Feasibility of Tea/Tree Intercropping Plantations on Soil Ecological Service Function in China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. What Are Those Intercropping Tea Plantations?
3.2. Where Are Those Tea Plantations?
4. Discussion
4.1. Supply Services—Maintaining Fundamental Water-Holding Capacity
4.2. Support Services—Effects on Mineral Elements in Soil
4.3. Regulating Services
4.3.1. Impacts on Microorganisms’ Activities and Energy Transformation
4.3.2. Regulating Environment Conditions
4.4. Intercropping Tea Plantations vs. Monoculture Tea Plantations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Glossary
Scientific Name | Common Name |
---|---|
Agastache rugosa | Wrinkled giant hyssop |
Ageratum conyzoides | Billygoat weed |
Alnus glutinosa | European alder |
Camellia sinensis L. | Tea tree |
Capsicum annuum L. | Red pepper |
Castanea mollissima | Chestnut |
Chamaecrista rotundifolia | Round-leaf cassia |
Cinnamomum camphora | Camphor tree |
Cinnamomum pathenoxylum | Yellow camphor tree |
Citrus reticulata Blanco | Tangerine |
Claroideoglomus etunicatum | Arbuscular mycorrhizal fungi (AMF) I |
Cunninghamia lanceolata | Cedar |
Dianthus barbatus | Sweet William |
Diospyros kaki | Persimmon tree |
Ectropis obliqua (Prout) | Tea geometrid |
Eriobotrya japonica | Loquat |
Funneliformis mosseae | Arbuscular mycorrhizal fungi (AMF) II |
Ganoderma lucidum | Red Lingzhi |
Gentiana rigescens | Gentiana |
Gigaspora rosea | Arbuscular mycorrhizal fungi (AMF) III |
Ginkgo biloba L. | Ginkgo tree |
Glomus intraradices | Arbuscular mycorrhizal fungi (AMF) IV |
Glycine max | Soybean |
Jasminum sambac | Jasmine |
Litsea cubeba | Mountain pepper |
Lolium perenne L. | Perennial rye-grass |
Lucuma nervosa | Canistel |
Malus pumila | Apple tree |
Medicago sativa | Alfalfa |
Myrica rubra | Waxberry |
Phlox drummondii | Annual phlox |
Pisum sativum | Pea |
Prunus americana | North American plums |
Salvia japonica | Common sage |
Saponaria officinalis | Common soapwort |
Solanum tuberosum | Potato |
Stropharia yunnanesis | Yunnan roundheads mushroom |
Trifolium repens | White clover |
Vicia faba | Broad bean |
Vicia glabrescens | Smooth vetch |
Vigna radiata | Mung bean |
Vulpia myuros | Rattail grass |
Zea mays | Corn |
Appendix A.2. Criteria
- a.
- Study exclusion/inclusion criteria
- Related research topics: including research on the cultivation mode of intercropping tea gardens. Research must be conducted in China.
- Relevant research methods/design: The research uses relevant, transparent, and repeatable quantitative or suitable qualitative methods.
- Comparators of related research: with and without the correlation comparison between the intercropping tea garden and the monoculture tea garden.
- Relevant research results: The research measures and reports relevant results. These results show that the existence of intercropping tea gardens has obvious positive, negative or neutral effects on the function of the soil ecosystem in the tea garden.
- b.
- Exclusion criteria
- Research compound/general ecological tea gardens in China;
- Exploratory research, conceptual framework, methodological papers;
- Published research on the benefits of intercropping tea gardens for soil ecological service functions without (re)representing the original data;
- Research on whether the intercropping tea garden is sustainable or whether there is research on biodiversity;
- The absence of links/data on the role of forests and trees, research on ecosystem services and the provision of services in agricultural systems.
- c.
- Potential effect modifiers and reasons for heterogeneity
- Intercropping tea garden types: tea herb compound type, tea fruit compound type, tea forest compound type, tea fungus compound type;
- Inconsistency in the altitude and climate of the tea area studied;
- Inconsistency in the implementation time of compound cultivation technology.
- d.
- Study quality assessment
- Trial time;
- Perfect experimental setup and analysis;
- Containing suitable control treatments;
- Taking into account the degree of accidental environmental pollution;
- Quality of the samples of the experimental units (randomness and representativeness);
- Numbers of copies, etc.
- e.
- Data extraction strategy
- Title;
- Author(s);
- Journal;
- Publication date;
- Study location;
- Type of tea plantations (type of tea–herb connection, type of tea–fruit connection, type of connection of tea–forest, type of connection of tea–fungus);
- Classification of climatic regions;
- The nature of the examined function of the soil ecosystem;
- Methodology (quantitative experiment, farmer’s field test, participatory experiment);
- Type of investigation (main investigation, review, or meta-analysis);
- Main landscape environment (e.g., the tree species in the tea forest compound type);
- Types of results and effects (increased soil fertility, increased tea production).
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.; Fetzer, I.; Bennett, E.; Biggs, R.; Carpenter, S.; Vries, W.; de Wit, C.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 736+1259855. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.D. Introduction to sustainable development. In The Age of Sustainable Development; Sachs, J.D., Ki-moon, B., Eds.; Columbia University Press: New York, NY, USA, 2015; pp. 1–44. Available online: https://ebookcentral.proquest.com/lib/ubc/detail.action?docID=1922296 (accessed on 8 June 2022).
- Sayer, J.; Sheil, D.; Riggs, R.; Galloway, G. Chapter 15 SDG 15: Life on land—The central role of forests in sustainable development. In Sustainable Development Goals: Their Impacts on Forests and People; Cambridge University Press: Cambridge, UK, 2019; pp. 482–509. [Google Scholar] [CrossRef] [Green Version]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Sharrow, S.; Ismail, S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor. Syst. 2004, 60, 123–130. [Google Scholar] [CrossRef]
- Kirby, K.R.; Potvin, C. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For. Ecol. Manag. 2007, 246, 208–221. [Google Scholar] [CrossRef]
- Schroth, G.; da Fonseca, G.A.; Harvey, C.A.; Gascon, C.; Vasconcelos, H.L.; Izac, A.M.N. Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island press: Washington, DC, USA, 2004; p. 524. ISBN 1-55963-357-3. [Google Scholar] [CrossRef]
- McNeely, J.A. Nature vs. nurture: Managing relationships between forests, agroforestry and wild biodiversity. Agrofor. Syst. 2004, 61, 155–165. [Google Scholar] [CrossRef]
- Nair, V.D.; Nair, P.K.; Kalmbacher, R.S.; Ezenwa, I.V. Reducing nutrient loss from farms through silvopastoral practices in coarse-textured soils of Florida, USA. Ecol. Eng. 2007, 29, 192–199. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Krstansky, J.J.; Henderson, G.S.; Garrett, H.E. Agroforestry practices, runoff, and nutrient loss: A paired watershed comparison. J. Environ. Qual. 2002, 31, 1214–1225. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Dawson, I.K.; Aynekulu, E.; Chomba, S.; Degrande, A.; Fornace, K.; Jamnadass, R.; Kimaro, A.; Kindt, R.; Lamanna, C.; et al. A planetary health perspective on agroforestry in sub-saharan africa. One Earth 2019, 1, 330–344. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, J.; Liang, Y. Advances in the effects of intercropping on ecological factors, growth and economic benefits of young tea garden. Guizhou Agric. Sci. 2014, 42, 67–71. [Google Scholar]
- He, D.; Liu, X. Discussion on the construction mode of ecological tea garden in Chongqing. South China Agric. 2019, 13, 57–61. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, Y.; Ling, L.; Li, S. Services functions of the ecosystem in tea gardens. J. Southwest Agric. Univ. (Soc. Sci. Ed. ) 2007, 5, 8–11. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Zhang, D.; Yang, X. Function of spartina alterniflora salt march and its eco-economic value in south coast of Hangzhou Bay. Areal Res. Dev. 2005, 24, 58–62. [Google Scholar]
- Pan, W. Studies on agronomy and ecology of composite cultivation of ecological tea garden. Acta Agric. Jiangxi 2009, 21, 65–67. [Google Scholar]
- Rao, J.; Yuan, F.; Li, J. The construction target and mode of composite ecological tea garden. Jiangxi For. Sci. Technol. 2000, 1, 35–38. [Google Scholar] [CrossRef]
- Barrios, E.; Valencia, V.; Jonsson, M.; Brauman, A. Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Zhang, J.; Zhao, Y.; Jin, H.; Wang, Y. Variation for morphology and biomass of Gentiana rigescens in agroforestry system. Guangxi Zhiwu 2015, 35, 526–531+553. [Google Scholar]
- Das, A.; Tomar, J.M.; Ramesh, T.; Munda, G.C.; Ghosh, P.K.; Patel, D.P. Productivity and economics of lowland rice as influenced by incorporation of N-fixing tree biomass in mid-altitude subtropical Meghalaya, North East India. Nutr. Cycl. Agroecosystems 2010, 87, 9–19. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, H.; Wan, X.; Li, Y. The effects of different types of mulch on soil properties and tea production and quality. J. Sci. Food Agric. 2020, 100, 5292–5300. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Reuters, T. Web of Science. 2014. Available online: https://clarivate.com/scientific-and-academic-research/research-discovery/web-of-science/ (accessed on 1 May 2021).
- Zhu, H.; Liu, Z.; Wang, C.; Zhong, Z. Studies on rhizosphere environment of Camelllia sinensis Kuntze ecosystem intercropped by Diospyros kaki. J. Southwest China Norm. Univ. (Nat. Sci.) 2005, 30, 715–718. [Google Scholar] [CrossRef]
- Shen, J.; Dong, Z.; Zhu, Y.; Feng, J.; Li, X. Studies on environmental ecological factors of tea-clover intercropping system. J. Anhui Agric. Univ. 2005, 32, 493–497. [Google Scholar]
- Jiang, J.; Wei, Z.; Lu, Y.; Wei, Y.; Yang, Z.; Luo, P.; Zhou, J. An analysis of the new model of intercropping between egg yolk fruit and tea tree. China Trop. Agric. 2015, 5, 31–33. [Google Scholar]
- Chen, S.; Jia, N.; Xu, M.; Huang, L.; Chen, P. Effect of ecological cycle model of tea garden covering wood chips and intercropping crops. J. Zhongkai Univ. Agric. Eng. 2018, 31, 1–8. [Google Scholar] [CrossRef]
- Song, T.; Xiao, R.; Peng, W.; Wang, J.; Li, S. Effects of intercropping of Trifolium repens Linn. in tea plantation on soil temperature and production in subtropical hilly regions. Chin. J. Agrometeorol. 2007, 28, 45–48. [Google Scholar]
- Yan, F.; Lou, Y.; Chen, J.; Zheng, S.; He, W. The effect of intercropping Trifolium repens on temperature humidity and growth of tea root system in tea plantation. Chin. J. Trop. Crops 2017, 38, 2243–2247. [Google Scholar]
- Song, T.; Xiao, R.; Peng, W.; Li, S.; Xiao, K.; Ying, H. Upgrading soil water and other ecological effects of intercropping white clover in tea plantation in subtropical hilly region. Agric. Res. Arid. Areas 2006, 24, 39–43. [Google Scholar]
- Tian, Y.; Liang, Y.; Linhu, C.; Wei, J.; Zhou, G. Study on the ecological function of artificial ecosystem established in tea garden. Tea Fujian 2003, 3, 4–6. [Google Scholar]
- Wu, J.; Liu, W. Comparing the water use efficiency of plants in different types of rubber-based agroforestry ecosystem in Xishuangbanna, Southwest China. Guihaia 2016, 36, 859–867. [Google Scholar] [CrossRef]
- Wu, J.; Liu, W.; Chen, C. How do plants share water sources in a rubber-tea agroforestry system during the pronounced dry season? Agric. Ecosyst. Environ. 2017, 236, 69–77. [Google Scholar] [CrossRef]
- Callaway, R. The detection of neighbors by plants. Trends Ecol. Evol. 2002, 17, 104–105. [Google Scholar] [CrossRef]
- Dong, M.; Gu, J.; Liu, T.; Yang, D.; Zhang, G.; Lu, H.; Qian, H. Differences in soil mineral nutrients and their correlation in Dongting Biluochun tea-fruit intercropping garden. J. Zhejiang Agric. Sci. 2015, 56, 812–816. [Google Scholar]
- Shen, J.; Yang, J.; Wang, J.; Wei, X.; Zheng, W.; Zhu, Z.; Zhou, F. Ginkgo and tea tree intercropping technology. China Tea 2002, 5, 30–31. [Google Scholar]
- Tian, Y.; Cao, F.; Wang, G. Soil microbiological properties and enzyme activity in Ginkgo–tea agroforestry compared with monoculture. Agrofor. Syst. 2013, 87, 1201–1210. [Google Scholar] [CrossRef]
- Wang, H.; Cai, H.; He, R.; Zhao, F. Effects of intercropping of aromatic plants with tea on physicochemical properties and soil nutrients in tea plantation. J. Southwest For. Univ. 2016, 36, 71–77. [Google Scholar]
- Wu, Z.; You, Z.; Jiang, F.; Wang, F.; Zhu, L.; Weng, B. Effects of inter-row green manure mulching on soil physical and chemical properties of young tea plantation. Fujian J. Agric. Sci. 2013, 28, 1285–1290. [Google Scholar]
- Li, J.; Tu, P.; Chen, N. Effects of tea intercropping with soybean. Chung-Kuo Nung Yeh K’o Hsüeh 2008, 41, 2040–2047. [Google Scholar]
- Liu, T.; Diao, Z.; Qi, Y.; Gao, X. The primary advances in Rhizosphere microbiology. Qinghai Prataculture 2008, 4, 41–44+47. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, S.; Lin, W.; Chen, T.; Arafat, Y.; Wei, X.; Lin, W. Effects of different fertilizer applications on microbial metabolic activity and community tructure in tea rhizosphere soil. Chin. J. Ecol. 2017, 36, 2894–2902. [Google Scholar] [CrossRef]
- Lin, X.; Lin, S.; Qiu, S.; Chen, J.; Wang, F.; Wang, L. Effect of different fertilization strategies on structure and activity of microbial community in tea orchard soils. Plant Nutr. Fertil. Sci. 2013, 19, 93–101. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Lu, Z.; Liu, M. Microbial diversity and comunity structure in soil under tea bushes- Ganoderma lucidum intercropping. Fujian J. Agric. Sci. 2019, 34, 690–696. [Google Scholar] [CrossRef]
- Hernández-Ortega, H.; Alarcón, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H.; López-Delgado, H.; Mendoza-López, M. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J. Environ. Manag. 2012, 95, S319–S324. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhang, D.; Hu, X.; Wu, Q.; Jiang, C.; Xia, T.; Gao, X.; Kuča, K. Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant Soil Environ. 2018, 64, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, A.S.P.; Sharavanan, P.S. Effects of CdCl2 and arbuscular mycorrhizal fungi (AMF) on the growth and nutrient content of black gram (Vigna mungo L.). Int. J. Plant Sci. 2016, 11, 282–287. [Google Scholar] [CrossRef]
- Sun, X.; Tang, M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. South Afr. J. Bot. 2013, 88, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Orfanoudakis, M.; Wheeler, C.; Hooker, J. Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza 2010, 20, 117–126. [Google Scholar] [CrossRef]
- Yang, H.; Ma, J.; Wang, R. Study on the effect of tea mushroom intercropping symbiosis on the yield of big leaf tea. Agric. Technol. Serv. 2017, 2, 12–14. [Google Scholar]
- Xiang, Z.; Xiao, R.; Wang, J.; Peng, W.; Xia, Y.; Xu, H.; Li, X. Effects of interplanting Trifolium repens in tea plantation on soil ecology in subtropical hilly region. Acta Prataculturae Sin. 2008, 17, 29–35. [Google Scholar]
- Liu, Y.; Ding, R.; Sun, Y.; Zhao, J. Formation changes of Aluminium in soil and its influence on ecological environment in tea plantation. Res. Soil Water Conserv. 1994, 1, 71–74. [Google Scholar]
- Duan, Y.; Shang, X.; Liu, G.; Zou, Z.; Zhu, X.; Ma, Y.; Li, F.; Fang, W. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis. BMC Plant Biol. 2021, 21, 482. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, M.; Xia, L.; Wang, L.; Cai, L.; Yang, S.; Chen, M. Effects of intercropping different crops in tea garden on soil nutrient. Southwest China J. Agric. Sci. 2011, 24, 149–153. [Google Scholar]
- Zhan, J.; Li, Z.; Deng, S.; Ying, Z. Preliminary variations in the environment of tea gardens and tea growth on the tea-grass interaction mode. Pratacultural Sci. 2018, 35, 2694–2703. [Google Scholar] [CrossRef]
- Yan, Y.; He, S.; Huang, C. Effect of different intercrops on the growth of young tea trees. Hubei Agric. Sci. 2000, 2, 47. [Google Scholar] [CrossRef]
- Kong, Z.; Zhang, M.; Xie, G. Effects of straw mulch on soil properties and nutrient runoff loss in young tea garden. Acta Agric. Jiangxi 2015, 27, 24–27. [Google Scholar]
- Wang, L.; Zhu, X.; Mao, J.; Wang, Y.; Liu, D.; Gao, L.; Tang, J. Effects of different single shaded trees on soil and tea quality of different tree-tea intercrop gardens. J. Cent. South For. Univ. 2011, 8, 66–73. [Google Scholar]
- Wang, H.; Wu, L.; Zhou, M. Influence of chestnut-tea tree intercropping to growth of tea trees and tea quality in Northern China. Chin. J. Agrometeorol. 2005, 26, 139–141. [Google Scholar]
- Liu, J.; Sun, H.; Zhang, H.; Xuan, B.; Liu, J. Effect of tea forest intercropping on leaf tissue structure and yield of Northern tea trees. Shandong For. Sci. Technol. 2007, 171, 4–6. [Google Scholar]
- Song, B.; Tang, G.; Sang, X.; Zhang, J.; Yao, Y.; Wiggins, N. Intercropping with aromatic plants hindered the occurrence of Aphis citricola in an apple orchard system by shifting predator–prey abundances. Biocontrol Sci. Technol. 2013, 4, 381–395. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, Y. Analysis of the pattern and benefits of intercropping hanging melon in young tea gardens in the mountainous areas of Lishui. Spec. Econ. Anim. Plant 2008, 5, 34–35. [Google Scholar]
- Liang, Y.; Tian, Y.; Wang, G.; Wang, J.; Zhou, G.; Wu, D. Research on ecological benefits and regulation of composite ecological tea plantations in Wujiang River Basin. Chin. Agric. Sci. Bull. 2002, 18, 76–77+119. [Google Scholar]
- Wang, G. Effects on chestnut—Tea intercrop pattern of Xinyang tea garden. Hubei Agric. Sci. 2012, 51, 2207–2211. [Google Scholar] [CrossRef]
Main Terms | Expanded Terms |
---|---|
1. Agroforestry | Agroforestry OR agroforest* OR “agro-forest*” |
2. Soil ecosystem service function | Soil OR “soil regulat*” OR “soil enhanc*” OR “soil protect*” OR “soil fertility” OR “soil quality”OR “soil nutrient*” OR “soil stabiliz*” OR “plant nutri*” OR “nutrient cycling” OR decompos* OR “nitrogen cycling” OR “nitrogen fix*” OR “nitrogen captur*” OR “atmosphere* nitrogen fix*” OR “atmosphere* N* fix*” OR “atmosphere* nitrogen captur*” OR “atmosphere* N* captur*” OR erosion control OR “erosion control” OR “water retention” |
3. Intercropping tea garden | compound ecological tea garden* OR “intercrop*” OR “intercrop* tea garden*” OR “intercrop* tea plantation*” OR “compound ecological tea plantation *” |
3a. | tea grass compound* OR “tea grass compound plantation*” OR “tea grass compound garden*” OR “tea herb compound plantation*” OR “tea herb compound garden*” OR “grass intercrop* tea plantation*” OR “grass intercrop* tea garden*” OR “grass intercrop* tea*” OR “herb intercrop* tea plantation*” OR “herb intercrop* tea garden*” OR “herb intercrop* tea*” |
3b. | tea fruit compound* OR “tea fruit compound plantation*” OR “tea fruit compound garden*” OR “fruit intercrop* tea plantation*” OR “fruit intercrop* tea*” OR “fruit intercrop* tea garden*” |
3c. | tea forest compound* OR “tea forest* compound plantation*” OR “tea forest* compound garden*” OR “tea* tree* compound plantation*” OR “tea* tree* compound garden*” OR “forest* intercrop* tea plantation*” OR “forest* intercrop* tea garden*” OR “forest* intercrop* tea*” OR “tree* intercrop* tea plantation*” OR “tree* intercrop* tea garden*” OR “tree* intercrop* tea*” |
3d. | tea fungus compound* OR “tea fung* compound plantation*” OR “tea fung* compound garden*” OR “fung* intercrop* tea plantation*” OR “fung* intercrop* tea*” OR “fung* intercrop* tea garden*” |
4. Sustainability | “sustainab*” OR “biodivers* enrich*” OR “biodivers* increas*” OR “environment* conserv*” OR “conserv* manag*” |
5. China | “China” OR “PRC” |
Aspects | Monoculture Tea Plantations | Intercropping Tea Plantations |
---|---|---|
Use of water | Higher water consumption | Lower water consumption |
Biodiversity | Scarcity of biodiversity | Abundant biodiversity |
Resistance to natural disaster | Low resistance to natural disasters | High resistance to natural disasters |
Soil conditions | Soil erosion, soil acidification, soil deterioration | Increased soil fertility, increased soil water content, and mitigation of acidification |
Cost | Less labor and cost | More labor and cost |
Planting requirements | Low planting requirements, requiring little expertise | High implantation requirements and complex expertise required |
Is success guaranteed? | Long history and high credibility | Each type of intercropping tea plantation requires pre-experiments to confirm whether the desired objectives can be achieved, which is time-consuming. |
Financial benefits | Fundamental income | Valuable fruits and wood materials, the raw material for organic tea. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Sunderland, T. Feasibility of Tea/Tree Intercropping Plantations on Soil Ecological Service Function in China. Agronomy 2023, 13, 1548. https://doi.org/10.3390/agronomy13061548
Feng Y, Sunderland T. Feasibility of Tea/Tree Intercropping Plantations on Soil Ecological Service Function in China. Agronomy. 2023; 13(6):1548. https://doi.org/10.3390/agronomy13061548
Chicago/Turabian StyleFeng, Yutong, and Terry Sunderland. 2023. "Feasibility of Tea/Tree Intercropping Plantations on Soil Ecological Service Function in China" Agronomy 13, no. 6: 1548. https://doi.org/10.3390/agronomy13061548
APA StyleFeng, Y., & Sunderland, T. (2023). Feasibility of Tea/Tree Intercropping Plantations on Soil Ecological Service Function in China. Agronomy, 13(6), 1548. https://doi.org/10.3390/agronomy13061548