Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local and Environmental Conditions
2.2. Treatment Applications and Experimental Design
2.3. Crop Management
2.4. Irrigation and Fertigation
2.5. Plant Growth Parameters and Physiological Aspects
2.6. Fruit Yield and Yield Components
2.7. Fruit Quality
2.8. Statistical Analysis
3. Results
3.1. Plant Growth Parameters
3.2. Fruit Yield and Yield Components
ANE (%) | ETc (%) | Fruit Yield (kg Plant−1) | Bunch Number Plant−1 | Bunch Length (cm) | Fruit Number Plant−1 | Fruit Mass (g) | Fruit Transversal Diameter (cm) |
---|---|---|---|---|---|---|---|
Control | 70 | 1.96 d | 7.25 c | 16.36 e | 61.50 e | 32.90 d | 3.88 d |
100 | 2.40 c | 7.75 bc | 18.46 d | 62.25 e | 36.31 bc | 4.27 b | |
0.1 | 70 | 1.98 d | 7.75 bc | 17.12 e | 61.00 e | 31.74 d | 4.00 cd |
100 | 2.95 b | 8.25 b | 20.37 bc | 68.25 d | 41.26 a | 4.42 a | |
0.2 | 70 | 2.45 c | 8.25 b | 18.81 d | 69.75 d | 34.43 c | 4.10 c |
100 | 3.77 a | 9.25 a | 22.79 a | 90.25 a | 41.75 a | 4.47 a | |
0.3 | 70 | 2.81 b | 9.00 ab | 19.68 c | 75.00 c | 37.50 bc | 4.25 b |
100 | 2.99 b | 9.25 a | 20.94 b | 80.75 b | 37.97 bc | 4.33 ab | |
0.4 | 70 | 2.95 b | 9.00 ab | 19.95 c | 75.75 bc | 38.98 b | 4.33 ab |
100 | 3.00 b | 9.50 a | 20.40 bc | 78.25 b | 36.35 bc | 4.28 b | |
CV (%) | 5.5 | 7.5 | 5.5 | 6.6 | 4.9 | 4.3 | |
ANE | *** | *** | *** | *** | ** | ** | |
ETc | *** | * | *** | *** | *** | *** | |
ANE × ETc | *** | * | *** | ** | *** | *** |
3.3. Physiological Aspects
3.4. Fruit Quality
3.5. Pearson Linear Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Crops and Livestock Products. 2019. Available online: http://faostat.fao.org/faostat (accessed on 22 July 2022).
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Qiu, R.; Sun, J.; Ge, J.; Li, Y.; Wang, S. Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation. Agric. Water Manag. 2020, 235, 106154. [Google Scholar] [CrossRef]
- Patanè, C.; Corinzia, S.A.; Testa, G.; Scordia, D.; Cosentino, S.L. Physiological and agronomic responses of processing tomatoes to deficit irrigation at critical stages in a semi-arid environment. Agronomy 2020, 10, 800. [Google Scholar] [CrossRef]
- Bastug, R.; Karaca, C.; Buyuktas, D.; Aydinsakir, K.; Dinc, N. The efects of defcit irrigation practices on evapotranspiration, yield and quality characteristics of two sesame varieties (Sesamum indicum L.) grown in lysimeters under the Mediterranean climate conditions. Irrig. Sci. 2021, 39, 587–606. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Stinco, C.M.; Hernanz, D.; Moriana, A.; Meléndez-Martínez, A.J. Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Res. Int. 2017, 96, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Chand, J.B.; Hewa, G.; Hassanli, A.; Myers, B. Deficit irrigation on tomato production in a greenhouse environment: A review. J. Irrig. Drain. Eng. 2021, 147, 04020041. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Burman, U.; Kumar, P. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hortic. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Lipan, L.; Issa-Issa, H.; Moriana, A.; Zurita, N.M.; Galindo, A.; Martín-Palomo, M.J.; Andreu, L.; Carbonell-Barrachina, A.A.; Hernández, F.; Corell, M. Scheduling regulated deficit irrigation with leaf water potential of cherry tomato in greenhouse and its effect on fruit quality. Agriculture 2021, 11, 669. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Ghannem, A.; Aissa, I.B.; Majdoub, R. Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits. Environ. Sci. Pollut. Res. 2021, 28, 46553–46564. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Du, T.; Qiu, R.; Chen, J.; Wang, F.; Li, Y.; Wang, C.; Gao, L.; Kang, S. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 179, 193–204. [Google Scholar] [CrossRef]
- Shammout, M.W.; Qtaishat, T.; Rawabdeh, H.; Shatanawi, M. Improving water use efficiency under deficit irrigation in the Jordan Valley. Sustainability 2018, 10, 4317. [Google Scholar] [CrossRef] [Green Version]
- Mattar, M.A.; El Abedin, T.K.Z.; Alazba, A.A.; Al Ghobari, H.M. Soil water status and growth of tomato with partial root zone drying and deficit drip irrigation techniques. Irrig. Sci. 2020, 38, 163–176. [Google Scholar] [CrossRef]
- Montazar, A. Irrigation tools and strategies to conserve water and ensure a balance of sustainability and profitability. Agronomy 2021, 11, 2037. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Rouphael, Y. Biostimulant substances for sustainable agriculture: Origin, operating mechanisms and effects on cucurbits, leafy greens, and nightshade vegetables species. Biomolecules 2021, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE 2019, 14, e0216710. [Google Scholar] [CrossRef] [Green Version]
- De Saeger, J.; Praet, S.V.; Vereecke, D.; Park, J.; Jacques, S.; Han, T.; Depuydt, S. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J. Appl. Phycol. 2020, 32, 573–597. [Google Scholar] [CrossRef] [Green Version]
- Santaniello, A.; Scartazza, A.; Gresta, F.; Loreti, E.; Biasone, A.; Di Tommaso, D.; Piaggesi, A.; Perata, P. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front. Plant Sci. 2017, 8, 1362. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, R.; Jagmohan, S.; Jayaraj, P.; Ali, O.; Ramsubhag, A.; Jayaraman, J. Effects of Ascophyllum nodosum extract on sweet pepper plants as an organic biostimulant in grow box home garden conditions. J. Appl. Phycol. 2021, 34, 647–657. [Google Scholar] [CrossRef]
- Nitsche, P.R.; Caramori, P.H.; Ricce, W.S.; Pinto, L.F.D. Atlas Climático do Estado do Paraná; IAPAR: Londrina, Brazil, 2019. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.Á.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa Solos: Brasília, Brazil, 2018. [Google Scholar]
- Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa Informação Tecnológica: Brasília, Brazil, 2009. [Google Scholar]
- Andrean, A.F.B.A.; Rezende, R.; Wenneck, G.S.; Villa e Vila, V.; Terassi, D.S.; Silva, L.H.M. Water requirements and fruit development rate of Cantaloupe melons cultivated in summer-autumn. Comun. Sci. 2022, 13, e3879. [Google Scholar]
- Parron, L.M.; Muniz, D.H.F.; Pereira, C.M. Manual de Procedimentos de Amostragem e Análise Físico-Química de Água; Embrapa Florestas: Colombo, Brazil, 2011. [Google Scholar]
- Pauletti, V.; Motta, A.C.V. Manual de Adubação e Calagem Para o Estado do Paraná, 2nd ed.; Sociedade Brasileira de ciência do Solo (SBCS/NEPAR): Curitiba, Brazil, 2019. [Google Scholar]
- Ihuoma, S.O.; Madramootoo, C.A. Crop reflectance indices for mapping water stress in greenhouse grown bell pepper. Agric. Water Manag. 2019, 219, 49–58. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R. Chemical and nutritional quality changes of tomato during postharvest transportation and storage. J. Saudi Soc. Agric. Sci. 2021, 20, 401–408. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects Split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Takács, S.; Pék, Z.; Csányi, D.; Daood, H.G.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Influence of water stress levels on the yield and lycopene content of tomato. Water 2020, 12, 1265. [Google Scholar] [CrossRef]
- Terassi, D.S.; Rezende, R.; Wenneck, G.S.; Menezes, C.S.L.; Andrean, A.F.B.A.; Villa e Vila, V.; Silva, L.H.M. Broccoli production with regulated deficit irrigation at different phenological stages. J. Agric. Sci. 2021, 13, 71–80. [Google Scholar] [CrossRef]
- Wenneck, G.S.; Saath, R.; Rezende, R.; Andrean, A.F.B.A.; Santi, D.C. Agronomic response of cauliflower to the addition of silicon to the soil under water deficit. Pesqui. Agropecu. Trop. 2021, 51, e66908. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fisiologia Vegetal, 6th ed.; ArtMed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Giuliani, M.M.; Nardella, E.; Gagliardi, A.; Gatta, G. Deficit irrigation and partial root-zone drying techniques in processing tomato cultivated under Mediterranean climate conditions. Sustainability 2017, 9, 2197. [Google Scholar] [CrossRef] [Green Version]
- Frioni, T.; VanderWeide, J.; Palliotti, A.; Tombesi, S.; Poni, S.; Sabbatini, P. Foliar vs. soil application of Ascophyllum nodosum extracts to improve grapevine water stress tolerance. Sci. Hortic. 2021, 277, 109807. [Google Scholar] [CrossRef]
- Agbna, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Evangelou, E.; Yvin, J.C.; Tsadilas, C.; Mina, J.M.C.; Cruz, F. Responses of winter wheat to Ascophyllum nodosum (L.) Le Jol. extract application under the effect of N fertilization and water supply. J. Appl. Phycol. 2015, 27, 589–600. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Dangariya, M.; Agarwal, P. Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Res. 2021, 58, 102363. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Gao, Y.; Zhang, K.; Wei, Q.; Cheng, J. Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis. Agric. Water Manag. 2021, 243, 106427. [Google Scholar] [CrossRef]
- Salvi, L.; Brunetti, C.; Cataldo, E.; Niccolai, A.; Centritto, M.; Ferrini, F.; Mattii, G.B. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem. 2019, 139, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Gebretsadikan, T.; Munro, P.; Forge, T.A.; Jones, M.D.; Nelson, L.M. Mulching improved soil fertility, plant growth and productivity, and postharvest deficit irrigation reduced water use in sweet cherry orchards in a semi-arid region. Arch. Agron. Soil Sci. 2023, 69, 1419–1436. [Google Scholar] [CrossRef]
- Anjum, M.M.; Arif, M.; Riaz, M.; Akhtar, K.; Zhang, S.Q.; Zhao, C.P. Performance of Hybrid Wheat Cultivars Facing Deficit Irrigation under Semi-Arid Climate in Pakistan. Agronomy 2021, 11, 1976. [Google Scholar] [CrossRef]
ANE (%) | ETc (%) | Plant Height (m) | Stem Diameter (mm) | Total Leaf Area (cm2) | Plant Dry Matter (g) | RWC | SPAD | ||
---|---|---|---|---|---|---|---|---|---|
Leaf | Stem | Root | (%) | Index | |||||
Control | 70 | 1.73 c | 12.92 e | 6040.7 c | 55.65 d | 37.52 c | 6.69 c | 74.87 c | 44.50 d |
100 | 1.79 bc | 13.42 d | 7222.8 bc | 69.76 c | 41.73 bc | 9.61 ab | 82.36 b | 46.90 c | |
0.1 | 70 | 1.81 b | 13.60 c | 6328.7 c | 63.17 c | 38.40 c | 6.99 bc | 74.26 c | 46.45 c |
100 | 1.91 ab | 14.79 c | 8369.3 ab | 83.99 ab | 51.53 a | 10.33 a | 86.75 ab | 48.48 bc | |
0.2 | 70 | 1.86 ab | 14.45 c | 8445.8 ab | 76.31 b | 44.19 b | 10.11 a | 86.50 ab | 48.45 bc |
100 | 1.95 a | 15.90 a | 9369.1 a | 95.15 a | 56.18 a | 11.19 a | 87.50 ab | 50.80 a | |
0.3 | 70 | 1.90 ab | 15.32 b | 8994.0 a | 78.89 b | 47.45 b | 10.12 a | 88.02 a | 48.60 bc |
100 | 2.00 a | 16.12 a | 9433.2 a | 91.14 a | 54.91 a | 9.57 ab | 89.02 a | 48.73 bc | |
0.4 | 70 | 1.95 a | 15.20 b | 8794.9 a | 84.60 ab | 52.34 a | 10.69 a | 87.16 ab | 48.28 bc |
100 | 1.91 ab | 15.47 b | 8897.7 a | 87.23 ab | 51.73 a | 9.73 ab | 89.74 a | 48.90 b | |
CV (%) | 4.5 | 3.5 | 7.7 | 7.9 | 10.1 | 12.0 | 5.6 | 4.6 | |
ANE | *** | *** | *** | *** | *** | *** | *** | *** | |
ETc | *** | *** | *** | *** | ** | * | *** | *** | |
ANE × ETc | *** | * | * | * | * | * | *** | * |
ANE (%) | ETc (%) | Total Acidity (%) | pH | TSS (°BRIX) | Ratio | Total Polyphenols (mg g−1) |
---|---|---|---|---|---|---|
Control | 70 | 0.36 b | 4.54 ab | 4.03 c | 11.33 bc | 0.34 c |
100 | 0.39 a | 4.40 c | 3.46 d | 8.99 d | 0.29 d | |
0.1 | 70 | 0.36 b | 4.55 ab | 4.57 a | 12.87 b | 0.38 ab |
100 | 0.38 a | 4.48 b | 4.30 b | 11.59 bc | 0.39 a | |
0.2 | 70 | 0.32 c | 4.59 a | 4.47 a | 15.45 a | 0.39 a |
100 | 0.38 a | 4.48 b | 4.43 ab | 11.84 bc | 0.40 a | |
0.3 | 70 | 0.32 c | 4.58 a | 4.50 a | 13.87 ab | 0.38 ab |
100 | 0.36 b | 4.50 b | 4.28 b | 11.98 bc | 0.36 b | |
0.4 | 70 | 0.32 c | 4.56 ab | 4.48 a | 14.21 ab | 0.37 b |
100 | 0.33 c | 4.51 | 4.20 | 12.74 b | 0.35 c | |
CV (%) | 7.1 | 1.0 | 3.2 | 6.9 | 4.2 | |
ANE | ** | * | *** | *** | *** | |
ETc | *** | *** | *** | *** | ** | |
ANE × ETc | * | * | * | * | ** |
Foliar Area | Shoot Biomass | Yield | Bunch Number | Total Soluble Solids | Total Polyphenols | Relative Water Content | Chlorophyll Content | |
---|---|---|---|---|---|---|---|---|
Foliar area | 1.00 | - | - | - | - | - | - | - |
Shoot biomass | 0.96 | 1.00 | - | - | - | - | - | - |
Yield | 0.89 | 0.96 | 1.00 | - | - | - | - | - |
Bunch number | 0.92 | 0.91 | 0.84 | 1.00 | - | - | - | - |
Total soluble solids | 0.35 | 0.31 | 0.24 | 0.39 | 1.00 | - | - | - |
Total polyphenols | 0.43 | 0.43 | 0.42 | 0.37 | 0.92 | 1.00 | - | - |
Relative water content | 0.96 | 0.90 | 0.82 | 0.87 | 0.18 | 0.27 | 1.00 | - |
Chlorophyll content | 0.92 | 0.94 | 0.92 | 0.85 | 0.39 | 0.53 | 0.85 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa e Vila, V.; Marques, P.A.A.; Rezende, R.; Wenneck, G.S.; Terassi, D.d.S.; Andrean, A.F.B.A.; Nocchi, R.C.d.F.; Matumoto-Pintro, P.T. Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality. Agronomy 2023, 13, 1853. https://doi.org/10.3390/agronomy13071853
Villa e Vila V, Marques PAA, Rezende R, Wenneck GS, Terassi DdS, Andrean AFBA, Nocchi RCdF, Matumoto-Pintro PT. Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality. Agronomy. 2023; 13(7):1853. https://doi.org/10.3390/agronomy13071853
Chicago/Turabian StyleVilla e Vila, Vinícius, Patricia Angélica Alves Marques, Roberto Rezende, Gustavo Soares Wenneck, Daniele de Souza Terassi, André Felipe Barion Alves Andrean, Raiana Crepaldi de Faria Nocchi, and Paula Toshimi Matumoto-Pintro. 2023. "Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality" Agronomy 13, no. 7: 1853. https://doi.org/10.3390/agronomy13071853
APA StyleVilla e Vila, V., Marques, P. A. A., Rezende, R., Wenneck, G. S., Terassi, D. d. S., Andrean, A. F. B. A., Nocchi, R. C. d. F., & Matumoto-Pintro, P. T. (2023). Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality. Agronomy, 13(7), 1853. https://doi.org/10.3390/agronomy13071853