Digitization of Crop Nitrogen Modelling: A Review
Abstract
:1. Introduction
2. Material and Methods
- RQ1—How does N behave in the soil−plant system, and how does this dynamic influence its estimation by classical CGMs?
- RQ2—What are the gaps and uncertainties in the estimates of CGMs?
- RQ3—How to integrate digital data sources into CGM estimates?
- RQ4—Can the models generate estimates of the correct dose to be site-specific applied in the field?
- RQ5—If the models fulfil a site-specific estimate, how does it interact and present that site-specific solution to decision makers?
- RC 1—Publication is not related to the sustainability of the agricultural sector;
- RC 2—Publication is not related to soil-plant nitrogen dynamic;
- RC 3—Publication is not written in English;
- RC 4—Publication is a duplicate;
- RC 5—Full text of the publication is not available.
3. Results
3.1. N Dynamics
3.1.1. N Supply by the Soil
Influence of Soil Chemical Properties
Influence of Soil Physical Properties
Influence of Agricultural Practices
3.1.2. N Losses
3.1.3. Crop Absorption of N
3.2. Crop N Modelling
3.2.1. Mechanistic CGMs
3.2.2. Model Testing and Validation
3.2.3. Climate Sensitivity of the Models
3.3. Modelling with Digital Tools and Technologies
3.3.1. Integrate Digital Data into CGMs
3.3.2. Virtual Representation of CGMs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Valkama, E.; Salo, T.; Esala, M.; Turtola, E. Nitrogen balances and yields of spring cereals as affected by nitrogen fertilization in northern conditions: A meta-analysis. Agric. Ecosyst. Environ. 2013, 164, 1–13. [Google Scholar] [CrossRef]
- Plett, D.C.; Holtham, L.R.; Okamoto, M.; Garnett, T.P. Nitrate uptake and its regulation in relation to improving nitrogen use efficiency in cereals. Semin. Cell Dev. Biol. 2018, 74, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Archontoulis, S.V.; Castellano, M.J.; Licht, M.A.; Nichols, V.; Baum, M.; Huber, I.; Martinez-Feria, R.; Puntel, L.; Ordóñez, R.A.; Iqbal, J.; et al. Predicting crop yields and soil-plant nitrogen dynamics in the US Corn Belt. Crop Sci. 2020, 60, 2–721. [Google Scholar] [CrossRef] [Green Version]
- Kersebaum, K.C.; Lorenz, K.; Reuter, H.I.; Schwarz, J.; Wegehenkel, M.; Wendroth, O. Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Phys. Chem. Earth 2005, 30, 59–67. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Luce, M.S.; Whalen, J.K.; Ziadi, N.; Zebarth, B.J. Chapter two—Nitrogen Dynamics and Indices to Predict Soil Nitrogen Supply in Humid Temperate Soils. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 112, pp. 55–102. ISBN 9780123855381. [Google Scholar] [CrossRef]
- Stockdale, E.A.; Gaunt, J.L.; Vos, J. Soil–plant nitrogen dynamics: What concepts are required? Dev. Crop Sci. 1997, 25, 201–215. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Huang, T.; Yu, C.; Feng, Y.; Tian, Y. Dynamics of soil net nitrogen mineralization and controlled effect of microbial functional genes in the restoration of cold temperate forests. Appl. Soil Ecol. 2023, 189, 104898. [Google Scholar] [CrossRef]
- Figueiredo, N.; Carranca, C.; Goufo, P.; Pereira, J.; Trindade, H.; Coutinho, J. Impact of agricultural practices, elevated temperature and atmospheric carbon dioxide concentration on nitrogen and pH dynamics in soil and floodwater during the seasonal rice growth in Portugal. Soil Tillage Res. 2015, 145, 198–207. [Google Scholar] [CrossRef]
- Akpinar, C.; Ortas, I. Impact of Different Doses of Phosphorus Fertilizer Application on Wheat Yield, Soil-Plant Nutrient Uptake and Soil Carbon and Nitrogen Dynamics. Commun. Soil Sci. Plant Anal. 2023, 54, 1537–1546. [Google Scholar] [CrossRef]
- Han, Y.; Jia, Y.; Wang, G.; Tan, Q.; Liu, X.; Chen, C. Coupling of soil carbon and nitrogen dynamics in drylands under climate change. CATENA 2023, 221, 106735. [Google Scholar] [CrossRef]
- Jia, Y.; Van Der Heijden, M.; Valzano-Held, A.Y.; Jocher, M.; Walder, F. Mycorrhizal fungi mitigate nitrogen losses of an experimental grassland by facilitating plant uptake and soil microbial immobilization. Pedosphere 2023. [Google Scholar] [CrossRef]
- Huang, J.; Deng, M.; Jia, Z.; Yang, S.; Yang, L.; Pan, S.; Chang, P.; Liu, C.; Liu, L. Influences of plant traits on the retention and redistribution of bioavailable nitrogen within the plant-soil system. Geoderma 2023, 432, 116380. [Google Scholar] [CrossRef]
- Schaeffer, S.M.; Homyak, P.M.; Boot, C.M.; Roux-Michollet, D.; Schimel, J.P. Soil carbon and nitrogen dynamics throughout the summer drought in a California annual grassland. Soil Biol. Biochem. 2017, 115, 54–62. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Covelo, F.; Gallardo, A. Dissolved Organic Nitrogen in Mediterranean Ecosystems. Pedosphere 2011, 21, 309–318. [Google Scholar] [CrossRef]
- Shahnazari, A.; Ahmadi, S.H.; Laerke, P.E.; Liu, F.; Plauborg, F.; Jacobsen, S.-E.; Jensen, C.R.; Andersen, M.N. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes. Eur. J. Agron. 2008, 28, 65–73. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K.M. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 370–380. [Google Scholar] [CrossRef]
- Villar, N.; Aranguren, M.; Castellón, A.; Besga, G.; Aizpurua, A. Soil nitrogen dynamics during an oilseed rape (Brassica napus L.) growing cycle in a humid Mediterranean climate. Sci. Rep. 2019, 9, 13864. [Google Scholar] [CrossRef] [Green Version]
- Kühling, I.; Mikuszies, P.; Helfrich, M.; Flessa, H.; Schlathölter, M.; Sieling, K.; Kage, H. Effects of winter cover crops from different functional groups on soil-plant nitrogen dynamics and silage maize yield. Eur. J. Agron. 2023, 148, 126878. [Google Scholar] [CrossRef]
- Lin, Z.; Price, G.W.; Burton, D.L.; Clark, O.G. Effects on soil nitrogen and plant production from land applying three types of biosolids to an agricultural field for three consecutive years. Soil Tillage Res. 2022, 223, 105458. [Google Scholar] [CrossRef]
- Ingraffia, R.; Lo Porto, A.; Ruisi, P.; Amato, G.; Giambalvo, D.; Frenda, A.S. Conventional tillage versus no-tillage: Nitrogen use efficiency component analysis of contrasting durum wheat genotypes grown in a Mediterranean environment. Field Crops Res. 2023, 296, 108904. [Google Scholar] [CrossRef]
- Fernández-Ortega, J.; Álvaro-Fuentes, J.; Cantero-Martínez, C. The use of double-cropping in combination with no-tillage and optimized nitrogen fertilization reduces soil N2O emissions under irrigation. Sci. Total Environ. 2023, 857, 159458. [Google Scholar] [CrossRef]
- Dan, X.; He, M.; Meng, L.; He, X.; Wang, X.; Chen, S.; Cai, Z.; Zhang, J.; Zhu, B.; Müller, C. Strong rhizosphere priming effects on N dynamics in soils with higher soil N supply capacity: The ‘Matthew effect’ in plant-soil systems. Soil Biol. Biochem. 2023, 178, 108949. [Google Scholar] [CrossRef]
- Sosa, L.; Panettieri, M.; Moreno, B.; Benítez, E.; Madejón, E. Compost application in an olive grove influences nitrogen dynamics under Mediterranean conditions. Appl. Soil Ecol. 2022, 175, 104462. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Carozzi, M.; Decuq, C.; Loubet, B.; Finco, A.; Marzuoli, R.; Gerosa, G.; Tommasi, P.D.; Magliulo, V.; Rana, G. Ammonia, nitrous oxide, carbon dioxide, and water vapor fluxes after green manuring of faba bean under Mediterranean climate. Agric. Ecosyst. Environ. 2021, 315, 107439. [Google Scholar] [CrossRef]
- Harper, L.A.; Sharpe, R.R. Nitrogen Dynamics in Irrigated Corn: Soil-Plant Nitrogen and Atmospheric Ammonia Transport. Agron. J. 1995, 87, 669–675. [Google Scholar] [CrossRef]
- Lafuente, A.; Recio, J.; Ochoa-Hueso, R.; Gallardo, A.; Pérez-Corona, M.E.; Manrique, E.; Durán, J. Simulated nitrogen deposition influences soil greenhouse gas fluxes in a Mediterranean dryland. Sci. Total Environ. 2020, 737, 139610. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Bareche, J.; Pareja-Sánchez, E.; Justes, É.; Cantero-Martínez, C. No-tillage reduces long-term yield-scaled soil nitrous oxide emissions in rainfed Mediterranean agroecosystems: A field and modelling approach. Agric. Ecosyst. Environ. 2018, 262, 36–47. [Google Scholar] [CrossRef]
- Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; Cruz, A.; Calvete-Sogo, H.; Vallejo, A. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs. Atmos. Environ. 2017, 165, 12–22. [Google Scholar] [CrossRef]
- Dubey, R.S.; Srivastava, R.K.; Pessarakli, M. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, FL, USA, 2021; pp. 579–616. [Google Scholar]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Pasley, H.; Brown, H.; Holzworth, D.; Whish, J.; Bell, L.; Huth, N. How to build a crop model. A review. Agron. Sustain. Dev. 2023, 43, 2. [Google Scholar] [CrossRef]
- Jiang, R.; He, W.; Zhou, W.; Hou, Y.; Yang, J.Y.; He, P. Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models. Comput. Electron. Agric. 2019, 166, 104988. [Google Scholar] [CrossRef]
- Wajid, A.; Hussain, K.; Ilyas, A.; Habib-ur-Rahman, M.; Shakil, Q.; Hoogenboom, G. Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments. Agriculture 2021, 11, 1166. [Google Scholar] [CrossRef]
- Martínez-Ruiz, A.; López-Cruz, I.L.; Ruiz-García, A.; Pineda-Pineda, J.; Prado-Hernández, J.V. HortSyst: A dynamic model to predict growth, nitrogen uptake, and transpiration of greenhouse tomatoes. Chil. J. Agric. Res. 2019, 79, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Song, C.; Fang, C.; Xin, Z.; Xi, J.; Lu, Y. A recommended nitrogen application strategy for high crop yield and low environmental pollution at a basin scale. Sci. Total Environ. 2021, 792, 148464. [Google Scholar] [CrossRef]
- Kherif, O.; Seghouani, M.; Justes, E.; Plaza-Bonilla, D.; Bouhenache, A.; Zemmouri, B.; Dokukin, P.; Latati, M. The first calibration and evaluation of the STICS soil-crop model on chickpea-based intercropping system under Mediterranean conditions. Eur. J. Agron. 2022, 133, 126449. [Google Scholar] [CrossRef]
- Puntel, L.A.; Pagani, A.; Archontoulis, S.V. Development of a nitrogen recommendation tool for corn considering static and dynamic variables. Eur. J. Agron. 2019, 105, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, F.J.; Delgado, A.; López-Bernal, Á.; Quemada, M. FertiliCalc: A Decision Support System for Fertilizer Management. Int. J. Plant Prod. 2020, 14, 299–308. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- McClelland, S.C.; Paustian, K.; Williams, S.; Schipanski, M.E. Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools. Agric. Syst. 2021, 191, 103151. [Google Scholar] [CrossRef]
- Moot, D.J.; Robertson, M.J.; Pollock, K.M. Validation of the APSIM-Lucerne model for phenological development in a cool-temperate climate. In Proceedings of the 10th Australian Agronomy Conference, Hobart, TAS, Austalia, 29 January–1 February 2001; Available online: http://www.regional.org.au/au/asa/2001/6/d/moot.htm?print=1 (accessed on 17 July 2023).
- Wilson, D.R.; Muchow, R.C.; Murgatroyd, C.J. Model analysis of temperature and solar radiation limitations to maize potential productivity in a cool climate. Field Crops Res. 1995, 43, 1–18. [Google Scholar] [CrossRef]
- Jégo, G.; Chantigny, M.; Pattey, E.; Bélanger, G.; Rochette, P.; Vanasse, A.; Goyer, C. Improved snow-cover model for multi-annual simulations with the STICS crop model under cold, humid continental climates. Agric. For. Meteorol. 2014, 195–196, 38–51. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Müller, C.; Ruane, A.C.; Elliott, J.; Balkovic, J.; Castillo, O.; Faye, B.; Foster, I.; Folberth, C.; Franke, J.A.; et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2021, 2, 873–885. [Google Scholar] [CrossRef]
- Shahvari, N.; Khalilian, S.; Mosavi, S.H.; Mortazavi, S.A. Assessing climate change impacts on water resources and crop yield: A case study of Varamin plain basin. Iran. Environ. Monit. Assess. 2019, 191, 134. [Google Scholar] [CrossRef]
- Montenegro, S.G.; Montenegro, A.; Ragab, R. Improving agricultural water management in the semi-arid region of Brazil: Experimental and modelling study. Irrig. Sci. 2010, 28, 301–316. [Google Scholar] [CrossRef]
- Saseendran, S.A.; Singh, K.K.; Rathore, L.S.; Singh, S.V.; Sinha, S.K. Effects of Climate Change on Rice Production in the Tropical Humid Climate of Kerala, India. Clim. Chang. 2000, 44, 495–514. [Google Scholar] [CrossRef]
- Rizzo, G.; Agus, F.; Batubara, S.F.; Andrade, J.F.; Edreira, J.I.R.; Purwantomo, D.K.G.; Anasiru, R.H.; Maintang, M.O.; Ningsih, R.D.; Syahri, R.B.S.; et al. A farmer data-driven approach for prioritization of agricultural research and development: A case study for intensive crop systems in the humid tropics. Field Crops Res. 2023, 297, 108942. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Data-Driven Modelling of Soil Moisture Dynamics for Smart Irrigation Scheduling. Smart Agric. Technol. 2023, 5, 100251. [Google Scholar] [CrossRef]
- Wen, G.; Ma, B.-L.; Vanasse, A.; Caldwell, C.D.; Smith, D.L. Optimizing machine learning-based site-specific nitrogen application recommendations for canola production. Field Crops Res. 2022, 288, 108707. [Google Scholar] [CrossRef]
- Birner, R.; Daum, T.; Pray, C. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Appl. Econ. Perspect. Policy 2021, 43, 1260–1285. [Google Scholar] [CrossRef]
- Divya, K.L.; Mhatre, P.H.; Venkatasalam, E.P.; Sudha, R. Crop Simulation Models as Decision-Supporting Tools for Sustainable Potato Production: A Review. Potato Res. 2021, 64, 387–419. [Google Scholar] [CrossRef]
- Gobbo, S.; De Antoni Migliorati, M.; Ferrise, R.; Morari, F.; Furlan, L.; Sartori, L. Evaluation of different crop model-based approaches for variable rate nitrogen fertilization in winter wheat. Precision Agric. 2021, 23, 1922–1948. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine learning and remote sensing techniques applied to estimate soil indicators—Review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Gautron, R.; Padrón, E.J.; Preux, P.; Bigot, J.; Maillard, O.A.; Emukpere, D. gym-DSSAT: A Crop Model Turned into a Reinforcement Learning Environment. Doctoral Dissertation, Inria Lille, Rocquencourt, France, 2022. [Google Scholar]
- Wu, J.; Tao, R.; Zhao, P.; Martin, N.F.; Hovakimyan, N. Optimizing nitrogen management with deep reinforcement learning and crop simulations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1712–1720. [Google Scholar]
- Ruan, G.; Schmidhalter, U.; Yuan, F.; Cammarano, D.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Exploring the transferability of wheat nitrogen status estimation with multisource data and Evolutionary Algorithm-Deep Learning (EA-DL) framework. Eur. J. Agron. 2023, 143, 126727. [Google Scholar] [CrossRef]
- Silva, L.; Conceição, L.A.; Lidon, F.C.; Maçãs, B. Remote Monitoring of Crop Nitrogen Nutrition to Adjust Crop Models: A Review. Agriculture 2023, 13, 835. [Google Scholar] [CrossRef]
- Zhuo, W.; Fang, S.; Gao, X.; Wang, L.; Wu, D.; Fu, S.; Wu, Q.; Huang, J. Crop yield prediction using MODIS LAI, TIGGE weather forecasts and WOFOST model: A case study for winter wheat in Hebei, China during 2009–2013. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102668. [Google Scholar] [CrossRef]
- Kivi, M.S.; Blakely, B.; Masters, M.; Bernacchi, C.J.; Miguez, F.E.; Dokoohaki, H. Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil nitrogen dynamics in the APSIM model. Sci. Total Environ. 2022, 820, 153192. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T. Digital Twins in Agriculture: A State-of-the-art review. Smart Agric. Technol. 2023, 3, 100094. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Müller, C.; Wang, C.; Ciais, P.; Janssens, I.; Peñuelas, J.; Asseng, S.; Li, T.; Elliott, J.; et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 2020, 3, 908–916. [Google Scholar] [CrossRef]
- Zhu, P.; Zhuang, Q.; Archontoulis, S.V.; Bernacchi, C.; Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 2019, 25, 2470–2484. [Google Scholar] [CrossRef] [PubMed]
Statics | Dynamics |
---|---|
Standard conditions are assumed such as expected yield and average weather conditions | Adjust the simulation of growth and production to the moment according to the real conditions of the crop |
Require less input data | Automatic input of real-time weather data |
Long-term average climate databases can be incorporated | Respond to real-time weather data or forecasts for the next few days |
More simplified |
Model | Ref. | Goals | Main Input Parameters |
---|---|---|---|
DNDC | [35] | Estimate crop growth Estimate the dynamics of C and N in the soil Estimate GEE emissions Estimate the water cycle in the soil | Daily weather data Soil properties Agricultural practices of the soil |
DSSAT (CERES-wheat) | [35,36] | Estimate crop growth Simulate water balance in the soil Simulate C dynamic in the soil Simulate crop phenology Estimate Leaf Area Index Estimate crop production | Daily weather data Soil properties Initial soil conditions Agricultural practices |
HortSyst | [37] | Estimate biomass production Estimate N absorption | Hourly air temperature measurements Air relative humidity Solar radiation |
APSIM-wheat | [36] | Simulate crop phenology Estimate Leaf Area Index Estimate crop production | Daily weather data Soil properties Initial soil conditions Agricultural practices |
SWAT | [38] | Estimate crop growth Simulate N losses | Weather data Soil data |
STICS | [39] | Estimate Leaf Area Index Simulate biomass production Estimate N absorption Estimate crop production | Agricultural practices Initial water content in the soil Initial N content in the soil Air temperature Solar radiation Precipitation Wind Relative air humidity Planting density Seeding date Seeding depth N application dates Irrigation dates Emergency density Inter-row placement |
Factor | Variable | Soil Depth | Unit |
---|---|---|---|
Static | Soil organic matter | 0–20 cm | % |
Available Bray phosphorus | 0–20 cm | ppm | |
Electrical conductivity | 0–20 cm | ds/cm | |
pH | 0–20 cm | - | |
Sand content | 0–20 cm | % | |
Silt content | 0–20 cm | % | |
Clay content | 0–20 cm | % | |
Soil apparent electrical conductivity | 0–30 cm | ds/m | |
Elevation as meters above the sea level | - | M | |
Plan curvature | - | Deg | |
Slope of the field | - | %_raise | |
Soil organic matter | 20–60 cm | % | |
Sand content | 20–60 cm | % | |
Silt content | 20–60 cm | % | |
Clay content | 20–60 cm | % | |
Soil apparent electrical conductivity | 0–90 cm | ds/m | |
Variable | Number of residues from the previous crop at planting | - | kg/ha |
Ratio C/N of the residues | - | - | |
Yield of the previous crop | - | kg/ha | |
Nitrate content | 0–20 cm | kg/ha | |
Nitrate content | 20–60 cm | kg/ha | |
Soil water content | 0–20 cm | mm | |
Soil water content | 20–60 cm | mm | |
Soil water as a % of field capacity | 0–20 cm | % | |
Soil water as a % of field capacity | 20–60 cm | % | |
Number of rain events from planting to silking | - | days | |
Number of days with rain >20 mm from planting to silking | - | days | |
Cumulative rain from planting to silking | - | mm | |
Number of rain events from around silking | - | days | |
Cumulative rain around silking | - | mm | |
Number of rain events from harvest to planting | - | days | |
Number of days with rain >20 mm from harvest to planting | - | days | |
Cumulative rain from harvest to planting | - | mm | |
Number of rain events from planting to harvest | - | days | |
Number of days with rain >20 mm from planting to harvest | - | days | |
Cumulative rain from planting to harvest | - | mm | |
Number of heat days (daily temp > 35 °C) around silking | - | days | |
Number of heat days from planting to harvest | - | days | |
Number of cold days (temp < 10 °C) from planting to harvest | - | days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.; Conceição, L.A.; Lidon, F.C.; Patanita, M.; D’Antonio, P.; Fiorentino, C. Digitization of Crop Nitrogen Modelling: A Review. Agronomy 2023, 13, 1964. https://doi.org/10.3390/agronomy13081964
Silva L, Conceição LA, Lidon FC, Patanita M, D’Antonio P, Fiorentino C. Digitization of Crop Nitrogen Modelling: A Review. Agronomy. 2023; 13(8):1964. https://doi.org/10.3390/agronomy13081964
Chicago/Turabian StyleSilva, Luís, Luís Alcino Conceição, Fernando Cebola Lidon, Manuel Patanita, Paola D’Antonio, and Costanza Fiorentino. 2023. "Digitization of Crop Nitrogen Modelling: A Review" Agronomy 13, no. 8: 1964. https://doi.org/10.3390/agronomy13081964