar] [CrossRef]
- Cheng, E.Y. Problems of control of insecticide-resistant Plutella xylostella. Pestic. Sci. 1988, 23, 177–188. [Google Scholar] [CrossRef]
- Sarfraz, M.; Keddie, B.A. Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lep., Plutellidae). J. Appl. Ent. 2004, 129, 149–157. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Shen, J.; Mao, K.; You, H.; Li, J. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pestic. Biochem. Physiol. 2016, 132, 38–46. [Google Scholar] [CrossRef]
- Mubashir, S.; Seram, D. Insecticidal resistance in diamondback moth (Plutella xylostella): A review. Pharma Innov. J. 2022, 11, 958–962. [Google Scholar]
- Troczka, B.J.; Williamson, M.S.; Field, L.M.; Davies, T.E. Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotox 2012, 60, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Wang, C.H.; Wang, Y.Y.; Sun, S.Q.; Wang, H.H.; Xue, C.B. Resistance to diamide insecticides in Plutella xylostella (Lepidoptera: Plutellidae): Comparison between lab-selected strains and field-collected populations. J. Econ. Entomol. 2018, 111, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Dermauw, W.; Tirry, L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychusurticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef]
- Groeters, F.R.; Tabashnik, B.E.; Finson, N.; Johnson, M.W. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution 1994, 48, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Zago, H.B.; Siqueira, H.A.; Pereira, E.J.; Picanço, M.C.; Barros, R. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Manag. Sci. 2014, 70, 488–495. [Google Scholar] [CrossRef]
- Junhan, L.; Xiao-Qiang, Y.; Qian, W.; Xinping, T.; Jinyang, L.; Shanshan, Z.; Xiaofeng, X.; Minsheng, Y. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 2020, 107, 103661. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Gatsi, R.; Ibiza-Palacios, M.S.; Escriche, B.; Wright, D.J.; Crickmore, N. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Appl. Environ. Microbiol. 2005, 71, 6863–6869. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Xue, Y.; Xiao, G.; Xie, M.; Huang, S.; You, S.; Wyckhuys, K.A.G.; Yo, M. Inheritance and fitness costs of resistance to Bacillus thuringiensis toxin Cry2Ad in laboratory strains of the diamondback moth, Plutella xylostella (L.). Sci. Rep. 2019, 9, 6113. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, Z.; Shen, L.; Xie, C.; Ye, M.; Li, Z.; Zhang, Z.; Li, J.; Dong, Y.; You, M.; et al. A Novel Reference for Bt-Resistance Mechanism in Plutella xylostella Based on Analysis of the Midgut Transcriptomes. Insects 2021, 12, 1091. [Google Scholar] [CrossRef]
- Nguyen, C.; Bahar, M.H.; Baker, G.; Andrew, N.R. Thermal Tolerance Limits of Diamondback Moth in Ramping and Plunging Assays. PLoS ONE 2014, 9, e87535. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Furlong, M.J.; Zalucki, M.P. Climate change and biological control: The consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 2017, 20, 39–44. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Walter, G.H.; Furlong, M.J. Predicting the impacts of climate change on the biological control of Plutella xylostella by Diadegmasemiclausum. Agric. For. Entomol. 2022, 25, 251–260. [Google Scholar] [CrossRef]
- Ma, C.S.; Zhang, W.; Peng, Y.; Zhao, F.; Chang, X.Q.; Xing, K.; Zhu, L.; Ma, G.; Yang, H.P.; Rudolf, V.H.W. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 2021, 12, 5351. [Google Scholar] [CrossRef]
- Trotuș, E.; Popov, C.; Râșnoveanu, L.; Stoica, V.; Mureșan, F.; Naie, M. Management of the rape crop protection against harmful insects. An. Inst. Național De Cercet.-Dezvoltare Agric. Fundulea 2009, 77, 211–222. [Google Scholar]
- Bucur, A.; Roşca, I. Research regarding biology of rape pests. Sc. Papers. UASVM Bucur. Ser. A 2011, 54, 356–359. [Google Scholar]
- Rîșnoveanu, L. Influence of sowing time on evolution of pests population in rape crops under the North-east Baragan. An. Inst. Național De Cercet.-Dezvoltare Agric. Fundulea 2011, 79, 153–160. [Google Scholar]
- Buburuz, A.A.; Trotuș, E.; Tălmaciu, M. Results on specific harmful entomofauna from rapeseed crops in the Central Moldavian Plateau conditions. Sci. Pap. Ser. Agr. 2012, 55, 305–308. [Google Scholar]
- Trotuş, E.; Mincea, C.; Dudoiu, R.; Pintilie, P.L.; Georgescu, E.I. The preliminary results regarding the impact of the neonicotinoids insecticides, applied at rape, sunflower and maize seed treatment, on the harmful entomofauna and honey bees. An. Inst. Național De Cercet.-Dezvoltare Agric. Fundulea 2019, 87, 251–260. [Google Scholar]
- Traşcă, F.; Traşcă, G.; Georgescu, E.I. Management of the rape crop protection against soil pests by seed chemical treatment. An. Inst. Național De Cercet.-Dezvoltare Agric. Fundulea 2019, 87, 271–280. [Google Scholar]
- Popov, C.; Trotuș, E.; Vasilescu, S.; Bărbulescu, A.; Râșnoveanu, L. Drought effect on pest attack in field crops. Rom. Agric. Res. 2006, 23, 43–52. [Google Scholar]
- Ursache, P.L.; Trotuș, E.; Buburuz, A.A. Observations concerning the harmful entomofauna from winter rapeseed crops in the conditions of central of Moldova, between years 2014–2017. J. Eng. Stud. Res. 2017, 23, 33–41. [Google Scholar] [CrossRef]
- Trotuș, E.; Trif, V.; Mateiaș, M.C. Research regarding the rape crop protection against the specific pest attack. Rom. Agric. Res. 2001, 16, 51–56. Available online: https://www.incda-fundulea.ro/rar/nr16/16.9.pdf (accessed on 23 February 2023).
- Georgescu, E.; Cană, L.; Gărgăriță, R.; Râșnoveanu, L. Current problems concerning flea beetle (Phyllotreta spp.) control from oilseed rape crop, in Romanian plane. An. Inst. Național De Cercet.-Dezvoltare Agric. Fundulea 2015, 83, 157–178. [Google Scholar]
- Commission implementing regulation (EU) 2018/783 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance imidacloprid. Off. J. Eur. Union 2018, 61, 31–34.
- Commission implementing regulation (EU) 2018/784 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance clothianidin. Off. J. Eur. Union 2018, 61, 35–39.
- Commission implementing regulation (EU) 2018/785 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance thiamethoxam. Off. J. Eur. Union 2018, 61, 40–44.
- Ministry of Agriculture and Rural Development. National Commission of Authorization of Plant Protection Products [Comisia Naţională de Omologare a Produselor de Protecţie a Plantelor]. Available online: https://www.madr.ro/docs/fitosanitar/produse-omologate/lista-ppp-omologate-sedinta-29.11.2017-final.pdf (accessed on 25 February 2023).
- Kathage, J.; Castañera, P.; Alonso-Prados, J.L.; Gómez-Barbero, M.; Rodríguez-Cerezo, E. The impact of restrictions on neonicotinoid and fipronil insecticides on pest management in maize, oilseed rape and sunflower in eight European Union regions. Pest Manag. Sci. 2018, 74, 88–99. [Google Scholar] [CrossRef]
- Ortega-Ramos, P.A.; Cook, S.M.; Mauchline, A.L. How contradictory EU policies led to the development of a pest: The story of oilseed rape and the cabbage stem flea beetle. GCB Bioenergy 2022, 14, 258–266. [Google Scholar] [CrossRef]
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and Climate Challenges to Agriculture in Poland in the Context of Objectives Adopted in the European Green Deal Strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Borcan, I. New data on the biology and control of the cabbage moth (Plutella maculipennis Curt.) [Romania]. Prod. VegatalaHortic. 1980, 29, 11–13. [Google Scholar]
- Mustaţă, G.; Mustaţă, M. Plutella xylostella L. (Lepidoptera: Plutellidae) and its natural biological control in the region of Moldavia, Romania. An. Ştiinţifice Ale Univ. Al. I. Cuza Iaşi s. Biol. Anim. 2007, 53, 149–158. [Google Scholar]
- Mustaţă, G.; Mustaţă, M.; Elena, F.; Gabriela, P. Parasitoids and hyperparasitoids in Plutella xylostella L. (Lepidoptera-Plutellidae) populations from Moldavia (Romania). An. Şt. Ale Univ. Al. I. Cuza Din Iaşi s. Biol. Anim. 2006, 52, 109–118. [Google Scholar]
- Raicu, A.D.; Mitrea, I. The influence of chemical treatments on the abundance and dominance of harmful entomofauna in rapeseed crops in the conditions of the SE Boian. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2019, 49, 264–269. [Google Scholar]
- Georgescu, E.; Cană, L.; Rîșnoveanu, L.; Mincea, C. Green peach aphid (Myzuspersicae) can be a serious pest problem for oilseed rape crop, in the south-east of Romania. Sci. Pap. Ser. Agron. 2020, 63, 45–56. [Google Scholar]
- Lu, X.; Siemann, E.; Shao, X.; Wei, H.; Ding, J. Climate warming affects biological invasions by shifting interactions of plants and herbivores. Global Ch. Biol. 2013, 19, 2339–2347. [Google Scholar] [CrossRef]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef]
- National Agricultural Research and Development Institute. General Information. Available online: https://www.incda-fundulea.ro/informatii_en.htm (accessed on 28 February 2023).
- Busuioc, A.; Giorgi, F.; Bi, X.; Ionita, M. Comparison of regional climate model and statistical downscaling simulations of different winter precipitation change scenarios over Romania. Theor. Appl. Climatol. 2006, 86, 101–123. [Google Scholar] [CrossRef]
- PP 1/181(5); EPPO Standards, Conduct and Reporting of Efficacy Evaluation Trials Including Good Experimental Practice. EPPO Bulletin: Oxford, UK, 2021; pp. 1–13. Available online: https://pp1.eppo.int/standards/PP1-181-5 (accessed on 2 March 2023).
- Stoleru, V.V.; Munteanu, N.C.; Stoleru, C.M.V.; Rotar, U.L.G. Cultivar Selection and Pest Control Techniques on Organic White Cabbage Yield. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 190–196. [Google Scholar] [CrossRef]
- Zală, C.R.; Cotuna, O.; Paraschivu, M.; Istrate, R.; Manole, M.S. Research on the effectiveness of some fungicides and insecticides in combating of some diseases and pests of rape in Cristian commune—Brașov county. Rom. Agric. Res. First Online 2023, 40. [Google Scholar]
- Csalomon. Diamondback Moth—Plutella maculipennis Curtis (=P. xylostella). Available online: http://www.csalomontraps.com/4listbylatinname/pdffajonkentik/plutellamaculipennisang08.pdf (accessed on 4 March 2023).
- Gylling Data Management Inc. ARM 2022® GDM Software, Revision 9.2022.5 October 25, 2022(B = 28627); Gylling Data Management Inc.: Brookings, SD, USA, 2022.
- Khaliq, A.; Attique, M.; Sayyed, A. Evidence for resistance to pyrethroids and organophosphates in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Bull. Entomol. Res. 2007, 97, 191–200. [Google Scholar] [CrossRef]
- Wang, X.; Khakame, S.K.; Ye, C.; Yang, Y.; Wu, Y. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag. Sci. 2013, 69, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Agrii. !!Severe warming Plutella xylostella attack! [!!Avertizareseverăatac de Plutella xylostella!]. Available online: https://agrii.ro/avertizare-severa-atac-de-plutella-xylostella/ (accessed on 8 March 2023). (In Romanian).
- Xiaoxia, L.; Mao, C.; Hilda, L.C.; David, O.; Rick, R.; Qingwen, Z.; Anthony, M.S. Effect of Insecticides and Plutella xylostella (Lepidoptera: Plutellidae) Genotype on a Predator and Parasitoid and Implications for the Evolution of Insecticide Resistance. J. Econ. Entomol. 2012, 105, 354–362. [Google Scholar] [CrossRef]
- Ortega-Ramos, P.A.; Coston, D.J.; Seimandi-Corda, G.; Mauchline, A.L.; Cook, S.M. Integrated pest management strategies for cabbage stem flea beetle (Psylliodeschrysocephala) in oilseed rape. GCB Bioenergy 2022, 14, 267–286. [Google Scholar] [CrossRef]
- Coston, D.J. Quantifying the Impacts of the Neonicotinoid Restriction on Oilseed Rape Pest Control and Productivity. Ph.D. Thesis, University of Reading, Reading, UK, 2021. [Google Scholar] [CrossRef]
- Conrad, N.; Brandes, M.; Will, T.; Verreet, J.A.; Ulber, B.; Heimbach, U. Effects of insecticidal seed treatments and foliar sprays in winter oilseed rape in autumn on insect pests and TuYV infection. J. Plant Dis. Prot. 2021, 125, 557–565. [Google Scholar] [CrossRef]
- Georgescu, E.; Cană, L.; Toader, M.; Râșnoveanu, L. Global warming can increase flea beetles attack on oilseed rape, in late autumn, in south-east Romania. Sci. Pap. Ser. A. Agron. 2022, 65, 63–69. [Google Scholar]
- Liu, X.; Wang, H.; Xia, X.; Qiao, K.; Wang, K. Effects of cyantraniliprole on biological characteristics and the related enzyme activities in Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomol. Sin. 2014, 57, 815–823. [Google Scholar]
- Shanmugapriya, V.; Edward, J.T.; Kannan, M.; Mohan-Kumar, S.; Ramanathan, A. Baseline toxicity of diamide group of insecticides against diamondback moth, Plutella xylostella L. Int. J. Chem. Stud. 2019, 7, 3524–3527. [Google Scholar]
- Kuwazaki, S.; Jouraku, A.; Kitabayashi, S. Multiplex PCR-based molecular diagnostic method to detect cyantraniliprole-resistant I4790K mutation in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Appl. Entomol. Zool. 2023, 58, 121–126. [Google Scholar] [CrossRef]
- Elakkiya, K.; Murugan, M.; Krishnamoorthy, S.V.; Senthil, N.; Vijayalakshmi, D. Field Resistance to Cyantraniliprole in Plutella xylostella. Indian J. Entomol. 2023. [Google Scholar] [CrossRef]
- Teodorescu, G.; Roman, T.; Sumedrea, M. Horticultural Entomology: Specific Pests and Control Methods [EntomologieHorticolă: Dăunătorispecificișimetode de combatere]; Ceres Publishing house: Bucharest, Romania, 2003; pp. 23–52. (In Romanian) [Google Scholar]
- Pașol, P.; Dobrin, I.; Fraisn, L. Treaty of Special Entomology: Horticultural Crop Pests [Tratat de EntomologieSpecială: Dăunătoriiculturilorhorticole]; Ceres Publishing house: Bucharest, Romania, 2007; pp. 35–64. (In Romanian) [Google Scholar]
- Roșca, I.; Oltean, I.; Mitrea, I.; Tălmaciu, M.; Petanec, D.I.; Bunescu, H.Ș.; Istrate, R.; Tălmaciu, N.; Stan, C.; Micu, M.L. General and Special Entomology Treaty [Tratat de entomologiegeneralășispecială]; Alpha MDN Publishing house: Buzău, Romania, 2011; pp. 485–499. (In Romanian) [Google Scholar]
- Baker, P.B.; Shelton, A.M.; Andaloro, J.T. Monitoring of Diamondback Moth (Lepidoptera: Yponomeutidae) in Cabbage With Pheromones. J. Econ. Entomol. 1982, 75, 1025–1028. [Google Scholar] [CrossRef]
- Borcan, I. Control at forecast of diamondback moth (Plutella maculipennis Curt.) [Combaterea la avertizare a molieiverzei (Plutella maculipennis Curt.)]. Vegetal Hort. Prod. [Prod. Veg. Hortic.] 1982, 31, 16–18. (In Romanian) [Google Scholar]
- Dancau, T.; Mason, P.G.; Cappuccino, N. Elusively overwintering: A review of diamondback moth (Lepidoptera: Plutellidae) cold tolerance and overwintering strategy. Can. Entomol. 2018, 150, 156–173. [Google Scholar] [CrossRef]
- Reddy, G.V.P.; Guerrero, A. Pheromone-based integrated pest management to control the diamondback moth Plutella xylostella in cabbage fields. Pest Manag. Sci. Former. Pest. Sci. 2000, 56, 882–888. [Google Scholar] [CrossRef]
- Machekano, H.; Mvumi, B.M.; Nyamukondiwa, C. Diamondback Moth, Plutella xylostella (L.) in Southern Africa: Research Trends, Challenges and Insights on Sustainable Management Options. Sustainability 2017, 9, 91. [Google Scholar] [CrossRef]
- Meshram, A.T.; Vanalkar, A.V.; Kalambe, K.B.; Badar, A.M. Pesticide spraying robot for precision agriculture: A categorical literature review and future trends. J. Field Robot 2022, 39, 153–171. [Google Scholar] [CrossRef]
- Čirjak, D.; Miklečić, I.; Lemić, D.; Kos, T.; Pajač Živković, I. Automatic Pest Monitoring Systems in Apple Production under Changing Climatic Conditions. Horticulturae 2022, 8, 520. [Google Scholar] [CrossRef]
Month | Year | Long-Term Average (°C) | |||
---|---|---|---|---|---|
2019 | 2020 | 2021 | 2022 | ||
January | −1.2 | 0.9 | 1.6 | 2.1 | −2.4 |
February | 4.1 | 5.2 | 3.2 | 4.7 | −0.4 |
March | 9.3 | 8.3 | 5.1 | 4.4 | 4.9 |
April | 11.2 | 12.3 | 9.7 | 11.2 | 11.3 |
May | 17.2 | 17.0 | 17.2 | 17.9 | 17.0 |
June | 23.6 | 21.7 | 21.1 | 22.5 | 20.8 |
July | 23.0 | 25.1 | 25.3 | 25.0 | 22.7 |
August | 24.7 | 25.5 | 24.2 | 25.6 | 22.3 |
September | 19.3 | 20.8 | 17.3 | 18.6 | 17.5 |
October | 12.8 | 14.7 | 10.2 | 13.5 | 11.3 |
November | 10.3 | 6.1 | 7.7 | 9.0 | 5.4 |
December | 3.8 | 3.9 | 2.6 | 3.5 | 0.0 |
Month | Year | Long-Term Average (mm) | |||
---|---|---|---|---|---|
2019 | 2020 | 2021 | 2022 | ||
January | 53.8 | 2.0 | 77.0 | 4.8 | 35.1 |
February | 21.4 | 16.6 | 16.2 | 5.4 | 32.0 |
March | 22.4 | 29.8 | 59.0 | 12.3 | 37.4 |
April | 51.4 | 14.0 | 31.0 | 47.6 | 45.1 |
May | 124.2 | 58.0 | 57.6 | 30.0 | 62.5 |
June | 74.6 | 68.4 | 135.0 | 59.4 | 74.9 |
July | 87.4 | 34.2 | 21.2 | 29.2 | 71.1 |
August | 12.6 | 5.4 | 24.4 | 14.4 | 49.7 |
September | 6.2 | 68.6 | 4.0 | 35.4 | 48.5 |
October | 38.2 | 28.6 | 56.4 | 5.2 | 42.3 |
November | 33.2 | 20.0 | 33.8 | 19.6 | 42.0 |
December | 16.2 | 77.6 | 37.6 | 21.8 | 43.7 |
Year | Sowing Data | Beginning of Plants’ Emergence | Full Plants Emergence |
---|---|---|---|
2019 | 6 September | 24 September | 12 October |
2020 | 10 September | 14 September | 16 September |
2021 | 22 September | 22 October | 27 October |
Variant | Insecticide | Active Ingredient | Dose | Treatment Type |
---|---|---|---|---|
Control | Untreated | - | - | - |
Seed treatment (ST) | Lumiposa 625 FS | cyantraniliprole 625 g/L | 1.14 L.p.r/100 kg.s. * | Seed Treatment ** |
Year | Assessment 1 BBCH 11–12 | Assessment 2 BBCH 13–14 | Assessment 3 BBCH 15–16 | Assessment 4 BBCH 16–18 |
---|---|---|---|---|
2019 | 23 October | 28 October | 6 November | 20 November |
2020 | 24 September | 2 October | 12 October | 11 November |
2021 | 29 October | 5 November | 12 November | 3 December |
Assessment 1 End of Autumn | Assessment 2 Early Spring |
---|---|
28 November 2019 | 20 March 2020 |
27 November 2020 | 15 March 2021 |
3 December 2021 | 14 March 2022 |
Year | Start of Monitoring | End of Monitoring |
---|---|---|
2019 | 14 March | 20 December |
2020 | 13 March | 21 December |
2021 | 15 March | 21 December |
2022 | 15 March | 22 December |
Year | Variant | Assessment 1 | Assessment 2 | Assessment 3 | Assessment 4 |
---|---|---|---|---|---|
2019 | Control | 0 ± 0 a | 0 ± 0 a | 0.67 ± 0.39 a | 3.04 ± 1.00 a |
ST | 0 ± 0 a | 0 ± 0 a | 0.26 ± 0.13 b | 2.72 ± 0.56 a | |
Tukey’s HSD | 0 | 0 | 0.328 | 0.860 | |
CV | 0 | 0 | 69.76 | 29.51 | |
2020 | Control | 0.24 ± 0.23 a | 0.29 ± 0.20 a | 4.39 ± 1.21 a | 16.26 ± 1.82 a |
ST | 0.03 ± 0.02 b | 0.05 ± 0.04 b | 2.03 ± 0.16 b | 11.24 ± 1.55 b | |
Tukey’s HSD | 0.187 | 0.141 | 0.876 | 1.981 | |
CV | 147.75 | 82.92 | 26.95 | 14.24 | |
2021 | Control | 0 ± 0 a | 0 ± 0a | 0.14 ± 0.06 a | 0.27 ± 0.13 a |
ST | 0 ± 0 a | 0 ± 0a | 0.10 ± 0.06 a | 0.14 ± 0.06 b | |
Tukey’s HSD | 0 | 0 | 0.068 | 0.115 | |
CV | 0 | 0 | 58.01 | 55.50 |
Year | Variant | Assessment 1 | Assessment 2 | Assessment 3 | Assessment 4 |
---|---|---|---|---|---|
2019 | Control | 0 ± 0 a | 0 ± 0 a | 0.23 ± 0.21 a | 0.61 ± 0.26 a |
ST | 0 ± 0 a | 0 ± 0 a | 0.11 ± 0.05 a | 0.53 ± 0.21 a | |
Tukey’s HSD | 0 | 0 | 0.173 | 0.178 | |
CV | 0 | 0 | 102.08 | 30.83 | |
2020 | Control | 0.07 ± 0.07 a | 0.02 ± 0.02 a | 0.52 ± 0.34 a | 1.81 ± 0.41 a |
ST | 0.03 ± 0.02 a | 0 ± 0 a | 0.35 ± 0.11 a | 1.64 ± 0.31 a | |
Tukey’s HSD | 0.069 | 0.030 | 0.257 | 0.416 | |
CV | 136.63 | 298.14 | 58.38 | 23.83 | |
2021 | Control | 0 ± 0 a | 0 ± 0 a | 0.05 ± 0.05 a | 0.07 ± 0.05 a |
ST | 0 ± 0 a | 0 ± 0 a | 0.03 ± 0.03 a | 0.05 ± 0.05 a | |
Tukey’s HSD | 0 | 0 | 0.056 | 0.056 | |
CV | 0 | 0 | 139.44 | 92.96 |
Season | Variant | Assessment 1 (End of Autumn) | Assessment 2 (Early Spring) |
---|---|---|---|
2019–2020 | Control | 30.14 ± 6.61 b | 5.38 ± 4.22 b |
ST | 54.13 ± 4.59 a | 49.23 ± 8.99 a | |
Tukey’s HSD | 5.177 | 8.631 | |
CV | 12.14 | 31.24 | |
2020–2021 | Control | 38.45 ± 6.18 b | 36.39 ± 4.01 b |
ST | 52.89 ± 2.96 a | 50.73 ± 2.29 a | |
Tukey’s HSD | 5.033 | 3.206 | |
CV | 4.974 | 7.27 | |
2021–2022 | Control | 37.37 ± 3.47 b | 17.49 ± 5.20 b |
ST | 40.59 ± 4.97 a | 24.08 ± 5.31 a | |
Tukey’s HSD | 2.869 | 4.644 | |
CV | 7.34 | 22.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, E.; Toader, M.; Brumă, I.S.; Cană, L.; Rîșnoveanu, L.; Fătu, C.; Zaharia, R. Population Dynamics and Effect of Seed Treatment on Plutella xylostella Control in Romania. Agronomy 2023, 13, 1236. https://doi.org/10.3390/agronomy13051236
Georgescu E, Toader M, Brumă IS, Cană L, Rîșnoveanu L, Fătu C, Zaharia R. Population Dynamics and Effect of Seed Treatment on Plutella xylostella Control in Romania. Agronomy. 2023; 13(5):1236. https://doi.org/10.3390/agronomy13051236
Chicago/Turabian StyleGeorgescu, Emil, Maria Toader, Ioan Sebastian Brumă, Lidia Cană, Luxița Rîșnoveanu, Cristina Fătu, and Roxana Zaharia. 2023. "Population Dynamics and Effect of Seed Treatment on Plutella xylostella Control in Romania" Agronomy 13, no. 5: 1236. https://doi.org/10.3390/agronomy13051236
APA StyleGeorgescu, E., Toader, M., Brumă, I. S., Cană, L., Rîșnoveanu, L., Fătu, C., & Zaharia, R. (2023). Population Dynamics and Effect of Seed Treatment on Plutella xylostella Control in Romania. Agronomy, 13(5), 1236. https://doi.org/10.3390/agronomy13051236