An R2R3-MYB Transcription Factor RoMYB10 Regulates Anthocyanin Biosynthesis in Black Raspberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of RoMYB10 Gene
2.3. Expression Analysis of RoMYB10 and Anthocyanin Biosynthetic Genes
2.4. Sequence Analysis
2.5. Subcellular Localization of the RoMYB10 Protein
2.6. Overexpression of RoMYB10 in Tobacco
2.7. Pigment Analysis
3. Results
3.1. Isolation and Sequence Analysis of RoMYB10
3.2. Anthocyanin Contents and Gene Expression Analysis
3.3. RoMYB10 Was Localized to the Nucleus
3.4. Overexpression of RoMYB10 in Tobacco
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, R.; Tian, J.; Song, T.T.; Zhang, J.; Yao, Y.C. The Malus crabapple transcription factor McMYB10 regulates anthocyanin biosynthesis during petal coloration. Sci. Hortic. 2014, 166, 42–49. [Google Scholar] [CrossRef]
- Wang, J.; Mazza, G. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-Activated RAW 264.7 macrophages. J. Agric. Food Chem. 2002, 50, 4183–4189. [Google Scholar] [CrossRef]
- Joshi, R.; Rana, A.; Kumar, V.; Kumar, D.; Padwad, Y.S.; Yadav, S.K.; Gulati, A. Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities. J. Food Sci. Technol. 2017, 54, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Nakamura, Y.; Tachibanaki, S.; Kawamura, S.; Hirayama, M. Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J. Agric. Food Chem. 2003, 51, 3560–3563. [Google Scholar] [CrossRef]
- Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effffects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.Q.; Wang, Y.L.; Yang, S.; Xu, Y.T.; Chen, X.S. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 2010, 232, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Borevitz, J.O.; Xia, Y.J.; Blount, J.; Dixon, R.A.; Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 2000, 12, 2383–2393. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008, 53, 814–827. [Google Scholar] [CrossRef]
- Shi, L.Y.; Chen, X.; Wang, K.; Yang, M.J.; Chen, W.; Yang, Z.F.; Cao, S.F. MrMYB6 from Chinese bayberry (Myrica rubra) negatively regulates anthocyanin and proanthocyanidin accumulation. Front. Plant Sci. 2021, 12, 685654. [Google Scholar] [CrossRef]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015, 3, 176–185. [Google Scholar] [CrossRef]
- Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 2001, 13, 2099–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudry, A.; Heim, M.A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.; Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 2004, 39, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wen, J.; Xia, Y.; Zhang, L.; Du, H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. Hortic. Res. 2022, 9, uhac058. [Google Scholar] [CrossRef] [PubMed]
- Ogata, K.; Kanei-Ishii, C.; Sasaki, M.; Hatanaka, H.; Nagadoi, A.; Enari, M.; Nakamura, H.; Nishimura, Y.; Ishii, S.; Sarai, A. The cavity in the hydrophobic core of MYB DNA-binding domain is reserved for DNA recognition and trans-activation. Nat. Struct. Biol. 1996, 3, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yang, S.S.; Liang, Z.; Feng, B.R.; Liu, L.; Huang, Y.B.; Tang, Y.X. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol. 2012, 12, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Cone, K.C.; Cocciolone, S.M.; Burr, F.A.; Burr, B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 1993, 5, 1795–1805. [Google Scholar]
- Castillejo, C.; Waurich, V.; Wagner, H.; Ramos, R.; Oiza, N.; Muñoz, P.; Triviño, J.C.; Caruana, J.; Liu, Z.; Cobo, N.; et al. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. Plant Cell 2020, 32, 3723–3749. [Google Scholar] [CrossRef]
- Mao, W.W.; Han, Y.; Chen, Y.T.; Sun, M.Z.; Feng, Q.Q.; Li, L.; Liu, L.P.; Zhang, K.K.; Wei, L.Z.; Han, Z.H.; et al. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell 2022, 34, 1226–21249. [Google Scholar] [CrossRef]
- Walker, A.R.; Elizabeth, L.; Jochen, B.; Debra, A.J.; Mc, D.; Mark, R.T.; Simon, P.R. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 2007, 49, 772–785. [Google Scholar] [CrossRef]
- Rahim, M.A.; Busatto, N.; Trainotti, L. Regulation of anthocyanin biosynthesis in peach fruits. Planta 2014, 240, 913–929. [Google Scholar] [CrossRef]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagné, D.; Lin-Wang, K.; Espley, R.V.; Volz, R.K.; How, N.M.; Rouse, S.; Brendolise, C.; Carlisle, C.M.; Kumar, S.; De Silva, N.; et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 2013, 161, 225–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, X.; Zhao, Y.; Yang, J.; He, Y.; Li, G.; Ma, W.; Huang, X.; Su, J. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ‘Yunhongli No. 1’. Plant Physiol. Bioch. 2020, 154, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Xu, P.B.; Pan, J.; Li, Y.; Zhou, J.H.; Kuang, H.Y.; Lian, H.L. Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. Plant Sci. 2020, 298, 110578. [Google Scholar] [CrossRef] [PubMed]
- Lin-Wang, K.; McGhie, T.K.; Wang, M.; Liu, Y.H.; Warren, B.; Storey, R.; Espley, R.V.; Allan, A.C. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 2014, 5, 651. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.F.; Lin, X.Y.; Bian, X.Y.; Zeng, Q.Y.; Liu, Y.J. Ectopic expression of Populus MYB10 promotes secondary cell wall thickening and inhibits anthocyanin accumulation. Plant physiol. Bioch. 2022, 172, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Tuan, P.A.; Bai, S.L.; Yaegaki, H.; Tamura, T.; Hihara, S.; Moriguchi, T.; Oda, K. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 2015, 15, 280. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.; Wang, G.Q.; Wu, J.C.; Waheed, S.; Allan, A.C.; Zeng, L.H. Ectopic overexpression of a novel R2R3-MYB, NtMYB2 from Chinese narcissus represses anthocyanin biosynthesis in tobacco. Molecules 2018, 23, 781. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 5, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Li, T.M.; Cheng, X.; Wang, Y.T.; Yin, X.; Li, Z.Q.; Liu, R.Q.; Liu, G.T.; Wang, Y.J.; Xu, Y. Genome-wide analysis of glyoxalase-like gene families in grape (Vitis vinifera L.) and their expression profiling in response to downy mildew infection. BMC Genom. 2019, 20, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.M.; Cheng, X.; Wang, X.W.; Li, G.G.; Wang, B.B.; Wang, W.Y.; Zhang, N.; Han, Y.L.; Jiao, B.L.; Wang, Y.J.; et al. Glyoxalase I-4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine. Plant J. 2021, 108, 394–410. [Google Scholar] [CrossRef]
- Suleiman, A. Transformation of Nicotiana tabacum by Agrobacterium tumefaciens carrying salt and drought tolerance gene. Adv. Environ. Biol. 2016, 10, 150–154. [Google Scholar]
- Oancea, S.; Ghincevici, D.; Ketney, O. The effect of ultrasonic pretreatment and sample preparation on the extraction yield of antioxidant compounds and activity of black currant fruits. Acta Chim. Slov. 2015, 62, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.B.; Race, E.J.; Shrikhande, A.J. Characterization of anthocyanins in grape juices by ion trap liquid chromatography−mass spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef]
- Grotewold, E.; Sainz, M.B.; Tagliani, L.; Hernandez, J.M.; Bowen, B.; Chandler, V.L. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc. Natl. Acad. Sci. USA 2000, 97, 13579–13584. [Google Scholar] [CrossRef]
- Zimmermann, I.M.; Heim, M.A.; Weisshaar, B.; Uhrig, J.F. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 2004, 40, 22–34. [Google Scholar] [CrossRef]
- Kranz, H.D.; Denekamp, M.; Greco, R.; Jin, H.; Leyva, A.; Meissner, R.C.; Petroni, K.; Urzainqui, A.; Bevan, M.; Martin, C.; et al. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 1998, 16, 263–276. [Google Scholar] [CrossRef]
- Aharoni, A.; Ric De, C.H.; Wein, M.; Sun, Z.K.; Greco, R.; Kroon, A.; Mol, J.N.M.; O’Connell, A.P. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 2001, 28, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Lin-Wang, K.; Bolitho, K.; Grafton, K.; Kortstee, A.; Karunairetnam, S.; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 2010, 10, 50–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hironori, M.; Fumiaki, O.; Kazuhito, S.; Hiromi, H.; Yuzo, M. Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol. 2007, 143, 1252–1268. [Google Scholar]
- Takos, A.M.; JaVe, F.W.; Jacob, S.R.; Bogs, J.; Robinson, S.P.; Walker, A.R. Light induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 2006, 142, 1216–1232. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, J.R.; Hong, S.T.; Yoo, Y.K.; An, G.; Kim, S.R. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci. 2003, 165, 403–413. [Google Scholar] [CrossRef]
- Pattanaik, S.; Kong, Q.; Zaitlin, D.; Werkman, J.; Xie, C.H.; Patra, B.; Yuan, L. Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 2010, 231, 1061–1076. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, J.; Han, Z.Y.; Song, T.T.; Li, J.Y.; Wang, Y.R.; Yao, Y.C. McMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus crabapple. Sci. Rep. 2017, 7, 43715. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.G.; Li, G.R.; Liu, L.; Zhang, Q.T.; Han, Z.; Chen, X.S.; Li, B. A R2R3-MYB transcription factor., VvMYBC2L2., functions as a transcriptional repressor of anthocyanin biosynthesis in grapevine (Vitis vinifera L.). Molecules 2018, 24, 92. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.Y.; Lin-Wang, K.; Cooney, J.M.; Wang, T.C.; Espley, R.V.; Allan, A.C. Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species). Hortic. Res. 2019, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Ravaglia, D.; Espley, R.V.; Henry-Kirk, R.A.; Andreotti, C.; Ziosi, V.; Hellens, R.P.; Costa, G.; Allan, A.C. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol. 2013, 13, 68. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, K.L.; Liao, L.; Gu, C.; Lu, Z.Q.; Allan, A.C.; Han, Y.P. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. Front. Plant Sci. 2015, 6, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Peng, Q.; Zhao, J.B.; Owiti, A.; Ren, F.; Liao, L.; Wang, L.; Deng, X.B.; Jiang, Q.; Han, Y.P. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Front. Plant Sci. 2016, 7, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak | Retention Time (min) | [M]+ (m/z) | Fragment Ions (m/z) | Compound Name | Raspberry Varieties | |||
---|---|---|---|---|---|---|---|---|
Jeltii Gigant | Caroline | American 22 | Black Raspberry | |||||
1 | 1.76 | 757 | 595,449,287 | Cyanidin-3-O-(6″-O-coumaroyl)-glucoside,5-O-glucoside | * | |||
2 | 2.17 | 773 | 611,287 | Cyanidin-3-O-caffeoylsophoroside | * | * | ||
3 | 2.51 | 611 | 287 | Cyanidin-3-O-di-hexoside | * | * | ||
4 | 2.57 | 449 | 287 | Cyanidin-3-O-glucoside | * | * | * | * |
5 | 2.80 | 595 | 449,287 | Cyanidin 3-O-rutinose | * | * | ||
6 | 2.77 | 757 | 611,287 | Cyanidin-3-(2G-glucosylrutinoside) | * | |||
7 | 2.86 | 581 | 287 | Delphinidin-3-O-sambubioside chloride | * | * | ||
8 | 2.87 | 727 | 581,287 | Cyanidin-3-xylosylrutinoside | * | |||
9 | 2.99 | 595 | 287 | Cyanidin-3-O-coumaryl-glucoside | * | * | ||
10 | 3.29 | 625 | 301 | Peonidin 3-O-di hexoside | * | |||
11 | 3.31 | 433 | 271 | Peonidin-3-O-arabinoside | * | |||
12 | 3.37 | 463 | 301 | Peonidin-3-O-galactoside | * | * | ||
13 | 3.43 | 463 | 301 | Peonidin-3-O-glucoside | ||||
14 | 3.49 | 579 | 433,271 | Pelargonidin 3-O-rutinoside | * | |||
15 | 3.54 | 609 | 463,301 | Peonidin-3-O-coumarylglucoside | * | * | ||
16 | 4.38 | 449 | 287 | Cyanidin-3-O-glucoside | * | * | * | * |
17 | 4.98 | 493 | 331 | Malvidin-3-glucoside | * | * | * | * |
18 | 5.10 | 611 | 303 | Delphinidin-3-O-β-D-(6-(E)-p-coumaroyl) galactopyranoside | * | |||
19 | 5.17 | 465 | 303 | Delphinidin-3-galactoside | * | |||
20 | 5.22 | 435 | 303 | Delphinidin-3-arabinoside | * | |||
21 | 5.38 | 519 | 271 | Pelargonidin-3-(6″malonylglucoside) | * | * | * | |
22 | 5.42 | 433 | 271 | Pelargonidin-3-glucoside | * | * | ||
23 | 5.99 | 507 | 303 | Delphinidin-3-(6″acetylglucoside) | ||||
24 | 6.53 | 465 | 303 | Delphinidin-3-glucoside | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Xin, W.; Li, Y.; Wang, A.; Yang, G. An R2R3-MYB Transcription Factor RoMYB10 Regulates Anthocyanin Biosynthesis in Black Raspberry. Agronomy 2023, 13, 1823. https://doi.org/10.3390/agronomy13071823
Li T, Xin W, Li Y, Wang A, Yang G. An R2R3-MYB Transcription Factor RoMYB10 Regulates Anthocyanin Biosynthesis in Black Raspberry. Agronomy. 2023; 13(7):1823. https://doi.org/10.3390/agronomy13071823
Chicago/Turabian StyleLi, Tiemei, Wenjiao Xin, Yutao Li, Aoxue Wang, and Guohui Yang. 2023. "An R2R3-MYB Transcription Factor RoMYB10 Regulates Anthocyanin Biosynthesis in Black Raspberry" Agronomy 13, no. 7: 1823. https://doi.org/10.3390/agronomy13071823
APA StyleLi, T., Xin, W., Li, Y., Wang, A., & Yang, G. (2023). An R2R3-MYB Transcription Factor RoMYB10 Regulates Anthocyanin Biosynthesis in Black Raspberry. Agronomy, 13(7), 1823. https://doi.org/10.3390/agronomy13071823