Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Crop Management
2.1.1. Photosynthetic Characteristics
2.1.2. Photosynthetic Pigment and Chlorophyll Fluorescence Parameters
2.1.3. Grain Yield and Yield Component
2.1.4. Statistical Analysis
3. Results
3.1. Photosynthetic Characteristics
3.2. Effects of Nitrogen Application on SPAD Leaf of Winter Wheat
3.3. Effects Structure Change Post-Anthesis Nitrogen Use Efficiency of Vegetative Organs in Winter Wheat
3.4. Effects of Nitrogen Application on Grain Protein
3.5. Dry Matter Accumulation and Distribution Characteristics
3.6. Effects of Nitrogen Application on Grain Yield and Yield Components
3.7. Effects of Nitrogen Application on Starch Contents
3.8. Effects of Nitrogen Application on Flour Quality Characters
3.9. Correlation Analysis between Nitrogen Accumulation and Quality
4. Discussion
4.1. Effects of Different Nitrogen Application on Photosynthesis Characteristics of Winter Wheat
4.2. Effects of Different Nitrogen Application on Yield Formation of Winter Wheat
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). FAOSTAT Statistical Database. Available online: http://www.fao.org/faostat (accessed on 5 July 2019).
- Lv, C.H.; Huang, Y.; Sun, W.; Yu, L.; Zhu, J. Response of rice yield and yield components to elevated CO2: A synthesis of updated data from FACE experiments. Eur. J. Agron. 2020, 112, 125961. [Google Scholar] [CrossRef]
- Lu, D.J.; Lu, F.F.; Yan, P.; Cui, Z.L.; Chen, X.P. Elucidating population establishment associated with N management and cultivars for wheat production in China. Field Crop. Res. 2014, 163, 81–89. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Dai, J.; Dong, H.; Kong, X. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crop. Res. 2019, 230, 121–131. [Google Scholar] [CrossRef]
- Kitonyo, O.M.; Sadras, V.O.; Zhou, Y.; Denton, M.D. Nitrogen supply and sink demand modulate the patterns of leaf senescence in maize. Field Crop. Res. 2018, 225, 92–103. [Google Scholar] [CrossRef]
- Gregersen, P.L.; Culetic, A.; Boschian, L.; Krupinska, K. Plant senescence and crop productivity. Plant Mol. Biol. 2013, 82, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Kuai, B.K.; Jia, J.Z.; Jing, H.-C. Regulation of leaf senescence and crop genetic improvement. J. Integr. Plant Biol. 2012, 54, 936–952. [Google Scholar] [CrossRef]
- Thomas, H.; Ougham, H. Senescence and crop performance. In Crop Physiology: Applications for Genetic Improvement and Agronomy; Sadras, V.O., Calderini, D.F., Eds.; Elsevier: London, UK, 2015; pp. 223–249. [Google Scholar]
- Maddonni, G.; Otegui, M.E.; Cirilo, A. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crop. Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Dong, H.Z.; Li, W.J.; Eneji, A.E.; Zhang, D.M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crop. Res. 2012, 126, 137–144. [Google Scholar] [CrossRef]
- Su, W.N.; Kamran, M.; Xie, J.; Meng, X.; Han, Q.; Liu, T.; Han, J. Shoot and root traits of summer maize hybrid varieties with higher grain yields and higher nitrogen use efficiency at low nitrogen application rates. PeerJ 2019, 7, e7294. [Google Scholar] [CrossRef]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Zhang, Y.; She, H.; Liu, X.; Ruan, R.; et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crop. Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Ma, F.Y.; Baik, K. Soft wheat quality characteristics required for making baking powder biscuits. Cereal Sci. 2018, 79, 127–133. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Tian, X.; Wang, X.; Li, M.; Wang, S.; Wang, Z. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crop. Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.A.; Li, F.R.; Zhou, L.M.; Zhang, R.H.; Jia, Y.; Lin, S.L.; Wang, L.J.; Siddique, K.H. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- Dordas, C.A. Variation in dry matter and nitrogen accumulation and remobilization in barley as affected by fertilization, cultivar, and source–sink relations. Eur. J. Agron. 2012, 37, 31–42. [Google Scholar] [CrossRef]
- Shangguan, Z.; Shao, M.; Dyckmans, J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Plant Physiol. 2000, 156, 46–51. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.P.; Zhao, Q.; Dai, J.; Tian, L.; Dong, H. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crop. Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Noor, H.; Wang, Q.; Islam, M.; Sun, M.; Lin, W.; Ren, A.; Feng, Y.; Yu, S.; Fida, N.; Dong, S.; et al. Effects of sowing methods and nitrogen rates on photosynthetic characteristics, yield and quality of winter wheat. Photosynthetica 2021, 59, 277–285. [Google Scholar] [CrossRef]
- Yang, F.; Feng, L.; Liu, Q.; Wu, X.; Fan, Y.; Raza, M.A.; Cheng, Y.; Chen, J.; Wang, X.; Yong, T.; et al. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ. Exp. Bot. 2018, 150, 79–87. [Google Scholar] [CrossRef]
- Acreche, M.M.; Slafer, G.A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crop. Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Zhao, J.; Ma, Y.; Li, Q. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns. Agric. Water Manag. 2019, 221, 371–376. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, B.; Hou, Y. Effects of Nitrogen on Winter Wheat Growth under Different Salt Stress. J. Irrig. Drain. 2019, 38 (Suppl. S1), 36–40. [Google Scholar]
- Messinger, S.M.; Buckley, T.N.; Mott, K.A. Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol. 2006, 140, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.-Q.; Wang, D.-M.; Ma, S.-K.; Yang, Y.-S.; Zhao, G.-C.; Chang, X.-H. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. J. Integr. Agric. 2018, 17, 566–578. [Google Scholar] [CrossRef]
- Zheng, B.; Zhao, H.; Zhou, Q.; Cai, J.; Wang, X.; Cao, W.; Dai, T.; Jiang, D. Relationships of protein composition, gluten structure and dough rheological properties with short biscuits quality of soft wheat varieties. Agron. J. 2020, 112, 1921–1930. [Google Scholar] [CrossRef]
- Noor, H.; Min, S.; Khan, S.; Lin, W.; Ren, A.; Yu, S.; Ullah, S.; Yang, Z.; Gao, Z. Different sowing methods increase the yield and quality of soil water consumption of dryland Winter wheat on the loess plateau china. Appl. Ecol. Environ. Res. 2020, 18, 8285–8308. [Google Scholar] [CrossRef]
- Takashima, T.; Hikosaka, K.; Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 2004, 27, 1047–1054. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Kitchen, N.R.; Raun, W.R.; Schepers, J. Responsive in season nitrogen management for cereals. Comput. Electron. Agric. 2008, 61, 51–62. [Google Scholar] [CrossRef]
- Norby, R.J.; Warren, J.M. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. USA 2010, 107, 19368–19373. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Algwaiz, H.I.; Sher, A.; Fiaz, S.; Attia, K.A.; Wani, S.H.; AlKahtani, M.D.; Husnain, L.A.; Lin, W.; et al. Chlorophyll fluorescence and grain filling characteristic of wheat (Triticum aestivum L.) in response to nitrogen application level. Mol. Biol. Rep. 2022, 49, 7157–7172. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, R.K.; Kaur, J.; Jat, M.L.; Martin, K.L.; Singh, Y.; Singh, V.; Chandna, P.; Choudhary, O.P.; Gupta, R.K.; et al. Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agron. Sustain. Dev. 2011, 31, 589–603. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Dang, T. Responses of soil water balance and precipitation storage efficiency to increased fertilizer application in winter wheat. Plant Soil 2011, 347, 41–51. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Wang, L.; Yang, Y.; Zhu, X.; Shao, S.; Cui, W.; Xiong, F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. J. Exp. Bot. 2017, 68, 2259–2274. [Google Scholar] [CrossRef]
- Wu, Y.-W.; Li, Q.; Jin, R.; Chen, W.; Liu, X.-L.; Kong, F.-L.; Ke, Y.-P.; Shi, H.-C.; Yuan, J.-C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low nitrogen tolerances. J. Integr. Agric. 2019, 18, 1246–1256. [Google Scholar] [CrossRef]
- Noor, H.; Min, S.; Bin, L.; Gao, Z.Q. Disadvantages of sowing methods on soil water content root distribution and yield of wheat (Triticum aestivum L.) in the Loess Plateau of South Shanxi, China. Water Supply 2022, 22, 8065–8079. [Google Scholar] [CrossRef]
- Zorb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yu, Q.; Li, A. Effects of nitrogen application rate on yield and grain quality of Winter wheat in weibei Dry land. J. Triticeae Crop. 2020, 40, 818–825. [Google Scholar]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, S.; Dou, F.; Samonte, S.O.P.; Chen, K.; Wang, Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in northeast China. Agronomy 2019, 9, 555. [Google Scholar] [CrossRef]
- Flowers, M.; Weisz, R.; Heiniger, R.; Osmond, D.; Crozier, C. Inseason optimization and site-specific nitrogen management for soft red winter wheat. Agron. J. 2004, 96, 124–134. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hu, Y.-G.; Ren, C.-Z.; Guo, L.-C.; Wang, C.-L.; Jiang, Y.; Wang, X.-J.; Phendukani, H.; Zeng, Z.-H. Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. J. Integr. Agric. 2013, 12, 2164–2171. [Google Scholar] [CrossRef]
- Hafeez, N.; Sun, M.; Gao, Z.-Q. Effect of Seeding rate on soil water consumption yield, and quality under wide-space sowing of dryland Winter wheat on the loess plateau, China. Appl. Ecol. Environ. Res. 2020, 18, 7167–7188. [Google Scholar]
- Ju, C.; Buresh, R.J.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.C.; Zhang, J.H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crop. Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Ferrante, A.; Savin, R.; Slafer, G.A. Differences in yield physiology between modern, well adapted durum wheat cultivars grown under contrasting conditions. Field Crop Res. 2012, 136, 52–64. [Google Scholar] [CrossRef]
- Sun, M.; Gao, Z.; Zhao, W.; Deng, L.; Deng, Y.; Zhao, H.; Ren, A.; Li, G.; Yang, Z. Effect of subsoiling in fallow period on soil water storage and grain protein accumulation of dryland wheat and its regulatory effect by nitrogen application. PLoS ONE 2013, 8, e75191. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.B.; Chai, Q.; Feng, F.-X.; Yu, A.Z. Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in arid Northwest China. J. Integr. Agric. 2012, 11, 1286–1296. [Google Scholar] [CrossRef]
- Chen, D.Q.; Wang, S.; Xiong, B.; Cao, B.; Deng, X.P. Carbon/nitrogen imbalance associated with drought-induced leaf senescence in sorghum bicolor. PLoS ONE 2015, 10, e0137026. [Google Scholar] [CrossRef]
- Hu, C.L.; Ding, M.; Qu, C.; Sadras, V.; Yang, X.; Zhang, S.L. Yield and water use efficiency of wheat in the Loess Plateau: Responses to root pruning and defoliation. Field Crop. Res. 2015, 179, 6–11. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Lin, W.; Gao, Z. Effect of Different Sowing Methods on Water Use Efficiency and Grain Yield of Wheat in the Loess Plateau, China. Water 2022, 14, 577. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Ke, Q.; Ji, C.Y.; Jeong, J.C.; Lee, H.-S.; Lim, Y.P.; Xu, B.; Deng, X.-P.; Kwak, S.S. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol. Biochem. 2014, 85, 31–40. [Google Scholar] [CrossRef]
- Pask, A.; Sylvester-Bradley, R.; Jamieson, P.; Foulkes, M. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crop. Res. 2012, 126, 104–118. [Google Scholar] [CrossRef]
- Thomason, W.E.; Phillips, S.B.; Davis, P.H.; Warren, J.G.; Alley, M.M.; Reiter, M.S. Variable nitrogen rate determination from plant spectral reflectance in soft red winter wheat. Precis. Agric. 2011, 12, 666–681. [Google Scholar] [CrossRef]
Year | Growth Stage | ||||
---|---|---|---|---|---|
N Application (kg ha–1) | Jointing Stage | Booting Stage | Flowering Stage | Filling Stage | |
2019–2020 | N0 | 18.0 c | 28.0 c | 31.0 b | 32.0 b |
N120 | 21.0 c | 32.0 b | 34.0 b | 32.0 b | |
N150 | 25.0 a | 34.0 a | 41.0 a | 35.0 a | |
N210 | 22.0 b | 34.0 a | 40.0 a | 31.0 b | |
Mean | 0.22 | 0.32 | 0.37 | 0.32 | |
2020–2021 | N0 | 22.0 d | 30.0 b | 37.0 b | 31.0 b |
N120 | 25.0 c | 32.0 b | 40.0 b | 33.0 b | |
N150 | 28.0 a | 36.0 a | 44.0 a | 37.0 a | |
N210 | 27.0 b | 35.0 a | 42.0 ab | 32.0 b | |
Mean | 0.26 | 0.33 | 0.41 | 0.33 | |
2021–2022 | N0 | 17.0 c | 27.0 c | 30.0 b | 31.0 b |
N120 | 20.0 c | 31.0 b | 33.0 b | 31.0 b | |
N150 | 24.0 a | 33.0 a | 40.0 a | 34.0 a | |
N210 | 21.0 b | 33.0 a | 39.0 a | 30.0 b | |
Mean | 0.22 | 0.32 | 0.37 | 0.32 | |
ANOVA | |||||
Y | ** | ** | ** | ** | |
N | ** | ** | ** | ** | |
Y × N | ns | ** | ns | * |
Years | Growth Stage | ||||
---|---|---|---|---|---|
N Application (kg ha–1) | Jointing Stage | Booting Stage | Flowering Stage | Filling Stage | |
2019–2020 | N0 | 0.19 c | 0.27 c | 0.32 b | 0.30 b |
N120 | 0.20 c | 0.31 b | 0.35 b | 0.31 b | |
N150 | 0.26 a | 0.35 a | 0.42 a | 0.36 a | |
N210 | 0.22 b | 0.34 a | 0.40 a | 0.31 b | |
Mean | 0.22 | 0.32 | 0.37 | 0.32 | |
2020–2021 | N0 | 0.22 d | 0.30 b | 0.37 b | 0.31 b |
N120 | 0.25 c | 0.32 b | 0.40 b | 0.33 b | |
N150 | 0.29 a | 0.37 a | 0.45 a | 0.38 a | |
N210 | 0.27 b | 0.35 a | 0.42 ab | 0.32 b | |
Mean | 0.26 | 0.33 | 0.41 | 0.33 | |
2021–2022 | N0 | 0.18 b | 0.28 b | 0.29 c | 0.25 c |
N120 | 0.19 b | 0.30 ab | 0.32 b | 0.26 c | |
N150 | 0.22 a | 0.31 a | 0.38 a | 0.33 a | |
N210 | 0.19 b | 0.28 b | 0.37 ab | 0.31 b | |
Mean | 0.19 | 0.29 | 0.34 | 0.29 | |
ANOVA | |||||
Y | ** | ** | ** | ** | |
N | ** | ** | ** | ** | |
Y×N | ns | ** | ns | * |
Year | N Application (kg ha–1) | Growth Stage | |||
---|---|---|---|---|---|
Jointing Stage | Booting Stage | Flowering Stage | Filling Stage | ||
2019–2020 | N0 | 1.64 ab | 2.00 c | 5.31 b | 4.63 b |
N120 | 1.96 a | 2.97 b | 5.56 b | 5.20 ab | |
N150 | 1.91 a | 3.15 a | 8.07 a | 5.04 ab | |
N210 | 1.55 b | 2.94 b | 5.96 b | 5.60 a | |
Mean | 1.76 | 2.77 | 6.22 | 5.12 | |
2020–2021 | N0 | 2.05 b | 2.30 b | 6.28 c | 5.85 a |
N120 | 2.07 b | 2.72 a | 7.52 ab | 5.91 a | |
N150 | 2.30 ab | 2.64 a | 8.37 a | 6.26 a | |
N210 | 1.52 c | 2.42 ab | 7.30 b | 6.00 a | |
Mean | 2.12 | 2.52 | 7.37 | 6.01 | |
2021–2022 | N0 | 1.78 c | 2.77 b | 5.85 a | 5.01 c |
N120 | 2.35 a | 3.11 a | 5.91 a | 6.00 a | |
N150 | 2.23 b | 3.13 a | 6.26 a | 5.49 b | |
N210 | 1.17 d | 2.27 c | 6.00 a | 4.80 d | |
Mean | 1.88 | 2.82 | 6.01 | 5.33 | |
ANOVA | |||||
Y | ** | ** | ** | ** | |
N | ** | ** | ** | ns | |
Y × N | ** | ** | ** | * |
Year | N Application (kg ha–1) | Growth Stage | |||
---|---|---|---|---|---|
Jointing Stage | Booting Stage | Flowering Stage | Filling Stage | ||
2019–2020 | N0 | 309.00 b | 310.00 c | 456.12 a | 234.00 b |
N120 | 327.33 a | 387.67 a | 520.14 a | 242.17 a | |
N150 | 312.67 b | 354.00 ab | 500.20 a | 221.74 c | |
N210 | 298.00 c | 332.00 bc | 494.16 a | 252.04 a | |
Mean | 311.75 | 350.56 | 492.66 | 229.99 | |
2020–2021 | N0 | 313.67 b | 300.00 b | 409.03 b | 212.00 ab |
N120 | 317.67 a | 403.00 a | 528.33 a | 237.53 a | |
N150 | 305.67 c | 380.00 a | 513.00 a | 231.32 ab | |
N210 | 307.00 c | 321.33 b | 442.00 b | 198.46 b | |
Mean | 311.00 | 351.08 | 473.09 | 219.83 | |
2021–2022 | N0 | 315.33 a | 383.67 b | 400.08 c | 207.96 ab |
N120 | 283.33 c | 476.00 a | 558.04 a | 238.46 a | |
N150 | 308.67 b | 404.00 b | 473.00 b | 209.64 ab | |
N210 | 306.67 b | 407.67 b | 590.00 a | 183.51 b | |
Mean | 303.50 | 417.84 | 505.28 | 209.89 | |
ANOVA | |||||
Y | ** | ** | * | * | |
N | ** | ** | ** | ** | |
Y × N | ** | ns | ** | ** |
Year | N Application (kg ha–1) | Growth Stage | ||||
---|---|---|---|---|---|---|
Jointing Stage | Booting Stage | Flowering Stage | Filling Stage | Dough Stage | ||
2019–2020 | N0 | 45.64 b | 51.40 b | 51.77 a | 45.67 a | 41.22 a |
N120 | 45.75 ab | 52.34 a | 53.01 a | 46.07 a | 41.84 a | |
N150 | 46.25 a | 52.73 a | 53.19 a | 47.27 a | 43.70 a | |
N210 | 46.29 a | 52.79 a | 53.34 a | 47.57 a | 43.24 a | |
Mean | 45.98 | 52.32 | 52.83 | 46.65 | 42.50 | |
2020–2021 | N0 | 46.38 a | 52.79 c | 53.1 a | 46.37 a | 42.6 a |
N120 | 46.19 a | 53.28 b | 54.72 a | 47.97 a | 44.80 a | |
N150 | 47.47 a | 54.12 a | 55.75 a | 49.47 a | 45.67 a | |
N210 | 47.14 a | 53.17 bc | 55.62 a | 47.77 a | 42.17 a | |
Mean | 46.79 | 53.34 | 54.80 | 47.90 | 43.81 | |
2021–2022 | N0 | 43.88 b | 49.53 c | 50.97 b | 43.65 a | 40.67 c |
N120 | 45.86 a | 49.84 c | 51.37 b | 45.64 a | 42.30 a | |
N150 | 45.3 a | 51.5 a | 52.77 a | 45.67 a | 41.34 b | |
N210 | 45.07 a | 50.54 b | 51.77 ab | 45.07 a | 41.17 b | |
Mean | 45.03 | 50.35 | 51.72 | 45.01 | 41.37 | |
ANOVA | ||||||
Y | * | ** | * | * | ns | |
N | ns | ** | * | ns | ns | |
Y × N | ns | * | ns | ns | ns |
Year | N Application (kg ha−1) | Albumin (%) | Gliadin (%) | Glutenin (%) | Glu/Gli | Protein (%) |
---|---|---|---|---|---|---|
2019–2020 | N0 | 1.21 b | 3.78 b | 3.63 b | 0.96 b | 11.69 b |
N120 | 1.49 a | 4.16 a | 4.18 a | 1.00 ab | 13.13 a | |
N150 | 1.55 a | 4.15 a | 4.25 a | 1.02 ab | 13.55 a | |
N210 | 1.51 a | 4.15 a | 4.22 a | 1.02 a | 13.62 a | |
Mean | 1.44 | 4.06 | 4.07 | 1.00 | 13.00 | |
2020–2021 | N0 | 1.22 b | 3.78 c | 3.68 c | 0.97 b | 11.63 c |
N120 | 1.51 a | 4.16 b | 4.05 b | 0.97 b | 13.05 b | |
N150 | 1.59 a | 4.19 b | 4.06 b | 0.97 b | 13.25 b | |
N210 | 1.52 a | 4.35 a | 4.39 a | 1.01 a | 14.15 a | |
Mean | 1.46 | 4.12 | 4.05 | 0.98 | 13.02 | |
2021–2022 | N0 | 1.37 b | 3.91 c | 3.86 c | 0.99 b | 11.71 c |
N120 | 1.64 a | 4.23 b | 4.21 b | 0.99 b | 13.26 b | |
N150 | 1.65 a | 4.26 b | 4.22 b | 0.99 b | 13.42 b | |
N210 | 1.68 a | 4.55 a | 4.59 a | 1.01 a | 13.99 a | |
Mean | 1.59 | 4.24 | 4.22 | 1.00 | 13.09 | |
ANOVA | ||||||
Y | ** | ** | ** | * | ** | |
N | ns | ns | ns | ns | ns | |
Y × N | ** | ** | ** | ** | ** |
Year | N Application (kg ha−1) | TDW (kg ha−1) | HI (%) | TDWas (kg ha−1) | TDWpost (kg ha−1) |
---|---|---|---|---|---|
2019–2020 | N0 | 10,619.0 d | 46.0 a | 6829.8 d | 3789.2 c |
N120 | 18,591.7 c | 42.6 b | 11,872.6 c | 6719.1 b | |
N150 | 19,628.8 b | 42.1 b | 12,400.9 b | 7227.9 a | |
N210 | 20,178.1 a | 41.9 b | 12,927.9 a | 7250.2 a | |
Mean | 17,254.4 | 43.2 | 11,007.8 | 6246.6 | |
2020–2021 | N0 | 7239.9 c | 51.0 a | 4625.0 c | 2614.9 c |
N120 | 13,419.1 b | 46.2 b | 8885.5 b | 4533.6 b | |
N150 | 14,155.7 a | 45.7 b | 9385.4 a | 4770.3 a | |
N210 | 13,134.0 b | 45.2 b | 8605.2 b | 4528.8 b | |
Mean | 11,987.2 | 47.0 | 7875.3 | 4111. 9 | |
2021–2022 | N0 | 8657.3 d | 50.0 a | 5498.4 d | 3158.9 c |
N120 | 14,100.0 c | 45.9 b | 8956.2 c | 5143.8 b | |
N150 | 15,143.2 b | 45.6 b | 9605.6 b | 5537.6 a | |
N210 | 15,697.7 a | 45.6 b | 10,098.9 a | 5598.8 a | |
Mean | 13,399.5 | 46.8 | 8539.8 | 4859.8 | |
ANOVA | |||||
Y | ** | ns | ** | ** | |
N | ** | ** | ** | ** | |
Y × N | * | ns | ns | * |
Year | N Application (kg ha−1) | Ear Number (104 ha−1) | Grain Number per Ear | 1000 Grain Weight (g) | Yield (kg ha−1) |
---|---|---|---|---|---|
2019–2020 | N0 | 434.0 d | 23.1 c | 43.1 a | 3671.8 c |
N120 | 577.5 c | 25.0 a | 41.6 b | 4000.8 b | |
N150 | 613.0 b | 27.8 a | 41.1 b | 6593.2 a | |
N210 | 680.1 a | 26.5 b | 40.8 c | 5778.5 a | |
Mean | 576.2 | 30.6 | 41.6 | 5511.1 | |
2020–2021 | N0 | 290.3 d | 29.9 c | 42.5 a | 3450.1 c |
N120 | 438.0 c | 30.2 a | 40.2 b | 4857.0 b | |
N150 | 462.3 b | 32.9 a | 40.1 b | 6340.7 a | |
N210 | 481.3 a | 31.3 b | 37.1 c | 5721.4 b | |
Mean | 417.9 | 33.3 | 40.0 | 6317.3 | |
2021–2022 | N0 | 358.3 d | 28.7 c | 42.1 a | 3868.9 c |
N120 | 500.5 c | 30.4 a | 39.9 b | 4450.8 b | |
N150 | 540.5 b | 32.1 a | 39.8 b | 6095.4 a | |
N210 | 600.3 a | 31.3 b | 38.1 c | 5225.6 a | |
Mean | 499.9 | 31.1 | 40.0 | 7185.2 | |
ANOVA | |||||
Y | ** | ** | ** | ** | |
N | ** | ** | ** | ** | |
Y × N | * | * | ns | * |
Year | N Application (kg ha−1) | Am (%) | Ap (%) | Starch (%) | Am/Ap | Sy (kg ha−1) |
---|---|---|---|---|---|---|
2019–2020 | N0 | 17.5 a | 57.7 a | 75.2 a | 0.30 a | 3875.8 c |
N120 | 14.1 b | 57.9 a | 72.0 b | 0.24 b | 5737.6 a | |
N150 | 13.4 bc | 51.8 b | 65.1 c | 0.26 b | 5496.4 a | |
N210 | 13.1 c | 51.4 b | 64.5 c | 0.25 b | 5044.2 b | |
Mean | 14.5 | 54.7 | 69.2 | 0.26 | 5038.5 | |
2020–2021 | N0 | 17.5 a | 58.0 a | 75.4 a | 0.30 a | 4278.2 b |
N120 | 14.2 b | 57.7 a | 71.8 b | 0.25 b | 6465.3 a | |
N150 | 13.4 bc | 52.4 b | 65.7 c | 0.26 b | 6303.7 a | |
N210 | 13.3 c | 52.3 b | 65.6 c | 0.25 b | 6416.6 a | |
Mean | 14.6 | 55.1 | 69.6 | 0.26 | 5866.0 | |
2021–2022 | N0 | 15.5 a | 54.3 a | 69.8 a | 0.29 a | 3122.2 c |
N120 | 13.6 b | 54.1 a | 67.7 b | 0.25 b | 4640.8 a | |
N150 | 13.5 b | 50.3 b | 63.7 c | 0.27 b | 4676.0 a | |
N210 | 12.1 c | 50.5 b | 62.6 c | 0.24 b | 4209.6 b | |
Mean | 14.0 | 52.3 | 65.9 | 0.26 | 4162.1 | |
ANOVA | ||||||
Y | ** | ** | ** | * | * | |
N | ** | ** | ** | ** | ** | |
Y × N | ns | ns | ns | ns | ns |
Year | N Application (kg ha−1) | Wg (%) | F (%) | W (%) | Dt (min) | St (min) |
---|---|---|---|---|---|---|
2019–2020 | N0 | 35.0 b | 400.4 b | 59.9 c | 3.35 b | 5.90 b |
N120 | 38.0 a | 461.8 a | 62.3 b | 4.65 a | 7.16 a | |
N150 | 38.7 a | 465.9 a | 64.5 a | 4.70 a | 7.25 a | |
N210 | 38.6 a | 472.2 a | 64.6 a | 4.80 a | 7.35 a | |
Mean | 37.6 a | 450.1 a | 62.8 a | 4.38 a | 6.92 a | |
2020–2021 | N0 | 35.2 c | 400.5 c | 60.6 c | 3.31 c | 6.10 c |
N120 | 38.0 b | 450.5 b | 62.7 b | 4.51 b | 6.85 b | |
N150 | 38.1 b | 457.0 b | 66.0 a | 4.55 b | 6.89 b | |
N210 | 40.3 a | 485.7 a | 66.0 a | 4.99 a | 7.55 a | |
Mean | 37.9 a | 448.4 a | 63.8 a | 4.34 a | 6.85 a | |
2021–2022 | N0 | 38.2 b | 435.6 b | 63.0 c | 3.45 b | 6.00 b |
N120 | 41.2 a | 475.1 a | 64.0 b | 4.80 a | 7.30 a | |
N150 | 41.4 a | 481.5 a | 65.8 a | 4.81 a | 7.35 a | |
N210 | 41.5 a | 482.5 a | 65.3 a | 4.95 a | 7.41 a | |
Mean | 40.5 a | 468.7 a | 64.5 a | 4.50 a | 7.02 a | |
ANOVA | ||||||
Y | ** | ** | ** | ** | * | |
N | ** | ** | ** | ** | * | |
Y × N | ns | ns | ns | ns | ns |
Index | TDW | TDWas | TDWpost |
---|---|---|---|
Albumin | 0.9855 ** | 0.9811 ** | 0.9856 ** |
Globulin | 0.9855 ** | 0.9822 ** | 0.9812 ** |
Gliadin | 0.9455 ** | 0.9952 ** | 0.8952 ** |
Glutenin | 0.9611 ** | 0.9762 ** | 0.9752 ** |
Protein | 0.9755 ** | 0.9755 ** | 0.9615 ** |
Am (%) | 0.8512 ** | 0.7865 ** | 0.8554 ** |
Ap (%) | 0.7599 ** | 0.8655 ** | 0.9812 ** |
Starch (%) | 0.8888 ** | 0.8558 ** | 0.9955 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, H.; Yan, Z.; Sun, P.; Zhang, L.; Ding, P.; Li, L.; Ren, A.; Sun, M.; Gao, Z. Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.). Agronomy 2023, 13, 1448. https://doi.org/10.3390/agronomy13061448
Noor H, Yan Z, Sun P, Zhang L, Ding P, Li L, Ren A, Sun M, Gao Z. Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.). Agronomy. 2023; 13(6):1448. https://doi.org/10.3390/agronomy13061448
Chicago/Turabian StyleNoor, Hafeez, Zhouzuo Yan, Peijie Sun, Limin Zhang, Pengcheng Ding, Linghong Li, Aixia Ren, Min Sun, and Zhiqiang Gao. 2023. "Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.)" Agronomy 13, no. 6: 1448. https://doi.org/10.3390/agronomy13061448
APA StyleNoor, H., Yan, Z., Sun, P., Zhang, L., Ding, P., Li, L., Ren, A., Sun, M., & Gao, Z. (2023). Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.). Agronomy, 13(6), 1448. https://doi.org/10.3390/agronomy13061448