Integrated Nutrient Management Enhances Yield, Improves Soil Quality, and Conserves Energy under the Lowland Rice–Rice Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Details
2.3. Biometric Observation, Plant Sample Analysis, and Nutrient Uptake
2.4. Soil Sampling and Laboratory Analysis
2.5. Lability Index (LI)
2.6. Energy Budgeting
2.7. Statistical Analysis
3. Results
3.1. Yield Parameters
3.2. Crop Productivity
3.3. Nutrient Uptake
3.4. Soil Quality
3.5. Soil Organic Carbon Stock
3.6. Energy Analysis
3.7. Economic Analysis
4. Discussion
4.1. Crop Productivity
4.2. Nutrient Uptake by Rice-Rice System
4.3. Soil Quality
4.4. Soil Carbon
4.5. Energy Analysis
4.6. System Economics
4.7. Ranking of Nutrient Management Practices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surendran, U.; Raja, P.; Jayakumar, M.; Subramoniam, S.R. Use of efficient water saving techniques for production of rice in india under climate change scenario: A Critical Review. J. Clean. Prod. 2021, 309, 127272. [Google Scholar] [CrossRef]
- Fuhrmann, I.; Maarastawi, S.; Neumann, J.; Amelung, W.; Frindte, K.; Knief, C.; Lehndorff, E.; Wassmann, R.; Siemens, J. Preferential flow pathways in paddy rice soils as hot spots for nutrient cycling. Geoderma 2019, 337, 594–606. [Google Scholar] [CrossRef]
- Maiti, S.; Saha, M.; Banerjee, B.; Pal, S. Integrated nutrient management under hybrid rice-(Oryza Sativa) hybrid rice cropping sequence. Indian J. Agron. 2006, 51, 157–159. [Google Scholar]
- Meena, B.L.; Raja, R.; Dotaniya, M.L.; Nanda, G.; Meena, R.S. Integrated nutrient management for sustainable rice-based cropping systems and soil quality. In Sustainable Agriculture; Meena, R.S., Ed.; Scientific Publishers (India): Jodhpur, India, 2019; p. 1. ISBN 9789388043625. [Google Scholar]
- Nayak, A.K.; Gangwar, B.; Shukla, A.K.; Mazumdar, S.P.; Kumar, A.; Raja, R.; Kumar, A.; Kumar, V.; Rai, P.K.; Mohan, U. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in indo gangetic plains of India. Field Crops Res. 2012, 127, 129–139. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Paramesh, V.; Mahajan, G.R.; Das, B.; Reddy, K.V.; Chakurkar, E.B.; Singh, N.P. Sustainability through resource recycling, soil fertility and carbon sequestration from integrated farming systems in West Coast India. Bioscan 2017, 12, 1–6. [Google Scholar]
- Swarup, A.; Manna, M.C.; Singh, G.B.; Lal, R. Impact of land use and management practices on organic carbon dynamics in soils of India. In Global Climate Change and Tropical Ecosystems; CRC Press: Boca Raton, FL, USA, 2000; pp. 261–281. [Google Scholar]
- Kong, A.Y.Y.; Six, J.; Bryant, D.C.; Denison, R.F.; van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 2005, 69, 1078–1085. [Google Scholar] [CrossRef]
- Sujatha, S.; Bhat, R. Resource use and benefits of mixed farming approach in arecanut ecosystem in India. Agric. Syst. 2015, 141, 126–137. [Google Scholar] [CrossRef]
- Seth, A.; Sarkar, D.; Datta, A.; Mandal, B.; Chowdhury, A.; Masto, R.E.; Chakravarty, A.K.; Hazra, G.C.; Badole, S.; Batyabal, K.; et al. Suitability of complex extractants for assessment of available soil zinc for nutrition of rice (Oryza Sativa L.) in subtropical India. Soil Sci. 2017, 182, 28–35. [Google Scholar] [CrossRef]
- Batabyal, K.; Mandal, B.; Sarkar, D.; Murmu, S. Assessment of nutrient management technologies for eggplant production under subtropical conditions: A comprehensive approach. Exp. Agric. 2017, 53, 588–608. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Manjunath, B.L.; Narendra Pratap, S.; Ramesh, R.; Verma, R.R.; Marutrao, L.A.; Ruenna, D.; Natasha, B.; Rahul, K. effect of organic and inorganic sources of nutrients on soil microbial activity and soil organic carbon build-up under rice in West Coast of India. Arch. Agron. Soil Sci. 2017, 63, 414–426. [Google Scholar] [CrossRef]
- Batabyal, K.; Mandal, B.; Sarkar, D.; Murmu, S.; Tamang, A.; Das, I.; Hazra, G.C.; Chattopadhyay, P.S. Comprehensive assessment of nutrient management technologies for cauliflower production under subtropical conditions. Eur. J. Agron. 2016, 79, 1–13. [Google Scholar] [CrossRef]
- Sarkar, D.; Baishya, L.K.; Meitei, C.B.; Naorem, G.C.; Thokchom, R.C.; Singh, J.; Bhuvaneswari, S.; Batabyal, K.; Das, R.; Padhan, D.; et al. Can Sustainability of maize-mustard cropping system be achieved through balanced nutrient management? Field Crops Res. 2018, 225, 9–21. [Google Scholar] [CrossRef]
- Mueller, T.G.; Pusuluri, N.B.; Mathias, K.K.; Cornelius, P.L.; Barnhisel, R.I.; Shearer, S.A. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci. Soc. Am. J. 2004, 68, 2042–2047. [Google Scholar] [CrossRef]
- Paramesh, V.; Arunachalam, V.; Nikkhah, A.; Das, B.; Ghnimi, S. Optimization of energy consumption and environmental impacts of arecanut production through coupled data envelopment analysis and life cycle assessment. J. Clean. Prod. 2018, 203, 674–684. [Google Scholar] [CrossRef]
- Meena, B.P.; Biswas, A.K.; Singh, M.; Chaudhary, R.S.; Singh, A.B.; Das, H.; Patra, A.K. Long-term sustaining crop productivity and soil health in maize–chickpea system through integrated nutrient management practices in vertisols of central India. F. Crop. Res. 2019, 232, 62–76. [Google Scholar] [CrossRef]
- Paramesh, V.; Dhar, S.; Vyas, A.K.; Dass, A. Studies on impact of phosphoenriched compost, chemical fertilizer and method of zinc application on yield, uptake and quality of maize (Zea Mays). Indian J. Agron. 2014, 59, 613–618. [Google Scholar]
- Paramesh, V.; Sridhara, C.J.; Shashidhar, K.S. Effect of integrated nutrient management and planting geometry on root parameter and nutrient uptake of aerobic rice. Agric. Update 2013, 8, 217–220. [Google Scholar]
- Paramesh, V.; Sridhara, C.J.; Shashidhar, K.S. Leaf area, leaf area index and leaf area duration influenced by integrated nutrient management and planting geometry in aerobic rice. Environ. Ecol. 2013, 31, 943–946. [Google Scholar]
- Paramesh, V.; Sridhara, C.J.; Shashidhar, K.S.; Bhuvaneswari, S. Effect of integrated nutrient management and planting geometry on growth and yield of aerobic rice. Int. J. Agric. Sci. 2014, 10, 49–52. [Google Scholar]
- Sarkar, D.; Baishya, L.K. Nutrient Use Efficiency. In Essential Plant Nutrient; Naeem, M., Ansari, A.A., Singh, S., Eds.; Springer: Gewerbestrasse, Switzerland, 2017; pp. 119–146. [Google Scholar]
- Basak, N.; Datta, A.; Mitran, T.; Roy, S.S.; Saha, B.; Biswas, S.; Mandal, B. Assessing soil-quality indices for subtropical rice-based cropping systems in India. Soil Res. 2016, 54, 20–29. [Google Scholar] [CrossRef]
- Satyanarayana, V.; Vara Prasad, P.V.; Murthy, V.R.K.; Boote, K.J. Influence of integrated use of farmyard manure and inorganic fertilizers on yield and yield components of irrigated lowland rice. J. Plant Nutr. 2002, 25, 2081–2090. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Satyanarayana, V.; Murthy, V.R.K.; Boote, K.J. Maximizing yields in rice–groundnut cropping sequence through integrated nutrient management. Field Crops Res. 2002, 75, 9–21. [Google Scholar] [CrossRef]
- Banerjee, H.; Pal, S. Integrated nutrient management for rice-rice cropping system. Oryza 2009, 46, 32–36. [Google Scholar]
- Patra, A.K.; Mishra, K.N.; Garnayak, L.M.; Halder, J.; Swain, S.K. Influence of long-term integrated nutrient management on productivity and soil properties in rice (Oryza Sativa)-rice cropping system in an acidic soil. Indian J. Agron. 2017, 62, 111–117. [Google Scholar]
- Sharma, S.; Padbhushan, R.; Kumar, U. Integrated nutrient management in rice–wheat cropping system: An evidence on sustainability in the indian subcontinent through meta-analysis. Agronomy 2019, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Pernes-Debuyser, A.; Tessier, D. Soil physical properties affected by long-term fertilization. Eur. J. Soil Sci. 2004, 55, 505–512. [Google Scholar] [CrossRef]
- Gelfand, I.; Snapp, S.S.; Robertson, G.P. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the u.s. midwest. Environ. Sci. Technol. 2010, 44, 4006–4011. [Google Scholar] [CrossRef]
- Basavalingaiah, K.; Ramesha, Y.M.; Paramesh, V.; Rajanna, G.A.; Jat, S.L.; Dhar Misra, S.; Kumar Gaddi, A.; Girisha, H.C.; Yogesh, G.S.; Raveesha, S.; et al. Energy budgeting, data envelopment analysis and greenhouse gas emission from rice production system: A case study from puddled transplanted rice and direct-seeded rice system of karnataka, india. Sustainability 2020, 12, 6439. [Google Scholar] [CrossRef]
- Linquist, B.; Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Soil organic carbon pool changes in relation to slope position and land-use in indian lower himalayas. CATENA 2018, 166, 171–180. [Google Scholar] [CrossRef]
- Benbi, D.K.; Toor, A.S.; Kumar, S. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant Soil 2012, 360, 145–162. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Nutrient management impacts on net ecosystem carbon budget and energy flow nexus in intensively cultivated cropland ecosystems of north-western India. Paddy Water Environ. 2020, 18, 697–715. [Google Scholar] [CrossRef]
- Paramesh, V.; Dhar, S.; Dass, A.; Kumar, B.; Kumar, A.; El-Ansary, D.O.; Elansary, H.O. Role of integrated nutrient management and agronomic fortification of zinc on yield, nutrient uptake and quality of wheat. Sustainability 2020, 12, 3513. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K. Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. J. Clean. Prod. 2017, 162, 571–586. [Google Scholar] [CrossRef]
- Paramesh, V.; Singh, S.K.; Mohekar, D.S.; Arunachalam, V.; Misra, S.D.; Jat, S.L.; Kumar, P.; Nath, A.J.; Kumar, N.; Mahajan, G.R.; et al. impact of sustainable land-use management practices on soil carbon storage and soil quality in goa state, India. Land Degrad. Dev. 2022, 33, 28–40. [Google Scholar] [CrossRef]
- Sehgal, J.; Mandal, D.K. Soil Temperature Regimes in India; NBSS&LUP: Nagpur, India, 1994; ISBN 818546023X. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Nitrogen Analysis of Soil and Plant Tissues. J. Assoc. Off. Anal. Chem. 1980, 63, 770–778. [Google Scholar] [CrossRef]
- Jackson, H.C. Soil Chemical Analysis; Prentica Hall India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Blake, G.R. Methods of Soil Analysis; Klute, A., Ed.; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986; ISBN 9780891188643. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Chan, K.Y.; Heenan, D.P.; Oates, A. Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil Tillage Res. 2002, 63, 133–139. [Google Scholar] [CrossRef]
- Chesnin, L.; Yien, C.H. Turbidimetric determination of available sulfates. Soil Sci. Soc. Am. J. 1951, 15, 149–151. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A Rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Hanway, J.J.; Heidel, H. Soil analysis methods as used in iowa state college soil testing laboratory. Iowa Agric. 1952, 57, 1–31. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper1. Soil Sci. Soc. Am. J. 1978, 42, 421. [Google Scholar] [CrossRef]
- Berger, K.C.; Truog, E. Boron determination in soils and plants. Ind. Eng. Chem. Anal. Ed. 1939, 11, 540–545. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Anderson, J.P.E. Soil Respiration. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties; Wiley: New York, NY, USA, 2015; pp. 831–871. [Google Scholar]
- Casida, L.E., Jr.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Datta, A.; Basak, N.; Chaudhari, S.K.; Sharma, D.K. Soil properties and organic carbon distribution under different land uses in reclaimed sodic soils of north-west India. Geoderma Reg. 2015, 4, 134–146. [Google Scholar] [CrossRef]
- Singh, S.; Mittal, J.P. Energy in Production Agriculture; Mittal Publications: New Delhi, India, 1992; ISBN 8170994071. [Google Scholar]
- Kumar, M.; Jha, A.K.; Hazarika, S.; Verma, B.C.; Choudhury, B.U.; Ramesh, T.; Moirangthem, P.; Kumar, R.; Brajendra; Rajkhowa, D.J.; et al. Micronutrients (B, Zn, Mo) for improving crop production on acidic soils of northeast India. Natl. Acad. Sci. Lett. 2016, 39, 85–89. [Google Scholar] [CrossRef]
- Hashim, M.; Dhar, S.; Vyas, A.K.; Paramesh, V.; Kumar, B. Integrated nutrient management in maize (Zea mays)-wheat (Triticum aestivum) cropping system. Indian J. Agron. 2015, 60, 352–359. [Google Scholar]
- Das, A.; Patel, D.P.; Munda, G.C.; Ghosh, P.K. Effect of organic and inorganic sources of nutrients on yield, nutrient uptake and soil fertility of maize (Zea mays)-mustard (Brassica campestris) cropping system. Indian J. Agric. Sci. 2010, 80, 85–88. [Google Scholar]
- Gautam, A.K.; Kumar, D.; Shivay, Y.S.; Mishra, B.N. Influence of nitrogen levels and plant spacing on growth, productivity and quality of two inbred varieties and a hybrid of aromatic rice. Arch. Agron. Soil Sci. 2008, 54, 515–532. [Google Scholar] [CrossRef]
- Behera, U.K.; Sharma, A.R.; Pandey, H.N. Sustaining productivity of wheat–soybean cropping system through integrated nutrient management practices on the vertisols of central India. Plant Soil 2007, 297, 185–199. [Google Scholar] [CrossRef]
- Mavi, M.S.; Benbi, D.K. Potassium dynamics under integrated nutrient management in rice-wheat system. Agrochimica 2008, 52, 83–91. [Google Scholar]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.K.; Gangopadhyay, A.; Mani, P.K.; Kundu, A.L.; Mazumdar, D. Organic Amendments influence soil organic carbon pools and rice-wheat productivity. Soil Sci. Soc. Am. J. 2008, 72, 775–785. [Google Scholar] [CrossRef]
- Dutta, J.; Sharma, S.P.; Sharma, S.K.; Sharma, G.D.; Sankhyan, N.K. Indexing soil quality under long-term maize-wheat cropping system in an acidic alfisol. Commun. Soil Sci. Plant Anal. 2015, 46, 1841–1862. [Google Scholar] [CrossRef]
- Ghosh, S.; Wilson, B.; Ghoshal, S.; Senapati, N.; Mandal, B. Organic amendments influence soil quality and carbon sequestration in the indo-gangetic plains of India. Agric. Ecosyst. Environ. 2012, 156, 134–141. [Google Scholar] [CrossRef]
- Shah, Z.; Shah, S.H.; Peoples, M.B.; Schwenke, G.D.; Herridge, D.F. Crop residue and fertiliser n effects on nitrogen fixation and yields of legume–cereal rotations and soil organic fertility. Filed Crops Res. 2003, 83, 1–11. [Google Scholar] [CrossRef]
- Nath, A.J.; Brahma, B.; Sileshi, G.W.; Das, A.K. Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Sci. Total Environ. 2018, 624, 908–917. [Google Scholar] [CrossRef]
- Rudrappa, L.; Purakayastha, T.J.; Singh, D.; Bhadraray, S. Long-term manuring and fertilization effects on soil organic carbon pools in a typic haplustept of semi-arid sub-tropical India. Soil Tillage Res. 2006, 88, 180–192. [Google Scholar] [CrossRef]
- Sarma, B.; Farooq, M.; Gogoi, N.; Borkotoki, B.; Kataki, R.; Garg, A. Soil organic carbon dynamics in wheat—Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. J. Clean. Prod. 2018, 201, 471–480. [Google Scholar] [CrossRef]
- Verma, T.S.; Bhagat, R.M. Impact of rice straw management practices on yield, nitrogen uptake and soil properties in a wheat-rice rotation in northern India. Fertil. Res. 1992, 33, 97–106. [Google Scholar] [CrossRef]
- Yadav, R.; Dwivedi, B.; Pandey, P. Rice-wheat cropping system: Assessment of sustainability under green manuring and chemical fertilizer inputs. Filed Crops Res. 2000, 65, 15–30. [Google Scholar] [CrossRef]
- Hemalatha, S.; Chellamuthu, S. impacts of long term fertilization on soil nutritional quality under finger millet: Maize cropping sequence. J. Environ. Res. Dev. 2013, 7, 1571–1576. [Google Scholar]
- Mandal, B.; Majumder, B.; Adhya, T.K.; Bandyopadhyay, P.K.; Gangopadhyay, A.; Sarkar, D.; Kundu, M.C.; Choudhury, S.G.; Hazra, G.C.; Kundu, S.; et al. Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Glob. Chang. Biol. 2008, 14, 2139–2151. [Google Scholar] [CrossRef]
- Sarkar, D.; Bungbungcha Meitei, C.; Baishya, L.K.; Das, A.; Ghosh, S.; Chongloi, K.L.; Rajkhowa, D. Potential of fallow chronosequence in shifting cultivation to conserve soil organic carbon in northeast India. CATENA 2015, 135, 321–327. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Organic matter accumulation in submerged soils. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2003; Volume 81, pp. 169–201. [Google Scholar]
- Manning, D.A.C.; Renforth, P. Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils. Environ. Sci. Technol. 2013, 47, 135–141. [Google Scholar] [CrossRef]
- Mendoza, T.C. Evaluating the benefits of organic farming in rice agroecosystems in the Philippines. J. Sustain. Agric. 2004, 24, 93–115. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, S. Input-output energy analysis of rice production in different crop management practices in Central China. Energy 2017, 141, 1124–1132. [Google Scholar] [CrossRef]
- Saber, Z.; Esmaeili, M.; Pirdashti, H.; Motevali, A.; Nabavi-Pelesaraei, A. Exergoenvironmental-life cycle cost analysis for conventional, low external input and organic systems of rice paddy production. J. Clean. Prod. 2020, 263, 121529. [Google Scholar] [CrossRef]
- Paramesh, V.; Ravisankar, N.; Das, B.; Reddy, K.V.; Singh, N.P. Energy budgeting and sensitivity analysis of rice (Oryza sativa)–wheat (Triticum aestivum) cropping system in indogangentic plains of india. Int. J. Curr. Microbiol. App. Sci 2017, 6, 1534–1544. [Google Scholar]
- Paramesh, V.; Arunachalam, V.; Nath, A.J. Enhancing ecosystem services and energy use efficiency under organic and conventional nutrient management system to a sustainable arecanut based cropping system. Energy 2019, 187, 115902. [Google Scholar] [CrossRef]
- Šarauskis, E.; Buragienė, S.; Masilionytė, L.; Romaneckas, K.; Avižienytė, D.; Sakalauskas, A. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 2014, 69, 227–235. [Google Scholar] [CrossRef]
- Singh, R.J.; Ghosh, B.N.; Sharma, N.K.; Patra, S.; Dadhwal, K.S.; Mishra, P.K. Energy budgeting and emergy synthesis of rainfed maize–wheat rotation system with different soil amendment applications. Ecol. Indic. 2016, 61, 753–765. [Google Scholar] [CrossRef]
- Soltani, A.; Rajabi, M.H.; Zeinali, E.; Soltani, E. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy 2013, 50, 54–61. [Google Scholar] [CrossRef]
- He, P.; Li, S.; Jin, J.; Wang, H.; Li, C.; Wang, Y.; Cui, R. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in north-central China. Agron. J. 2009, 101, 1489–1496. [Google Scholar] [CrossRef]
- Evans, E. Marginal analysis: An economic procedure for selecting alternative technologies/practices. EDIS 2005, 2005, 1–6. [Google Scholar] [CrossRef]
Inputs (Unit) | Energy Equivalent (MJ Unit−1) |
---|---|
Inputs | |
Farmyard Manure (kg) | 0.47 |
Nitrogen (kg) | 66.1 |
Phosphorus (kg) | 12.4 |
Potassium (kg) | 11.1 |
Rice straw (kg) | 12.5 |
Output | |
Grain yield (kg) | 14.7 |
Straw yield (kg) | 12.5 |
Treatments | Quantity Applied (kg ha−1) | Energy Equivalent (MJ ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FYM | N through Fertilizer | P through Fertilizer | K through Fertilizer | Rice Straw | FYM | N | P | K | Rice Straw | |
T1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
T2 | 0 | 200 | 100 | 100 | 0 | 0 | 13,220 | 1240 | 1110 | 0 |
T3 | 16,666 | 0 | 0 | 0 | 0 | 7833 | 0 | 0 | 0 | 0 |
T4 | 4166 | 150 | 86 | 62 | 0 | 1958 | 9915 | 1066 | 688 | 0 |
T5 | 0 | 150 | 92 | 0 | 3846 | 0 | 9915 | 1145 | 0 | 48,075 |
T6 | 4166 | 100 | 78 | 0 | 3846 | 1958.02 | 6610 | 967.2 | 0 | 48,075 |
Treatments | Kharif Rice | Rabi Rice | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tillers m−2 | Panicles m−2 | Panicle Length (cm) | Panicle Weight (g) | Grains Panicle−1 | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Tillers m−2 | Panicles m−2 | Panicle Length (cm) | Panicle Weight (g) | Grains Panicle−1 | Grain Yield (t ha−1) | Straw Yield (t ha−1) | |
T1 | 184f | 129e | 12.2d | 5.5e | 51.3e | 2.19d | 2.74d | 169f | 119e | 11.2d | 5.1e | 47.2e | 2.0d | 2.5d |
T2 | 278b | 198b | 20.9b | 14.1b | 118.1b | 4.91b | 6.78b | 253b | 179b | 19.7b | 12.9b | 110.7b | 4.5b | 6.3b |
T3 | 222d | 163d | 16.4c | 9.8d | 105.0c | 4.58c | 6.18c | 204d | 150d | 15.1c | 9.0d | 96.6c | 4.2c | 5.7c |
T4 | 286a | 207a | 22.7a | 15.0a | 129.4a | 5.16a | 7.48a | 263a | 190a | 20.9a | 13.8a | 119.0a | 4.7a | 6.9a |
T5 | 236c | 175c | 17.5c | 10.8c | 100.6c | 4.62c | 5.78d | 217c | 161c | 16.1c | 9.9c | 92.6c | 4.3c | 5.3d |
T6 | 212e | 162d | 17.2c | 10.5c | 91.2d | 4.66c | 6.02c | 195e | 149d | 15.8c | 9.7c | 83.9d | 4.3c | 5.9c |
Source of variation | Statistical significance | |||||||||||||
Year | * | * | ** | *** | *** | ** | ** | * | * | ** | *** | *** | ** | ** |
Treatment | * | * | ** | *** | *** | ** | ** | * | * | ** | *** | *** | ** | ** |
Year x Treatment | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | Kharif Rice | Rabi Rice | ||||
---|---|---|---|---|---|---|
Total N Uptake | Total P Uptake | Total K Uptake | Total N Uptake | Total P Uptake | Total K Uptake | |
T1 | 30.93e | 3.56c | 41.01d | 27.04d | 3.11d | 35.84d |
T2 | 93.13c | 11.57b | 91.82b | 84.19b | 10.48b | 81.06b |
T3 | 102.50a | 14.54a | 96.04a | 89.59a | 12.71a | 83.94a |
T4 | 102.94a | 12.90a | 96.11a | 86.35a | 10.68b | 87.14a |
T5 | 88.59d | 10.63b | 87.55c | 77.43c | 9.29c | 76.52c |
T6 | 97.69b | 10.50b | 94.98a | 85.38b | 9.18c | 83.01a |
Source of variation | Statistical significance | |||||
Year | *** | * | * | *** | * | * |
Treatment | *** | * | * | *** | * | * |
Year x Treatment | ns | ns | ns | ns | ns | ns |
Treatments | Bulk Density (Mg m−3) | Available N (kg ha−1) | Available P (kg ha−1) | Available K (kg ha−1) | Fe (mg kg−1) | Zn (mg kg−1) | DHA (mg TPF g−1 h−1) | Phosphatase (µg PNP g−1 day−1) | SMBC (mg kg−1 Soil) | Urease (μg Urea g−1 h−1) | BSR (mg CO2- C g−1 day−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 1.43a | 108.7bc | 8.64c | 135.9d | 46.6 | 6.90 | 210.0d | 169.8c | 166.0d | 1.5c | 15.8c |
T2 | 1.42a | 116.3b | 10.78b | 145.3c | 49.9 | 7.33 | 233.7c | 176.4c | 233.7c | 1.6c | 16.4c |
T3 | 1.37b | 157.7a | 16.17a | 167.1a | 52.7 | 7.77 | 315.9a | 385.9a | 394.6a | 3.5a | 36.6a |
T4 | 1.39a | 151.3a | 15.20a | 161.0a | 49.7 | 8.48 | 291.0a | 383.0a | 353.5a | 3.3a | 35.9a |
T5 | 1.40a | 146.7a | 12.35b | 158.7b | 46.4 | 7.56 | 253.8b | 335.0b | 327.4b | 2.9b | 31.1b |
T6 | 1.38b | 127.5b | 13.99a | 160.8a | 50.8 | 7.85 | 294.0a | 361.7a | 312.5b | 3.2a | 33.6a |
SEM± | 0.01 | 3.98 | 0.79 | 2.47 | 1.58 | 0.96 | 10.48 | 15.07 | 18.74 | 0.12 | 1.46 |
CD at 5% | 0.04 | 12.5 | 2.48 | 7.79 | NS | NS | 33.0 | 47.47 | 59.05 | 0.38 | 4.60 |
Treatments | VLC | LC | LLC | NLC | TOC | LI | AP | PP |
---|---|---|---|---|---|---|---|---|
T1 | 0.33b | 0.35b | 0.76d | 5.42c | 6.86c | 0.35 | 0.67 | 6.19 |
T2 | 0.33b | 0.30b | 0.65e | 4.64c | 5.92c | 0.38 | 0.63 | 5.29 |
T3 | 0.49a | 0.52a | 1.28a | 7.73a | 10.01a | 0.38 | 1.01 | 9.00 |
T4 | 0.44a | 0.45a | 0.98b | 6.95a | 8.81b | 0.36 | 0.89 | 7.92 |
T5 | 0.41a | 0.41a | 0.90b | 6.40b | 8.13b | 0.36 | 0.82 | 7.30 |
T6 | 0.39b | 0.39b | 0.86c | 6.13b | 7.77b | 0.36 | 0.78 | 6.99 |
SEM± | 0.03 | 0.02 | 0.05 | 0.35 | 0.42 | - | - | - |
CD at 5% | 0.09 | 0.10 | 0.10 | 1.1 | 1.3 | - | - | - |
Treatments | Energy Input (MJ ha−1) | Energy Output (MJ ha−1) | Energy Use Efficiency | Energy Productivity (kg MJ−1) | Specific Energy (MJ kg−1) | Net Energy Gain (MJ ha−1) |
---|---|---|---|---|---|---|
T1 | 0 | 139,074 | - | - | - | 139,074 |
T2 | 15,570 | 346,724 | 22.3 | 0.62 | 1.62 | 331,154 |
T3 | 7833 | 303,775 | 38.8 | 1.12 | 0.89 | 295,942 |
T4 | 13,628 | 324,179 | 23.8 | 0.74 | 1.35 | 310,551 |
T5 | 59,135 | 293,388 | 5.0 | 0.15 | 6.67 | 234,254 |
T6 | 57,610 | 313,684 | 5.4 | 0.16 | 6.44 | 256,074 |
Treatments | Cost of Cultivation | Gross Returns | Net Returns | B: C Ratio |
---|---|---|---|---|
T1 | 800 | 841 | 41 | 0.051 |
T2 | 1060 | 2567 | 1508 | 1.42 |
T3 | 1173 | 2931 | 1758 | 1.49 |
T4 | 907 | 2683 | 1776 | 1.95 |
T5 | 920 | 2365 | 1445 | 1.57 |
T6 | 860 | 2386 | 1526 | 1.77 |
Treatments | System Productivity (kg ha−1) | Net Returns (USD ha−1) | EUE | NEG (MJ ha−1) | TOC (Mg C ha−1) | SMBC (mg kg−1 Soil) | Rank Sum Score |
---|---|---|---|---|---|---|---|
Control | 4205 (6) | 41 (6) | 0 (6) | 139,074 (6) | 30 (5) | 166 (6) | 35 |
N-100% NCU | 9628 (2) | 1508 (4) | 23 (3) | 331,154 (1) | 26 (6) | 234 (5) | 21 |
100% N-FYM | 8794 (5) | 1758 (2) | 39 (1) | 295,942 (3) | 42 (1) | 395 (1) | 13 |
75% N + 25% N-FYM | 10060 (1) | 1776 (1) | 24 (2) | 310,552 (2) | 37 (2) | 354 (2) | 10 |
75% N+ 25% N-RR | 8871 (4) | 1446 (5) | 5 (5) | 234,254 (5) | 35 (3) | 328 (3) | 25 |
50% N-NCU+ 25% N-FYM + 25% N-RSI | 8948 (3) | 1526 (3) | 6 (4) | 256,075 (4) | 33 (4) | 313 (4) | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramesh, V.; Kumar, P.; Bhagat, T.; Nath, A.J.; Manohara, K.K.; Das, B.; Desai, B.F.; Jha, P.K.; Prasad, P.V.V. Integrated Nutrient Management Enhances Yield, Improves Soil Quality, and Conserves Energy under the Lowland Rice–Rice Cropping System. Agronomy 2023, 13, 1557. https://doi.org/10.3390/agronomy13061557
Paramesh V, Kumar P, Bhagat T, Nath AJ, Manohara KK, Das B, Desai BF, Jha PK, Prasad PVV. Integrated Nutrient Management Enhances Yield, Improves Soil Quality, and Conserves Energy under the Lowland Rice–Rice Cropping System. Agronomy. 2023; 13(6):1557. https://doi.org/10.3390/agronomy13061557
Chicago/Turabian StyleParamesh, Venkatesh, Parveen Kumar, Tejasvi Bhagat, Arun Jyoti Nath, Kallakeri Kannappa Manohara, Bappa Das, Brijesh Fal Desai, Prakash Kumar Jha, and P. V. Vara Prasad. 2023. "Integrated Nutrient Management Enhances Yield, Improves Soil Quality, and Conserves Energy under the Lowland Rice–Rice Cropping System" Agronomy 13, no. 6: 1557. https://doi.org/10.3390/agronomy13061557
APA StyleParamesh, V., Kumar, P., Bhagat, T., Nath, A. J., Manohara, K. K., Das, B., Desai, B. F., Jha, P. K., & Prasad, P. V. V. (2023). Integrated Nutrient Management Enhances Yield, Improves Soil Quality, and Conserves Energy under the Lowland Rice–Rice Cropping System. Agronomy, 13(6), 1557. https://doi.org/10.3390/agronomy13061557