Magnesium Oxide Nanoparticles: An Influential Element in Cowpea (Vigna unguiculata L. Walp.) Tissue Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Mg Nanoparticles (MgO-NPs)
2.2. Plant Material
2.3. Tissue Culture Applications
3. Results
3.1. Surface Morphological Characterization of MgO-NPs
3.2. Morphogenesis
3.3. Callus Formation
3.4. Shoot Formation
3.5. Number of Shoots
3.6. Number of Shoots per Explant
3.7. Shoot Length
3.8. Root Formation Rate
3.9. Number of Roots per Explant
3.10. Root Length
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnall, A.H. Future Technologies, Today’s Choices-Nanotechnology, Artificial Intelligence and Robotics. A technical, political and institutional map of emerging technologies. AHS 2003, 56, 1329–1332. [Google Scholar]
- Bergeson, L.L.; Cole, M.F. Regulatory implications of nanotechnology. Biointeract. Nanomater. 2014, 315. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 2017, 66, 6487–6503. [Google Scholar] [CrossRef]
- Panpatte, D.G.; Jhala, Y.K. Nanotechnology for Agriculture: Crop Production & Protection; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Bratovcic, A.; Hikal, W.M.; Said-Al Ahl, H.A.; Tkachenko, K.G.; Baeshen, R.S.; Sabra, A.S.; Sany, H. Nanopesticides and nanofertilizers and agricultural development: Scopes, advances and applications. Open J. Ecol. 2021, 11, 301–316. [Google Scholar] [CrossRef]
- Sharma, P.; Gautam, A.; Kumar, V.; Guleria, P. In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. ESPR 2022, 29, 13635–13645. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Jain, A.; Wadhawan, S.; Mehta, S.K. Synthesis of biosurfactant-coated magnesium oxide nanoparticles for methylene blue removal and selective Pb2+ sensing. IET Nanobiotechnol. 2018, 12, 241–253. [Google Scholar] [CrossRef]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef]
- Epstein, E.; Bloom, A. Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed.; Sinauer Associates Inc.: Sunderland, UK, 2005. [Google Scholar]
- Cakmak, I.; Kirkby, E.A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 2008, 133, 692–704. [Google Scholar] [CrossRef] [Green Version]
- Igamberdiev, A.U.; Kleczkowski, L.A. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium. Front. Plant Sci. 2015, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Stagnari, F.; Pisante, M. The critical period for weed competition in French bean (Phaseolus vulgaris L.) in Mediterranean areas. Crop. Prot. 2011, 30, 179–184. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Radiman, S.; Al-Douri, Y.; Tabet, N.; Daud, A.R. Investigation of the optical properties of Mg(OH)2 and MgO nanostructures obtained by microwave-assisted methods. J. Alloys Compd. 2012, 521, 71–76. [Google Scholar] [CrossRef]
- Mirzaei, H.; Davoodnia, A. Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1,4-dihydropyridines. Chin. J. Catal. 2012, 33, 1502–1507. [Google Scholar] [CrossRef]
- Ouraipryvan, P.; Sreethawong, T.; Chavadej, S. Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol–gel process. Mater. Lett. 2009, 63, 1862–1865. [Google Scholar] [CrossRef]
- Ramezani Farani, M.; Farsadrooh, M.; Zare, I.; Gholami, A.; Akhavan, O. Green Synthesis of Magnesium Oxide Nanoparticles and Nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and Antifungal Applications. Catalysts 2023, 13, 642. [Google Scholar] [CrossRef]
- Xiong, H.; Shi, A.; Mou, B.; Qin, J.; Motes, D.; Lu, W.; Ma, J.; Weng, Y.; Yang, W.; Wu, D. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp.). PLoS ONE 2016, 11, e0160941. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.; Oplinger, E.; Rand, R.; Peters, J.; Weis, G. Effect of planting date and plant population on sunflower performance 1. J. Agron. 1984, 76, 511–515. [Google Scholar] [CrossRef]
- Pemberton, I.; Smith, G.; Miller, J. Inheritance of ineffective nodulation in cowpea. Crop Sci. 1990, 30, 568–571. [Google Scholar] [CrossRef]
- Affrifah, N.S.; Phillips, R.D.; Saalia, F.K. Cowpeas: Nutritional profile, processing methods and products—A review. Legume Sci. 2022, 4, e131. [Google Scholar] [CrossRef]
- Davis, D.; Oelke, E.; Oplinger, E.; Doll, J.; Hanson, C.; Putnam, D. Cowpea. In Alternative Field Crops Manual; University of Wisconsin Cooperative or Extension Service: Madison, WI, USA, 1991. [Google Scholar]
- Kumar, V.; Guleria, P.; Ranjan, S. Phytoresponse to nanoparticle exposure. Nanotoxicol. Nanoecotoxicol. 2021, 1, 251–286. [Google Scholar]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, H.; Ali, A.; Ali, J.S.; Haq, I.U.; Zia, M. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Front. Plant Sci. 2016, 7, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandeh, M.; Omidi, M.; Rahaie, M. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol. Trace Elem. Res. 2012, 150, 376–380. [Google Scholar] [CrossRef]
- Nalci, O.B.; Nadaroglu, H.; Hosseinpour, A.; Gungor, A.A.; Haliloglu, K. Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.). PCTOC 2019, 136, 269–277. [Google Scholar] [CrossRef]
- Anwaar, S.; Maqbool, Q.; Jabeen, N.; Nazar, M.; Abbas, F.; Nawaz, B.; Hussain, T.; Hussain, S.Z. The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L. Front. Plant Sci. 2016, 7, 1330. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef] [Green Version]
- Gultekin, D.D.; Nadaroglu, H.; Gungor, A.A.; Kishali, N.H. Biosynthesis and characterization of copper oxide nanoparticles using Cimin grape (Vitis vinifera cv.) extract. IJSM 2017, 4, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Nadaroglu, H.; Güngör, A.A.; Selvi, İ. Synthesis of nanoparticles by green synthesis method. JIRR 2017, 1, 6–9. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth a bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Dang, H.H.; Vo, D.-V.N.; Bach, L.G.; Nguyen, T.D.; Van Tran, T. Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. JHM Lett. 2021, 404, 124146. [Google Scholar] [CrossRef] [PubMed]
- Aasim, M.; Bakhsh, A.; Khawar, K.M.; Ozcan, S. Past, present and future of tissue culture and genetic transformation research on cowpea (Vigna unguiculata L.). COBIOT 2011, 22, S131. [Google Scholar] [CrossRef]
- Asami, H.; Tokugawa, M.; Masaki, Y.; Ishiuchi, S.-I.; Gloaguen, E.; Seio, K.; Saigusa, H.; Fujii, M.; Sekine, M.; Mons, M. Effective strategy for conformer-selective detection of short-lived excited state species: Application to the IR spectroscopy of the N1H Keto tautomer of guanine. J. Phys. Chem. 2016, 120, 2179–2184. [Google Scholar] [CrossRef]
- Dobrucka, R. Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalytic properties. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Karimi, B.; Khorasani, M.; Vali, H.; Vargas, C.; Luque, R. Palladium nanoparticles supported in the nanospaces of imidazolium-based bifunctional PMOs: The role of plugs in selectivity changeover in aerobic oxidation of alcohols. ACS Catal. 2015, 5, 4189–4200. [Google Scholar] [CrossRef]
- Saied, E.; Eid, A.M.; Hassan, S.E.-D.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, H.A.; Saied, E.M.; Fouda, A. The catalytic activity of biosynthesized magnesium oxide nanoparticles (MgO-NPs) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Somanathan, T.; Krishna, V.M.; Saravanan, V.; Kumar, R.; Kumar, R. MgO nanoparticles for effective uptake and release of doxorubicin drug: pH sensitive controlled drug release. JNN 2016, 16, 9421–9431. [Google Scholar] [CrossRef]
- Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus D. Don) leave extract and its antimicrobial as well as anticancer activity. Adv. Powder Technol. 2018, 29, 1685–1694. [Google Scholar] [CrossRef]
- Ewais, E.A.; Desouky, S.A.; Elshazly, E.H. Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. J. Nanosci. Nanotechnol. 2015, 5, 45–56. [Google Scholar]
- Do, D.G.; Dang, T.K.T.; Nguyen, T.H.T.; Nguyen, T.D.; Tran, T.T.; Hieu, D.D. Effects of nano silver on the growth of banana (Musa spp.) cultured in vitro. J. Vietnam. Environ. 2018, 10, 92–98. [Google Scholar] [CrossRef]
- Salama, H.M. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotechnol. 2012, 3, 190–197. [Google Scholar]
- Helaly, M.N.; El-Metwally, M.A.; El-Hoseiny, H.; Omar, S.A.; El-Sheery, N.I. Effect of nanoparticles on biological contamination of ‘in vitro’ cultures and organogenic regeneration of banana. Aust. J. Crop Sci. 2014, 8, 612–624. [Google Scholar]
- Zhang, Z.; Ke, M.; Qu, Q.; Peijnenburg, W.; Lu, T.; Zhang, Q.; Ye, Y.; Xu, P.; Du, B.; Sun, L. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ. Pollut. 2018, 239, 689–697. [Google Scholar] [CrossRef]
- Pena, L.B.; Méndez, A.A.; Matayoshi, C.L.; Zawoznik, M.S.; Gallego, S.M. Early response of wheat seminal roots growing under copper excess. Plant Physiol. Biochem. 2015, 87, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Ruffini Castiglione, M.; Giorgetti, L.; Geri, C.; Cremonini, R. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanopart Res. 2011, 13, 2443–2449. [Google Scholar] [CrossRef]
- Sotoodehnia-Korani, S.; Iranbakhsh, A.; Ebadi, M.; Majd, A.; Oraghi-Ardebili, Z. Efficacy of magnesium nanoparticles inmodifying growth, antioxidant activity, nitrogen status, and expression of WRKY1 And BZIP transcription factors in pepper (Capsicum annuum L.); an in vitro biological assessment. Russ. J. Plant Physiol. 2023, 70, 39. [Google Scholar] [CrossRef]
Mg | Morphogenesis | Callus Formation | Shoot Formation | Number of Shoots | Number of Shoots per Explant | Shoot Length | Root Formation Rate | Number of Roots per Explant | Root Length | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | % 1 | Number | % | % | % | Number | % | Number | % | cm | % | % | % | Number | % | cm | % | |
Control | 9.25 ab 2 | - | 8.00 b | - | 60.00 ab | 21.75 b | - | 6.50 bc | - | 0.475 d | - | 27.50 a | - | 2.750 b | - | 1.0750 b | - | |
370 mg/L MgSO4.7H2O | 9.25 ab | - | 9.00 ab | 12.50 | 42.50 bc | −29.17 | 21.75 b | - | 6.75 bc | 3.85 | 1.200 c | 152.63 | 27.50 a | - | 6.750 a | 145.45 | 1.5750 a | 46.51 |
185 mg/L MgO-NPs | 10.00 a | 8.11 | 8.50 ab | 6.25 | 30.00 c | −50 | 3.75 c | −82.76 | 1.25 c | −80.77 | 0.175 d | −63.16 | 19.75 b | −28.18 | 0.0009 c | −99.96 | 0.00015 c | −99.96 |
370 mg/L MgO-NPs | 10.00 a | 8.11 | 9.50 ab | 18.75 | 72.50 a | 20.83 | 61.25 a | 181.61 | 17.50 a | 169.23 | 2.075 a | 336.84 | 22.50 ab | −18.18 | 0.7500 bc | −72.72 | 0.2750 bc | −74.41 |
555 mg/L MgO-NPs | 10.00 a | 8.11 | 10.00 a | 25 | 82.50 a | 37.50 | 36.25 ab | 66.67 | 10.00 ab | 53.85 | 1.450 b | 205.26 | 10.00 c | −63.64 | 0.7500 bc | −72.72 | 0.2000 bc | −81.39 |
Variation Sources | 1.350 * 3 | 1837.5 ** | 3.459 * | 5.675 ** | 88.901 ** | 1.905 * | 18.030 ** | 2.679 * | 20.402 ** | |||||||||
Error | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koçak, R.; Okcu, M.; Haliloğlu, K.; Türkoğlu, A.; Pour-Aboughadareh, A.; Jamshidi, B.; Janda, T.; Alaylı, A.; Nadaroğlu, H. Magnesium Oxide Nanoparticles: An Influential Element in Cowpea (Vigna unguiculata L. Walp.) Tissue Culture. Agronomy 2023, 13, 1646. https://doi.org/10.3390/agronomy13061646
Koçak R, Okcu M, Haliloğlu K, Türkoğlu A, Pour-Aboughadareh A, Jamshidi B, Janda T, Alaylı A, Nadaroğlu H. Magnesium Oxide Nanoparticles: An Influential Element in Cowpea (Vigna unguiculata L. Walp.) Tissue Culture. Agronomy. 2023; 13(6):1646. https://doi.org/10.3390/agronomy13061646
Chicago/Turabian StyleKoçak, Rabia, Melih Okcu, Kamil Haliloğlu, Aras Türkoğlu, Alireza Pour-Aboughadareh, Bita Jamshidi, Tibor Janda, Azize Alaylı, and Hayrunnisa Nadaroğlu. 2023. "Magnesium Oxide Nanoparticles: An Influential Element in Cowpea (Vigna unguiculata L. Walp.) Tissue Culture" Agronomy 13, no. 6: 1646. https://doi.org/10.3390/agronomy13061646
APA StyleKoçak, R., Okcu, M., Haliloğlu, K., Türkoğlu, A., Pour-Aboughadareh, A., Jamshidi, B., Janda, T., Alaylı, A., & Nadaroğlu, H. (2023). Magnesium Oxide Nanoparticles: An Influential Element in Cowpea (Vigna unguiculata L. Walp.) Tissue Culture. Agronomy, 13(6), 1646. https://doi.org/10.3390/agronomy13061646