Maintaining the Quality and Safety of Fresh-Cut Potatoes (Solanum tuberosum): Overview of Recent Findings and Approaches
Abstract
:1. Introduction
2. Potato as a Crop
2.1. Origin
2.2. Cultivation
2.3. Potato Market
3. Chemical Composition
4. Cultivars
5. Post-Harvest Handling and Storage (Influence on FCP)
Wound Healing
6. Anti-Browning Agents and Their Mechanism of Action
6.1. Inhibition of PPO
6.2. New Approaches in Browning Prevention
6.3. Ascorbic Acid
6.4. Natural ABA
6.5. Essential Oils
6.6. Potatoes’ Response to Cutting
7. Microflora
8. Antimicrobials
9. Packaging in FCP Production
9.1. Edible Coatings
9.2. Biodegradable Packaging
10. Emerging Technologies
10.1. UV-C Radiation and Its Effect on FCP
10.2. HHP and Its Effect on FCP
10.3. US and Its Effect on FCP
11. Chemical Changes in FCP during Storage
11.1. Phenolics and Sugars
11.2. Aroma Compounds
12. Effect of Cooking Unprocessed Potatoes and FCP during Storage on Chemical Constituents and Sensory Properties
12.1. Phenolics
12.2. Carotenoids
12.3. Antioxidant Properties
12.4. Potato Antinutrients
12.4.1. Glycoalkaloids
12.4.2. Acrylamide
12.4.3. Polycyclic Aromatic Hydrocarbons (PAH)
12.5. Flavor and Sensory Properties
12.6. Influence of Storage Time of FCP
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaheer, K.; Akhtar, M.H. Potato production, usage, and nutrition—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.C.; Oyarzún, D.; Sepúlveda, A.; Escalona, V. Effect of genotype, raw-material storage time and cut type on native potato suitability for fresh-cut elaboration. Postharvest Biol. Technol. 2017, 128, 1–10. [Google Scholar] [CrossRef]
- Rocculi, P.; Romani, S.; Gómez Galindo, F.; Dalla Rosa, M. Effect of minimal processing on physiology and quality of fresh-cut potatoes: A review. Food 2009, 3, 18–30. [Google Scholar]
- Ierna, A.; Pellegrino, A.; Di Silvestro, I.; Buccheri, M. Sensory and physico-chemical characteristics of minimally processed “early” potato tubers as affected by anti-browning treatments and cultivar. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2016; pp. 229–236. [Google Scholar]
- Friedman, M. Browning and its prevention: An overview. J. Agric. Food Chem. 1996, 44, 631–653. [Google Scholar] [CrossRef]
- Bobo-García, G.; Arroqui, C.; Merino, G.; Vírseda, P. Antibrowning compounds for minimally processed potatoes: A review. Food Rev. Int. 2020, 36, 529–546. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Lu, Y.; Yang, Q.; Li, Y.; Deng, X.; Liu, Y.; Du, X.; Qiao, L.; Zheng, J. Effect of high oxygen pretreatment of whole tuber on anti-browning of fresh-cut potato slices during storage. Food Chem. 2019, 301, 125287. [Google Scholar] [CrossRef]
- Rashid, M.H.; Khan, M.R.; Roobab, U.; Rajoka, M.S.R.; Inam-ur-Raheem, M.; Anwar, R.; Ahmed, W.; Jahan, M.; Ijaz, M.R.A.; Asghar, M.M. Enhancing the shelf stability of fresh-cut potatoes via chemical and nonthermal treatments. J. Food Process. Preserv. 2021, 45, e15582. [Google Scholar] [CrossRef]
- Tsikrika, K.; Tzima, K.; Rai, D.K. Recent advances in anti-browning methods in minimally processed potatoes—A review. J. Food Process. Preserv. 2022, 46, e16298. [Google Scholar] [CrossRef]
- Dong, T.; Cao, Y.; Li, G.; Wang, Q. Enhanced expression of serine protease inhibitor StSPI128 alleviates the enzymatic browning in fresh-cut potatoes via increasing antioxidant abilities. Postharvest Biol. Technol. 2022, 192, 112022. [Google Scholar] [CrossRef]
- Dong, T.; Cao, Y.; Li, G.; Zhu, Z.; Zhang, S.; Jiang, C.-Z.; Wang, Q. A novel aspartic protease inhibitor inhibits the enzymatic browning of potatoes. Postharvest Biol. Technol. 2021, 172, 111353. [Google Scholar] [CrossRef]
- Dong, T.; Cao, Y.; Jiang, C.-Z.; Li, G.; Liu, P.; Liu, S.; Wang, Q. Cysteine protease inhibitors reduce enzymatic browning of potato by lowering the accumulation of free amino acids. J. Agric. Food Chem. 2020, 68, 2467–2476. [Google Scholar] [CrossRef]
- Vreugdenhil, D. The canon of potato science: 39. Dormancy. Potato Res. 2007, 50, 371–373. [Google Scholar] [CrossRef]
- Wustman, R.; Struik, P.C. The Canon of Potato Science: 35. Seed and Ware Potato Storage. Potato Res. 2007, 50, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.; Bohs, L.; Nee, M.; Spooner, D.M. Solanaceae—A model for linking genomics with biodiversity. Comp. Funct. Genom. 2004, 5, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, J.E.; Bryan, G.J.; Ramsay, G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Res. 2006, 49, 49–65. [Google Scholar] [CrossRef]
- Spooner, D.M.; Hijmans, R.J. Potato systematics and germplasm collecting, 1989–2000. Am. J. Potato Res. 2001, 78, 237–268. [Google Scholar] [CrossRef]
- Alamar, M.C.; Tosetti, R.; Landahl, S.; Bermejo, A.; Terry, L.A. Assuring potato tuber quality during storage: A future perspective. Front. Plant Sci. 2017, 8, 2034. [Google Scholar] [CrossRef] [Green Version]
- Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 2014, 80, 283–383. [Google Scholar] [CrossRef]
- Rodríguez, F.; Ghislain, M.; Clausen, A.M.; Jansky, S.H.; Spooner, D.M. Hybrid origins of cultivated potatoes. Theor. Appl. Genet. 2010, 121, 1187–1198. [Google Scholar] [CrossRef]
- Navarre, R.; Pavek, M.J. The Potato: Botany, Production and Uses; CABI: Wallingford, UK, 2014; ISBN 1780642806. [Google Scholar]
- Bradshaw, J.E.; Ramsay, G. Potato Origin and Production. In Advances in Potato Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2009; pp. 1–26. [Google Scholar] [CrossRef]
- Hijmans, R.J. Global distribution of the potato crop. Am. J. Potato Res. 2001, 78, 403–412. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M.H. Food, Energy, and Society; CRC Press: Boca Raton, FL, USA, 2007; ISBN 1420046683. [Google Scholar] [CrossRef]
- Bradshaw, J.E.; Bonierbale, M. Potatoes. In Root and Tuber Crops; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–52. ISBN 978-0-387-92764-0. [Google Scholar]
- Haverkort, A.J.; Linnemann, A.R.; Struik, P.C.; Wiskerke, J.S.C. On Processing Potato: 1. Survey of the Ontology, History and Participating Actors. Potato Res. 2023, 66, 301–338. [Google Scholar] [CrossRef]
- Willard, M. Potato processing: Past, present and future. Am. Potato J. 1993, 70, 405–418. [Google Scholar] [CrossRef]
- Davey, M.W.; Montagu, M.; Van Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Agarwal, S.; Fulgoni, V.L., III. Intake of potatoes is associated with higher diet quality, and improved nutrient intake and adequacy among US adolescents: NHANES 2001–2018 Analysis. Nutrients 2021, 13, 2614. [Google Scholar] [CrossRef] [PubMed]
- Lutaladio, N.B.; Castaldi, L. Potato: The hidden treasure. J. Food Compos. Anal. 2009, 22, 491–493. [Google Scholar] [CrossRef]
- Kaur, L.; Singh, J. Microstructure, starch digestion, and glycemic index of potatoes. In Advances in Potato Chemistry and Technology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 369–402. [Google Scholar] [CrossRef]
- Ramaswamy, U.R.; Kabel, M.A.; Schols, H.A.; Gruppen, H. Structural features and water holding capacities of pressed potato fibre polysaccharides. Carbohydr. Polym. 2013, 93, 589–596. [Google Scholar] [CrossRef]
- Dite Hunjek, D.; Pelaić, Z.; Čošić, Z.; Pedisić, S.; Repajić, M.; Levaj, B. Chemical constituents of fresh-cut potato as affected by cultivar, age, storage, and cooking. J. Food Sci. 2021, 86, 1656–1671. [Google Scholar] [CrossRef]
- Ingallina, C.; Spano, M.; Sobolev, A.P.; Esposito, C.; Santarcangelo, C.; Baldi, A.; Daglia, M.; Mannina, L. Characterization of local products for their industrial use: The case of Italian potato cultivars analyzed by untargeted and targeted methodologies. Foods 2020, 9, 1216. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Oraby, H.F. Fatty acids and bioactive lipids of potato cultivars: An overview. J. Oleo Sci. 2016, 65, 459–470. [Google Scholar] [CrossRef] [Green Version]
- McGill, C.R.; Kurilich, A.C.; Davignon, J. The role of potatoes and potato components in cardiometabolic health: A review. Ann. Med. 2013, 45, 467–473. [Google Scholar] [CrossRef]
- Barta, J.; Bartova, V. Patatin, the major protein of potato (Solanum tuberosum L.) tubers, and its occurrence as genotype effect: Processing versus table potatoes. Czech J. Food Sci. 2008, 26, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Spelbrink, R.E.J.; Lensing, H.; Egmond, M.R.; Giuseppin, M.L.F. Potato patatin generates short-chain fatty acids from milk fat that contribute to flavour development in cheese ripening. Appl. Biochem. Biotechnol. 2015, 176, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Cai, Y.Z.; Ke, J.; Corke, H. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. J. Sci. Food Agric. 2010, 90, 2254–2262. [Google Scholar] [CrossRef]
- Tatarowska, B.; Milczarek, D.; Wszelaczyńska, E.; Pobereżny, J.; Keutgen, N.; Keutgen, A.J.; Flis, B. Carotenoids variability of potato tubers in relation to genotype, growing location and year. Am. J. Potato Res. 2019, 96, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Hamouz, K.; Orsák, M.; Kotíková, Z. Carotenoids in potatoes—A short overview. Plant Soil Environ. 2016, 62, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Deußer, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar] [CrossRef]
- Ceci, A.T.; Franceschi, P.; Serni, E.; Perenzoni, D.; Oberhuber, M.; Robatscher, P.; Mattivi, F. Metabolomic Characterization of Pigmented and Non-Pigmented Potato Cultivars Using a Joint and Individual Variation Explained (JIVE). Foods 2022, 11, 1708. [Google Scholar] [CrossRef]
- Franková, H.; Musilová, J.; Árvay, J.; Harangozo, L.; Šnirc, M.; Vollmannová, A.; Lidiková, J.; Hegedűsová, A.; Jaško, E. Variability of Bioactive Substances in Potatoes (Solanum Tuberosum L.) Depending on Variety and Maturity. Agronomy 2022, 12, 1454. [Google Scholar] [CrossRef]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Miedzianka, J.; Bronkowska, M. The influence of washing and selection processes on the contents of glycoalkaloid and other toxic compounds during industrial chip production. Int. J. Food Sci. Technol. 2015, 50, 1737–1742. [Google Scholar] [CrossRef]
- Ginzberg, I.; Tokuhisa, J.G.; Veilleux, R.E. Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Res. 2009, 52, 1–15. [Google Scholar] [CrossRef]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Hamouz, K. Content of anthocyanins and glycoalkaloids in blue-fleshed potatoes and changes in the content of α-solanine and α-chaconine during manufacture of fried and dried products. Int. J. Food Sci. Technol. 2018, 53, 719–727. [Google Scholar] [CrossRef]
- Cantos, E.; Tudela, J.A.; Gil, M.I.; Espín, J.C. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J. Agric. Food Chem. 2002, 50, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Thybo, A.K.; Christiansen, J.; Kaack, K.; Petersen, M.A. Effect of cultivars, wound healing and storage on sensory quality and chemical components in pre-peeled potatoes. LWT-Food Sci. Technol. 2006, 39, 166–176. [Google Scholar] [CrossRef]
- Cabezas-Serrano, A.B.; Amodio, M.L.; Cornacchia, R.; Rinaldi, R.; Colelli, G. Suitability of five different potato cultivars (Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol. Technol. 2009, 53, 138–144. [Google Scholar] [CrossRef]
- Cornacchia, R.; Cabezas-Serrano, A.B.; Amodio, M.L.; Colelli, G. Suitability of 4 potato cultivars (Solanum tuberosum L.) to be processed as fresh-cut product. Early cultivars. Am. J. Potato Res. 2011, 88, 403–412. [Google Scholar] [CrossRef]
- Ellis, G.D.; Knowles, L.O.; Knowles, N.R. Respiratory and low-temperature sweetening responses of fresh-cut potato (Solanum tuberosum L.) tubers to low oxygen. Postharvest Biol. Technol. 2019, 156, 110937. [Google Scholar] [CrossRef]
- Dite Hunjek, D.; Pranjić, T.; Repajić, M.; Levaj, B. Fresh-cut potato quality and sensory: Effect of cultivar, age, processing, and cooking during storage. J. Food Sci. 2020, 85, 2296–2309. [Google Scholar] [CrossRef]
- Fellman, J.K.; Michailides, T.J.; Manganaris, G.A. Biochemical description of fresh produce quality factors. Stewart Postharvest Rev. 2013, 9, 1–8. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, M.; Wang, Y.; Tian, X.; Lu, L.; Liu, X. Integrated transcriptomic and metabolomic analysis of cultivar differences provides insights into the browning mechanism of fresh-cut potato tubers. Postharvest Biol. Technol. 2022, 188, 111905. [Google Scholar] [CrossRef]
- Wang, T.; Yan, T.; Shi, J.; Sun, Y.; Wang, Q.; Li, Q. The stability of cell structure and antioxidant enzymes are essential for fresh-cut potato browning. Food Res. Int. 2023, 164, 112449. [Google Scholar] [CrossRef] [PubMed]
- Paul, V.; Ezekiel, R.; Pandey, R. Acrylamide in processed potato products: Progress made and present status. Acta Physiol. Plant. 2016, 38, 276. [Google Scholar] [CrossRef]
- Muthoni, J.; Kabira, J.; Shimelis, H.; Melis, R. Regulation of potato tuber dormancy: A review. Aust. J. Crop Sci. 2014, 8, 754–759. [Google Scholar]
- Suttle, J.C. Physiological regulation of potato tuber dormancy. Am. J. Potato Res. 2004, 81, 253–262. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, B.P.; Kumar, P. An overview of the factors affecting sugar content of potatoes. Ann. Appl. Biol. 2004, 145, 247–256. [Google Scholar] [CrossRef]
- Yang, R.; Han, Y.; Han, Z.; Ackah, S.; Li, Z.; Bi, Y.; Yang, Q.; Prusky, D. Hot water dipping stimulated wound healing of potato tubers. Postharvest Biol. Technol. 2020, 167, 111245. [Google Scholar] [CrossRef]
- Lulai, E.C. Skin-set, wound healing, and related defects. In Potato Biology and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 471–500. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, X.; Jiang, H.; Zhao, S.; Silvy, E.M.; Yang, R.; Han, Y.; Bi, Y.; Prusky, D. Kloeckera apiculata promotes the healing of potato tubers by rapidly colonizing and inducing phenylpropanoid metabolism and reactive oxygen species metabolism. Postharvest Biol. Technol. 2022, 192, 112033. [Google Scholar] [CrossRef]
- Ozeretskovskaya, O.L.; Vasyukova, N.I.; Chalenko, G.I.; Gerasimova, N.G.; Revina, T.A.; Valueva, T.A. Wound healing and induced resistance in potato tubers. Appl. Biochem. Microbiol. 2009, 45, 199–203. [Google Scholar] [CrossRef]
- Zhou, F.; Jiang, A.; Feng, K.; Gu, S.; Xu, D.; Hu, W. Effect of methyl jasmonate on wound healing and resistance in fresh-cut potato cubes. Postharvest Biol. Technol. 2019, 157, 110958. [Google Scholar] [CrossRef]
- Xie, P.; Yang, Y.; Gong, D.; Yu, L.; Han, Y.; Zong, Y.; Li, Y.; Prusky, D.; Bi, Y. Chitooligosaccharide maintained cell membrane integrity by regulating reactive oxygen species homeostasis at wounds of potato tubers during healing. Antioxidants 2022, 11, 1791. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.; Zhou, L.; Jiang, C.-Z.; Feng, Y.; Wei, S. Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products. Food Chem. 2015, 169, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clé, C.; Hill, L.M.; Niggeweg, R.; Martin, C.R.; Guisez, Y.; Prinsen, E.; Jansen, M.A.K. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 2008, 69, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.H.; Wishart, K. Effects of chlorogenic acid and bovine serum albumin on the oxidative stability of low density lipoproteins in vitro. J. Agric. Food Chem. 2010, 58, 5828–5833. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Feng, Y.; Wei, S.; Wang, Q. Effects of curing treatment on the browning of fresh-cut potatoes. Am. J. Potato Res. 2014, 91, 655–662. [Google Scholar] [CrossRef]
- Ali, H.M.; El-Gizawy, A.M.; El-Bassiouny, R.E.I.; Saleh, M.A. The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products. Food Chem. 2016, 192, 879–885. [Google Scholar] [CrossRef]
- Li, L.; Wu, M.; Zhao, M.; Guo, M.; Liu, H. Enzymatic properties on browning of fresh-cut potato. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 397, p. 12116. [Google Scholar]
- Tsouvaltzis, P.; Brecht, J.K. Inhibition of enzymatic browning of fresh-cut potato by immersion in citric acid is not solely due to pH reduction of the solution. J. Food Process. Preserv. 2017, 41, e12829. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Q.; Liu, P.; Shi, J.; Wang, Q. Aspartic acid can effectively prevent the enzymatic browning of potato by regulating the generation and transformation of brown product. Postharvest Biol. Technol. 2020, 166, 111209. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Q.; Ma, S.; Ma, Y.; Meng, Q.; Zhang, Z.; Shi, J. Short-time water immersion inhibits browning of fresh-cut potato by enhancing antioxidant capability and tyrosine scavenging. J. Food Process. Preserv. 2019, 43, e14168. [Google Scholar] [CrossRef]
- Cerit, İ.; Pfaff, A.; Ercal, N.; Demirkol, O. Postharvest application of thiol compounds affects surface browning and antioxidant activity of fresh-cut potatoes. J. Food Biochem. 2020, 44, e13378. [Google Scholar] [CrossRef]
- Ru, X.; Tao, N.; Feng, Y.; Li, Q.; Wang, Q. A novel anti-browning agent 3-mercapto-2-butanol for inhibition of fresh-cut potato browning. Postharvest Biol. Technol. 2020, 170, 111324. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, Y.; Meng, Z.; Sui, X.; Zhang, D.; Yan, H.; Wang, Q. S-Ethyl thioacetate as a natural anti-browning agent can significantly inhibit the browning of fresh-cut potatoes by decreasing polyphenol oxidase activity. Sci. Hortic. 2022, 305, 111427. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, T.; Malik, A.U.; Wang, Q. Exogenous isoleucine can confer browning resistance on fresh-cut potato by suppressing polyphenol oxidase activity and improving the antioxidant capacity. Postharvest Biol. Technol. 2022, 184, 111772. [Google Scholar] [CrossRef]
- Liu, P.; Xu, N.; Liu, R.; Liu, J.; Peng, Y.; Wang, Q. Exogenous proline treatment inhibiting enzymatic browning of fresh-cut potatoes during cold storage. Postharvest Biol. Technol. 2022, 184, 111754. [Google Scholar] [CrossRef]
- Öztürk, C.; Bayrak, S.; Demir, Y.; Aksoy, M.; Alım, Z.; Özdemir, H.; İrfan Küfrevioglu, Ö. Some indazoles as alternative inhibitors for potato polyphenol oxidase. Biotechnol. Appl. Biochem. 2022, 69, 2249–2256. [Google Scholar] [CrossRef]
- Qiao, L.; Han, X.; Wang, H.; Gao, M.; Tian, J.; Lu, L.; Liu, X. Novel alternative for controlling enzymatic browning: Catalase and its application in fresh-cut potatoes. J. Food Sci. 2021, 86, 3529–3539. [Google Scholar] [CrossRef]
- Kasnak, C. Evaluation of the anti-browning effect of quercetin on cut potatoes during storage. Food Packag. Shelf Life 2022, 31, 100816. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Lu, Y.; Li, Y.; Li, T.; Zhou, B.; Qiao, L. Effect of purslane (Portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage. Food Chem. 2019, 283, 445–453. [Google Scholar] [CrossRef]
- Bobo, G.; Arroqui, C.; Virseda, P. Natural plant extracts as inhibitors of potato polyphenol oxidase: The green tea case study. LWT 2022, 153, 112467. [Google Scholar] [CrossRef]
- Kasnak, C. Effects of anti-browning treatments on the polyphenol oxidase and antioxidant activity of fresh-cut potatoes by using response surface methodology. Potato Res. 2020, 63, 417–430. [Google Scholar] [CrossRef]
- Cheng, D.; Ma, Q.; Zhang, J.; Jiang, K.; Cai, S.; Wang, W.; Wang, J.; Sun, J. Cactus polysaccharides enhance preservative effects of ultrasound treatment on fresh-cut potatoes. Ultrason. Sonochem. 2022, 90, 106205. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, G.; Tang, J.; Yao, C.; Li, P.; Song, Q.; Wang, C. Inhibitory effect of chlorogenic acid on polyphenol oxidase and browning of fresh-cut potatoes. Postharvest Biol. Technol. 2020, 168, 111282. [Google Scholar] [CrossRef]
- Laska, M. Olfactory perception of 6 amino acids by human subjects. Chem. Senses 2010, 35, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.G.; Boner, A.L. Sulfite sensitivity. Clin. Exp. Allergy 1995, 25, 680–681. [Google Scholar] [CrossRef]
- Timbo, B.; Koehler, K.M.; Wolyniak, C.; Klontz, K.C. Sulfites—A food and drug administration review of recalls and reported adverse events. J. Food Prot. 2004, 67, 1806–1811. [Google Scholar] [CrossRef] [PubMed]
- Vally, H.; Misso, N.L.A. Adverse reactions to the sulphite additives. Gastroenterol. Hepatol. Bed Bench 2012, 5, 16. [Google Scholar]
- Zhou, W.; Chen, J.; Luo, X. Anti-browning effects of a compound reagent on fresh-cut potatoes. Food Res. Dev. 2013, 34, 6–9. [Google Scholar]
- Nwachukwu, I.D.; Slusarenko, A.J.; Gruhlke, M.C.H. Sulfur and sulfur compounds in plant defence. Nat. Prod. Commun. 2012, 7, 1934578X1200700323. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhang, D.; Sun, Y.; Meng, Z.; Malik, A.U.; Zhang, S.; Yan, H.; Wang, Q. A novel anti-browning agent S-furfuryl thioacetate for fresh-cut potato screened from food-derived sulfur compounds. Postharvest Biol. Technol. 2022, 192, 112007. [Google Scholar] [CrossRef]
- Schmidt, A.; Beutler, A.; Snovydovych, B. Recent advances in the chemistry of indazoles. Eur. J. Org. Chem. 2008, 2008, 4073–4095. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, D.; Liu, C.; Chen, C.; Tian, M.; Jiang, A. Ascorbic acid treatment inhibits wound healing of fresh-cut potato strips by controlling phenylpropanoid metabolism. Postharvest Biol. Technol. 2021, 181, 111644. [Google Scholar] [CrossRef]
- Xu, D.; Chen, C.; Zhou, F.; Liu, C.; Tian, M.; Zeng, X.; Jiang, A. Vacuum packaging and ascorbic acid synergistically maintain the quality and flavor of fresh-cut potatoes. LWT 2022, 162, 113356. [Google Scholar] [CrossRef]
- Dite Hunjek, D.; Repajić, M.; Ščetar, M.; Karlović, S.; Vahčić, N.; Ježek, D.; Galić, K.; Levaj, B. Effect of anti-browning agents and package atmosphere on the quality and sensory of fresh-cut Birgit and Lady Claire potato during storage at different temperatures. J. Food Process. Preserv. 2020, 44, e14391. [Google Scholar] [CrossRef]
- Kasnak, C.; Palamutoglu, R. Effect of Yogurt Serum on Enzymatic and Oxidative Activity in Fresh-Cut Potatoes. ACS Food Sci. Technol. 2021, 1, 1842–1848. [Google Scholar] [CrossRef]
- Heidari, R.; Niknahad, H.; Sadeghi, A.; Mohammadi, H.; Ghanbarinejad, V.; Ommati, M.M.; Hosseini, A.; Azarpira, N.; Khodaei, F.; Farshad, O. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed. Pharmacother. 2018, 103, 75–86. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Y.; Yang, Q.; Yang, H.; Li, Y.; Zhou, B.; Li, T.; Gao, Y.; Qiao, L. Cod peptides inhibit browning in fresh-cut potato slices: A potential anti-browning agent of random peptides for regulating food properties. Postharvest Biol. Technol. 2018, 146, 36–42. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, Y.; Meng, W.; Pei, L.; Zhang, X. Browning inhibition of seabuckthorn leaf extract on fresh-cut potato sticks during cold storage. Food Chem. 2022, 389, 133076. [Google Scholar] [CrossRef]
- Luo, W.; Tappi, S.; Patrignani, F.; Romani, S.; Lanciotti, R.; Rocculi, P. Essential rosemary oil enrichment of minimally processed potatoes by vacuum-impregnation. J. Food Sci. Technol. 2019, 56, 4404–4416. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, V.; Amoroso, L.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Restuccia, C.; Lombardo, S.; Pandino, G.; Strano, M.G.; Mauromicale, G. The effect of sous vide packaging with rosemary essential oil on storage quality of fresh-cut potato. LWT 2018, 94, 111–118. [Google Scholar] [CrossRef]
- Amoroso, L.; Rizzo, V.; Muratore, G. Nutritional values of potato slices added with rosemary essential oil cooked in sous vide bags. Int. J. Gastron. Food Sci. 2019, 15, 1–5. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; González-Aguilar, G.A.; Del-Toro-Sánchez, L. Enhancing safety and aroma appealing of fresh-cut fruits and vegetables using the antimicrobial and aromatic power of essential oils. J. Food Sci. 2009, 74, R84–R91. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, T.F.M.; van Herk, T.; Vincken, J.-P.; Janssen, R.H.; Narh, D.L.; van Berkel, W.J.H.; Gruppen, H. Potato and mushroom polyphenol oxidase activities are differently modulated by natural plant extracts. J. Agric. Food Chem. 2014, 62, 214–221. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Shan, J.; Li, C.; Suo, H.; Liu, J.; An, K.; Li, X.; Xiong, X. A Genome-Wide View of the Transcriptome Dynamics of Fresh-Cut Potato Tubers. Genes 2023, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.; Miller, F.; Brandão, T.R.; Teixeira, P.; Silva, C.L. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innovative Food Sci. Emerg. Technol. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Lund, B.M.; Graham, A.F.; George, S.M. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 °C. J. Appl. Microbiol. 1988, 64, 241–246. [Google Scholar] [CrossRef]
- Doan, C.H.; Davidson, P.M. Microbiology of potatoes and potato products: A review. J. Food Prot. 2000, 63, 668–683. [Google Scholar] [CrossRef]
- Weis, J.; Seeliger, H.P.R. Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 1975, 30, 29–32. [Google Scholar] [CrossRef]
- Griffin, P.M.; Tauxe, R. V The epidemiology of infections caused by Escherichia coli O157: H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev. 1991, 13, 60–98. [Google Scholar] [CrossRef]
- Chowdappa, P.; Nirmal Kumar, B.J.; Madhura, S.; Mohan Kumar, S.P.; Myers, K.L.; Fry, W.E.; Cooke, D.E.L. Severe outbreaks of late blight on potato and tomato in South India caused by recent changes in the Phytophthora infestans population. Plant Pathol. 2015, 64, 191–199. [Google Scholar] [CrossRef]
- Lim, S.C.; Foster, N.F.; Elliott, B.; Riley, T.V. High prevalence of Clostridium difficile on retail root vegetables, Western Australia. J. Appl. Microbiol. 2018, 124, 585–590. [Google Scholar] [CrossRef]
- Tkalec, V.; Janezic, S.; Skok, B.; Simonic, T.; Mesaric, S.; Vrabic, T.; Rupnik, M. High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiol. 2019, 78, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.; Jenkins, C.; Godbole, G.; Byrne, L. The epidemiology of Shiga toxin-producing Escherichia coli serogroup O157 in England, 2009–2019. Epidemiol. Infect. 2022, 150, e52. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.N.; Anyoha, A.; Madoff, L.C.; Lassmann, B. Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. Int. J. Infect. Dis. 2019, 84, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Oms-Oliu, G.; Rojas-Graü, M.A.; González, L.A.; Varela, P.; Soliva-Fortuny, R.; Hernando, M.I.H.; Munuera, I.P.; Fiszman, S.; Martín-Belloso, O. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biol. Technol. 2010, 57, 139–148. [Google Scholar] [CrossRef]
- Rocha, A.M.C.N.; Coulon, E.C.; Morais, A.M.M.B. Effects of vacuum packaging on the physical quality of minimally processed potatoes. Food Serv. Technol. 2003, 3, 81–88. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Ma, Y.; Liang, H.; Wang, D.; Zhao, X. Shifts in the Bacterial Community Related to Quality Properties of Vacuum-Packaged Peeled Potatoes during Storage. Foods 2022, 11, 1147. [Google Scholar] [CrossRef]
- Beltrán, D.; Selma, M.V.; Tudela, J.A.; Gil, M.I. Effect of different sanitizers on microbial and sensory quality of fresh-cut potato strips stored under modified atmosphere or vacuum packaging. Postharvest Biol. Technol. 2005, 37, 37–46. [Google Scholar] [CrossRef]
- Lauridsen, L.; Knøchel, S. Microbiological stability and diversity in raw pre-peeled potatoes packed in different atmospheres. Eur. Food Res. Technol. 2003, 217, 421–426. [Google Scholar] [CrossRef]
- Gunes, G.; Splittstoesser, D.F.; Lee, C.Y. Microbial quality of fresh potatoes: Effect of minimal processing. J. Food Prot. 1997, 60, 863–866. [Google Scholar] [CrossRef]
- Li, D.; Zhang, F.; Yu, J.; Chen, X.; Liu, B.; Meng, X. A rapid and non-destructive detection of Escherichia coli on the surface of fresh-cut potato slices and application using hyperspectral imaging. Postharvest Biol. Technol. 2021, 171, 111352. [Google Scholar] [CrossRef]
- Martın-Belloso, O.; Soliva-Fortuny, R.; Oms-Oliu, G. Fresh-cut fruits. In Handbook of Fruits and Fruit Processing; Blackwell Publishing: Hoboken, NJ, USA, 2006; pp. 129–144. [Google Scholar] [CrossRef]
- Zhao, S.; Han, X.; Liu, B.; Wang, S.; Guan, W.; Wu, Z.; Theodorakis, P.E. Shelf-life prediction model of fresh-cut potato at different storage temperatures. J. Food Eng. 2022, 317, 110867. [Google Scholar] [CrossRef]
- Giannuzzi, L.; Lombardi, A.M.; Ezaritzky, N. Diffusion of citric and ascorbic acids in pre-peeled potatoes and their influence on microbial growth during refrigerated storage. J. Sci. Food Agric. 1995, 68, 311–317. [Google Scholar] [CrossRef]
- Juneja, V.K.; Martin, S.T.; Sapers, G.M. Control of Listeria monocytogenes in vacuum-packaged pre-peeled potatoes. J. Food Sci. 1998, 63, 911–914. [Google Scholar] [CrossRef]
- Ajingi, Y.S.; Ruengvisesh, S.; Khunrae, P.; Rattanarojpong, T.; Jongruja, N. The combined effect of formic acid and Nisin on potato spoilage. Biocatal. Agric. Biotechnol. 2020, 24, 101523. [Google Scholar] [CrossRef]
- Vazquez-Armenta, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; Molina-Corral, F.J.; Silva-Espinoza, B.A. Antibrowning and antimicrobial effects of onion essential oil to preserve the quality of cut potatoes. Acta Aliment. 2014, 43, 640–649. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Huang, S.; He, Y.; Wu, J.; Yang, Y. Navel orange peel essential oil to control food spoilage molds in potato slices. J. Food Prot. 2018, 81, 1496–1502. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J. Appl. Microbiol. 2009, 106, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Sarengaowa; Wang, L.; Liu, Y.; Yang, C.; Feng, K.; Hu, W. Screening of essential oils and effect of a chitosan-based edible coating containing cinnamon oil on the quality and microbial safety of fresh-cut potatoes. Coatings 2022, 12, 1492. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, F.; Zhang, J.; Han, Q.; Song, L.; Meng, X. Effect of photodynamic treatments on quality and antioxidant properties of fresh-cut potatoes. Food Chem. 2021, 362, 130224. [Google Scholar] [CrossRef]
- Irfan, M.; Inam-Ur-Raheem, M.; Aadil, R.M.; Nadeem, R.; Shabbir, U.; Javed, A. Impact of different cut types on the quality of fresh-cut potatoes during storage. Braz. J. Food Technol. 2020, 23, e2019005. [Google Scholar] [CrossRef]
- Kader, A.A.; Zagory, D.; Kerbel, E.L. Modified atmosphere packaging of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1989, 28, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhang, M.; Devahastin, S.; Guo, Z. Effects of pressurized argon and nitrogen treatments in combination with modified atmosphere on quality characteristics of fresh-cut potatoes. Postharvest Biol. Technol. 2019, 149, 159–165. [Google Scholar] [CrossRef]
- Amaral, R.D.A.; Achaerandio, I.; Benedetti, B.C.; Pujolà, M. The influence of edible coatings, blanching and ultrasound treatments on quality attributes and shelf-life of vacuum packaged potato strips. LWT-Food Sci. Technol. 2017, 85, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Wu, S. Extending shelf-life of fresh-cut potato with cactus Opuntia dillenii polysaccharide-based edible coatings. Int. J. Biol. Macromol. 2019, 130, 640–644. [Google Scholar] [CrossRef]
- Marquez, G.R.; Di Pierro, P.; Mariniello, L.; Esposito, M.; Giosafatto, C.V.L.; Porta, R. Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT 2017, 75, 124–130. [Google Scholar] [CrossRef]
- Saha, A.; Gupta, R.K.; Tyagi, Y.K. Effects of edible coatings on the shelf life and quality of potato (Solanum tuberosum L.) tubers during storage. J. Chem. Pharm. Res. 2014, 6, 802–809. [Google Scholar]
- Licciardello, F.; Lombardo, S.; Rizzo, V.; Pitino, I.; Pandino, G.; Strano, M.G.; Muratore, G.; Restuccia, C.; Mauromicale, G. Integrated agronomical and technological approach for the quality maintenance of ready-to-fry potato sticks during refrigerated storage. Postharvest Biol. Technol. 2018, 136, 23–30. [Google Scholar] [CrossRef]
- Ceroli, P.; Procaccini, L.M.G.; Corbino, G.; Monti, M.C.; Huarte, M. Evaluation of food conservation technologies for potato cubes. Potato Res. 2018, 61, 219–229. [Google Scholar] [CrossRef]
- Thivya, P.; Bhosale, Y.K.; Anandakumar, S.; Hema, V.; Sinija, V.R. Development of active packaging film from sodium alginate/carboxymethyl cellulose containing shallot waste extracts for anti-browning of fresh-cut produce. Int. J. Biol. Macromol. 2021, 188, 790–799. [Google Scholar] [CrossRef]
- Ierna, A.; Rizzarelli, P.; Malvuccio, A.; Rapisarda, M. Effect of different anti-browning agents on quality of minimally processed early potatoes packaged on a compostable film. LWT-Food Sci. Technol. 2017, 85, 434–439. [Google Scholar] [CrossRef]
- Abbasi, K.S.; Masud, T.; Qayyum, A.; Khan, S.U.; Ahmad, A.; Mehmood, A.; Farid, A.; Jenks, M.A. Transition in tuber quality attributes of potato (Solanum tuberosum L.) under different packaging systems during storage. J. Appl. Bot. Food Qual. 2016, 89, 142–149. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I.; Romani, S.; Tylewicz, U.; Dalla Rosa, M. Gas Permeability and Thermal Behavior of Polypropylene Films Used for Packaging Minimally Processed Fresh-Cut Potatoes: A Case Study. J. Food Sci. 2012, 77, E264–E272. [Google Scholar] [CrossRef]
- Kurek, M.; Guinault, A.; Voilley, A.; Debeaufort, F. Effect of relative humidity on carvacrol release and permeation properties of chitosan based films and coatings. Food Chem. 2014, 144, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montouto-Graña, M.; Cabanas-Arias, S.; Porto-Fojo, S.; Vázquez-Odériz, M.L.; Romero-Rodríguez, M.A. Sensory characteristics and consumer acceptance and purchase intention toward fresh-cut potatoes. J. Food Sci. 2012, 77, S40–S46. [Google Scholar] [CrossRef] [PubMed]
- Shireesha, P.; Lakshmi, R.R.; Rajashekar, M.; Rao, M.P. Effect of Cube Size, Polythene Gauge and Vacuum on Physical Characteristics of Minimally Processed Potato. Int. J. Curr. Microbiol. App. Sci 2018, 7, 2075–2079. [Google Scholar] [CrossRef]
- O’Beirne, D.; Ballantyne, A. Some effects of modified-atmosphere packaging and vacuum packaging in combination with antioxidants on quality and storage life of chilled potato strips. Int. J. Food Sci. Technol. 1987, 22, 515–523. [Google Scholar] [CrossRef]
- Belay, Z.A.; Caleb, O.J.; Opara, U.L. Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging. Food Packag. Shelf Life 2019, 21, 100359. [Google Scholar] [CrossRef]
- Angós, I.; Vírseda, P.; Fernández, T. Control of respiration and color modification on minimally processed potatoes by means of low and high O2/CO2 atmospheres. Postharvest Biol. Technol. 2008, 48, 422–430. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Hong, G.; Cantwell, M. Reassessment of treatments to retard browning of fresh-cut Russet potato with emphasis on controlled atmospheres and low concentrations of bisulphite. Int. J. Food Sci. Technol. 2010, 45, 1486–1494. [Google Scholar] [CrossRef]
- Tudela, J.A.; Hernández, J.A.; Gil, M.I.; Espín, J.C. L-Galactono-γ-lactone dehydrogenase activity and vitamin C content in fresh-cut potatoes stored under controlled atmospheres. J. Agric. Food Chem. 2003, 51, 4296–4302. [Google Scholar] [CrossRef] [PubMed]
- Sapper, M.; Chiralt, A. Starch-based coatings for preservation of fruits and vegetables. Coatings 2018, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670. [Google Scholar] [CrossRef]
- Ojeda, G.A.; Sgroppo, S.C.; Zaritzky, N.E. Application of edible coatings in minimally processed sweet potatoes (Ipomoea batatas L.) to prevent enzymatic browning. Int. J. Food Sci. Technol. 2014, 49, 876–883. [Google Scholar] [CrossRef]
- Waimaleongora-Ek, P.; Corredor, A.J.H.; No, H.K.; Prinyawiwatkul, W.; King, J.M.; Janes, M.E.; Sathivel, S. Selected quality characteristics of fresh-cut sweet potatoes coated with chitosan during 17-day refrigerated storage. J. Food Sci. 2008, 73, S418–S423. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Repajić, M.; Marić, M.; Ščetar, M.; Trojić, P.; Levaj, B.; Galić, K. The influence of edible coatings and natural antioxidants on fresh-cut potato quality, stability and oil uptake after deep fat frying. J. Food Sci. Technol. 2021, 58, 3073–3085. [Google Scholar] [CrossRef]
- Salehi, F.; Roustaei, A.; Haseli, A. Effect of surface coating with seeds mucilages and xanthan gum on oil uptake and physical properties of fried potato strips. Food Sci. Nutr. 2021, 9, 6245–6251. [Google Scholar] [CrossRef]
- Ali, M.R.; Parmar, A.; Niedbała, G.; Wojciechowski, T.; Abou El-Yazied, A.; El-Gawad, H.G.A.; Nahhas, N.E.; Ibrahim, M.F.M.; El-Mogy, M.M. Improved shelf-life and consumer acceptance of fresh-cut and fried potato strips by an edible coating of garden cress seed mucilage. Foods 2021, 10, 1536. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Banerjee, A.; Saurabh, C.K.; Tye, Y.Y.; Suriani, A.B.; Mohamed, A.; Karim, A.A.; Rizal, S.; Paridah, M.T. Biodegradable films for fruits and vegetables packaging application: Preparation and properties. Food Eng. Rev. 2018, 10, 139–153. [Google Scholar] [CrossRef]
- Jansen, T.; Claassen, L.; van Kamp, I.; Timmermans, D.R.M. ‘All chemical substances are harmful’. Public appraisal of uncertain risks of food additives and contaminants. Food Chem. Toxicol. 2020, 136, 110959. [Google Scholar] [CrossRef] [PubMed]
- Van Gunst, A.; Roodenburg, A.J.C. Consumer distrust about E-numbers: A qualitative study among food experts. Foods 2019, 8, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutchma, T. Status of international regulations for ultraviolet treatment of foods. IUVA News 2018, 20, 13–16. [Google Scholar]
- European Commission. Commission Regulation (EC) No 2015/2283 of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliam. Off. J. Eur. Union 2015, 327, 1–22. [Google Scholar]
- Koutchma, T. UV light for processing foods. Ozone Sci. Eng. 2008, 30, 93–98. [Google Scholar] [CrossRef]
- European Food Safety Authority. The efficacy and safety of high-pressure processing of food. EFSA J. 2022, 20, e07128. [Google Scholar]
- Cholewinska, A.E. The Legislation on High Pressure Processing and Other Factors That May Have an Impact on HPP Applications in the EU Food Industry. Thesis, Wageningen University, Wageningen, The Netherlands, 2010. Available online: http://edepot.wur.nl/169062 (accessed on 20 March 2023).
- Livneh, Z.; Cohen-Fix, O.; Skaliter, R.; Elizur, T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit. Rev. Biochem. Mol. Biol. 1993, 28, 465–513. [Google Scholar] [CrossRef] [PubMed]
- Visser, P.M.; Poos, J.J.; Scheper, B.B.; Boelen, P.; van Duyl, F.C. Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters. Mar. Ecol. Prog. Ser. 2002, 228, 25–33. [Google Scholar] [CrossRef]
- Manzocco, L.; Da Pieve, S.; Maifreni, M. Impact of UV-C light on safety and quality of fresh-cut melon. Innov. Food Sci. Emerg. Technol. 2011, 12, 13–17. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Robles, P.A.; Gómez, P.A.; Tomás-Callejas, A.; Artés, F. Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest Biol. Technol. 2010, 55, 114–120. [Google Scholar] [CrossRef]
- Taze, B.H.; Unluturk, S. Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’apricot. Sci. Hortic. 2018, 233, 370–377. [Google Scholar] [CrossRef]
- Barka, E.A.; Kalantari, S.; Makhlouf, J.; Arul, J. Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. J. Agric. Food Chem. 2000, 48, 667–671. [Google Scholar] [CrossRef]
- Teoh, L.S.; Lasekan, O.; Adzahan, N.M.; Hashim, N. The effect of ultraviolet treatment on enzymatic activity and total phenolic content of minimally processed potato slices. J. Food Sci. Technol. 2016, 53, 3035–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Chen, C.-T.; Wang, S.Y. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009, 117, 426–431. [Google Scholar] [CrossRef]
- Pan, Y.-G.; Zu, H. Effect of UV-C radiation on the quality of fresh-cut pineapples. Procedia Eng. 2012, 37, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Maharaj, R.; Arul, J.; Nadeau, P. Effect of photochemical treatment in the preservation of fresh tomato (Lycopersicon esculentum cv. Capello) by delaying senescence. Postharvest Biol. Technol. 1999, 15, 13–23. [Google Scholar] [CrossRef]
- Esua, O.J.; Chin, N.L.; Yusof, Y.A.; Sukor, R. A review on individual and combination technologies of UV-C radiation and ultrasound in postharvest handling of fruits and vegetables. Processes 2020, 8, 1433. [Google Scholar] [CrossRef]
- Fan, X.; Huang, R.; Chen, H. Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci. Technol. 2017, 70, 9–19. [Google Scholar] [CrossRef]
- Gardner, D.W.M.; Shama, G. The kinetics of Bacillus subtilis spore inactivation on filter paper by u.v. light and u.v. light in combination with hydrogen peroxide. J. Appl. Microbiol. 1998, 84, 633–641. [Google Scholar] [CrossRef]
- Manzocco, L.; Nicoli, M.C. Surface processing: Existing and potential applications of ultraviolet light. Crit. Rev. Food Sci. Nutr. 2015, 55, 469–484. [Google Scholar] [CrossRef]
- Xie, Y.; Lin, Q.; Guan, W.; Cheng, S.; Wang, Z.; Sun, C. Comparison of sodium acid sulfate and UV-C treatment on browning and storage quality of fresh-cut potatoes. J. Food Qual. 2017, 2017, 5980964. [Google Scholar] [CrossRef] [Green Version]
- Pelaić, Z.; Čošić, Z.; Pedisić, S.; Repajić, M.; Zorić, Z.; Levaj, B. Effect of UV-C Irradiation, Storage and Subsequent Cooking on Chemical Constituents of Fresh-Cut Potatoes. Foods 2021, 10, 1698. [Google Scholar] [CrossRef] [PubMed]
- Pelaić, Z.; Čošić, Z.; Repajić, M.; Pedisić, S.; Zorić, Z.; Ščetar, M.; Levaj, B. Effect of UV-C Irradiation on the Shelf Life of Fresh-Cut Potato and Its Sensory Properties after Cooking. Food Technol. Biotechnol. 2022, 60, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Čošić, Z.; Pelaić, Z.; Repajić, M.; Pedisić, S.; Zorić, Z.; Levaj, B. Effect of UV-C irradiation on microbial load and phenolic content of potato tubers and slices. Carpathian J. Food Sci. Technol. 2021, 13, 25–32. [Google Scholar] [CrossRef]
- Levaj, B.; Ljubas, A.; Čošić, Z.; Pelaić, Z.; Dujmić, F.; Repajić, M. Effect of high hydrostatic pressure on the qualityand shelf-life of fresh-cut potato. In Proceedings of the 18th Ružička Days, Vukovar, Croatia, 16–18 September 2020; Osijek: Zagreb, Croatia, 2021; p. 104. [Google Scholar]
- Tsikrika, K.; Walsh, D.; Joseph, A.; Burgess, C.M.; Rai, D.K. High-pressure processing and ultrasonication of minimally processed potatoes: Effect on the colour, microbial counts, and bioactive compounds. Molecules 2021, 26, 2614. [Google Scholar] [CrossRef] [PubMed]
- Procaccini, L.M.G.; Mu, T.; Sun, H. Effect of innovative food processing technologies on microbiological quality, colour and texture of fresh-cut potato during storage. Int. J. Food Sci. Technol. 2022, 57, 898–907. [Google Scholar] [CrossRef]
- Zhu, Y.; Du, X.; Zheng, J.; Wang, T.; You, X.; Liu, H.; Liu, X. The effect of ultrasonic on reducing anti-browning minimum effective concentration of purslane extract on fresh-cut potato slices during storage. Food Chem. 2021, 343, 128401. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, M.; Zheng, J.; Zhang, J.; Lu, L.; Liu, X. Novel browning alleviation technology for fresh-cut products: Preservation effect of the combination of Sonchus oleraceus L. extract and ultrasound in fresh-cut potatoes. Food Chem. 2021, 348, 129132. [Google Scholar] [CrossRef]
- Erihemu; Wang, M.; Zhang, F.; Wang, D.; Zhao, M.; Cui, N.; Gao, G.; Guo, J.; Zhang, Q. Optimization of the process parameters of ultrasound on inhibition of polyphenol oxidase activity in whole potato tuber by response surface methodology. LWT 2021, 144, 111232. [Google Scholar] [CrossRef]
- Erihemu; Jia, Y.; Wang, M.; Song, X.; Li, G.; Zhao, M.; Zhu, H.; Wang, H. Optimization of Process Conditions for Ultrasound-Assisted L-Cysteine on Inhibition of Polyphenol Oxidase Activity from Fresh-Cut Potato Using Response Surface Methodology. Am. J. Potato Res. 2022, 99, 308–320. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, D.; Zhao, W.; Zheng, Y.; Wang, Y.; Wang, P.; Ma, Y.; Zhao, X. Low frequency ultrasound treatment enhances antibrowning effect of ascorbic acid in fresh-cut potato slices. Food Chem. 2022, 380, 132190. [Google Scholar] [CrossRef]
- Nicolau-Lapeña, I.; Bobo, G.; Abadias, M.; Viñas, I.; Aguiló-Aguayo, I. Combination of sonication with anti-browning treatments as a strategy to increase the shelf life of fresh-cut potatoe (cv. Monalisa). J. Food Process. Preserv. 2021, 45, e15552. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2017/2158 of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food. Off. J. Eur. Union 2017, 204, 24–44. [Google Scholar]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schlüter, O.; Schwarzenbolz, U.; Jäger, H.; Holzhauser, T.; Bergmair, J.; Roth, A. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef] [PubMed]
- Niven, G.W.; Miles, C.A.; Mackey, B.M. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: An in vivo study using differential scanning calorimetry. Microbiology 1999, 145, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, N.K.; Raghavarao, K.; Balasubramaniam, V.M.; Niranjan, K.; Knorr, D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr. 2007, 47, 69–112. [Google Scholar] [CrossRef]
- Zong, W.; An, G.J. Effect of ultra high pressure on softening of fresh cut jujube fruit during storage. In Proceedings of the I International Jujube Symposium 840; Agricultural University of Hebei: Baoding, China, 2008; pp. 493–498. [Google Scholar]
- Wolbang, C.M.; Fitos, J.L.; Treeby, M.T. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innov. Food Sci. Emerg. Technol. 2008, 9, 196–200. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V.; Swanson, B.G. High hydrostatic pressure processing of fruit and vegetable products. Food Rev. Int. 2005, 21, 411–425. [Google Scholar] [CrossRef]
- Tsikrika, K.; O’Brien, N.; Rai, D.K. The effect of high pressure processing on polyphenol oxidase activity, phytochemicals and proximate composition of irish potato cultivars. Foods 2019, 8, 517. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.M.; Tribst, A.A.L.; Júnior, B.R.d.C.L.; de Oliveira, R.A.; Cristianini, M. Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innov. Food Sci. Emerg. Technol. 2015, 31, 45–53. [Google Scholar] [CrossRef]
- Dourado, C.; Pinto, C.A.; Cunha, S.C.; Casal, S.; Saraiva, J.A. A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology. Innov. Food Sci. Emerg. Technol. 2020, 60, 102310. [Google Scholar] [CrossRef]
- Eshtiaghi, M.N.; Knorr, D. Potato cubes response to water blanching and high hydrostatic pressure. J. Food Sci. 1993, 58, 1371–1374. [Google Scholar] [CrossRef]
- Lukić, K.; Brnčić, M.; Ćurko, N.; Tomašević, M.; Valinger, D.; Denoya, G.I.; Barba, F.J.; Ganić, K.K. Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine. Ultrason. Sonochem. 2019, 59, 104725. [Google Scholar] [CrossRef]
- Madhavan, J.; Theerthagiri, J.; Balaji, D.; Sunitha, S.; Choi, M.Y.; Ashokkumar, M. Hybrid advanced oxidation processes involving ultrasound: An overview. Molecules 2019, 24, 3341. [Google Scholar] [CrossRef] [Green Version]
- Abramova, A.; Abramov, V.; Bayazitov, V.; Nikonov, R.; Fedulov, I.; Stevanato, L.; Cravotto, G. Ultrasound-Assisted Cold Pasteurization in Liquid or SC-CO2. Processes 2021, 9, 1457. [Google Scholar] [CrossRef]
- Hu, W.; Guan, Y.; Ji, Y.; Yang, X. Effect of cutting styles on quality, antioxidant activity, membrane lipid peroxidation, and browning in fresh-cut potatoes. Food Biosci. 2021, 44, 101435. [Google Scholar] [CrossRef]
- Avcı, A.; Kamiloğlu, A.; Dönmez, S. Efficient production of acetone butanol ethanol from sole fresh and rotten potatoes by various Clostridium strains. Biomass Convers. Biorefinery 2023, 13, 4161–4169. [Google Scholar] [CrossRef]
- Dresow, J.F.; Böhm, H. The influence of volatile compounds of the flavour of raw, boiled and baked potatoes: Impact of agricultural measures on the volatile components. Landbauforsch.-Vti Agric. For. Res. 2009, 59, 309–338. [Google Scholar]
- Petersen, M.A.; Poll, L.; Larsen, L.M. Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odour profiling and GC–MS. Food Chem. 1998, 61, 461–466. [Google Scholar] [CrossRef]
- Silveira, A.C.; Záccari, F. Postharvest Storage and Fresh Processing of Potato. In The Potato Crop: Management, Production, and Food Security; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021; pp. 213–237. ISBN 9781685072032. [Google Scholar]
- Sagili, V.S.; Chakrabarti, P.; Jayanty, S.; Kardile, H.; Sathuvalli, V. The Glycemic Index and Human Health with an Emphasis on Potatoes. Foods 2022, 11, 2302. [Google Scholar] [CrossRef]
- Jayanty, S.S.; Diganta, K.; Raven, B. Effects of cooking methods on nutritional content in potato tubers. Am. J. Potato Res. 2019, 96, 183–194. [Google Scholar] [CrossRef]
- Silveira, A.C.; Orena, S.; Medel-Maraboli, M.; Escalona, V.H. Determination of some functional and sensory attributes and suitability of colored-and noncolored-flesh potatoes for different cooking methods. Food Sci. Technol. 2020, 40, 395–404. [Google Scholar] [CrossRef]
- Rasheed, H.; Ahmad, D.; Bao, J. Genetic diversity and health properties of polyphenols in potato. Antioxidants 2022, 11, 603. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.; Ye, X.; Chen, S. Health benefits of the potato affected by domestic cooking: A review. Food Chem. 2016, 202, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic compounds in the potato and its byproducts: An overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef] [Green Version]
- Blessington, T.; Nzaramba, M.N.; Scheuring, D.C.; Hale, A.L.; Reddivari, L.; Miller, J.C. Cooking Methods and Storage Treatments of Potato: Effects on Carotenoids, Antioxidant Activity, and Phenolics. Am. J. Potato Res. 2010, 87, 479–491. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Lu, Z.; Beta, T.; Hydamaka, A.W. Phenolic content, composition, antioxidant activity, and their changes during domestic cooking of potatoes. J. Agric. Food Chem. 2009, 57, 10231–10238. [Google Scholar] [CrossRef]
- Perla, V.; Holm, D.G.; Jayanty, S.S. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT-Food Sci. Technol. 2012, 45, 161–171. [Google Scholar] [CrossRef]
- Mäder, J.; Rawel, H.; Kroh, L.W. Composition of phenolic compounds and glycoalkaloids α-solanine and α-chaconine during commercial potato processing. J. Agric. Food Chem. 2009, 57, 6292–6297. [Google Scholar] [CrossRef]
- Yang, Y.; Achaerandio, I.; Pujolà, M. Effect of the intensity of cooking methods on the nutritional and physical properties of potato tubers. Food Chem. 2016, 197, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Thakur, N.; Raigond, P.; Jayanty, S.S.; Goel, G.; Dutt, S.; Singh, B. Compositional Changes in Potato Carbohydrates and Polyphenols during In vitro Gastrointestinal Digestion. Starch-Stärke 2022, 74, 2200036. [Google Scholar] [CrossRef]
- Provesi, J.G.; Dias, C.O.; Amante, E.R. Changes in carotenoids during processing and storage of pumpkin puree. Food Chem. 2011, 128, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Burgos, G.; Amoros, W.; Salas, E.; Muñoa, L.; Sosa, P.; Díaz, C.; Bonierbale, M. Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chem. 2012, 133, 1131–1137. [Google Scholar] [CrossRef]
- Bembem, K.; Sadana, B. Effect of cooking methods on the nutritional composition and antioxidant activity of potato tubers. Int. J. Food Nutr. Sci. 2013, 2, 26–30. [Google Scholar]
- Fang, H.; Yin, X.; He, J.; Xin, S.; Zhang, H.; Ye, X.; Yang, Y.; Tian, J. Cooking methods affected the phytochemicals and antioxidant activities of potato from different varieties. Food Chem. X 2022, 14, 100339. [Google Scholar] [CrossRef] [PubMed]
- Ogliari, R.; Soares, J.M.; Teixeira, F.; Schwarz, K.; da Silva, K.A.; Schiessel, D.L.; Novello, D. Chemical, nutritional and sensory characterization of sweet potato submitted to different cooking methods. Int. J. Res. Granthaalayah 2020, 8, 147–156. [Google Scholar] [CrossRef]
- Burmeister, A.; Bondiek, S.; Apel, L.; Kühne, C.; Hillebrand, S.; Fleischmann, P. Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. J. Food Compos. Anal. 2011, 24, 865–872. [Google Scholar] [CrossRef]
- Rayamajhi, U.; Mishra, A. Impact of Processing on Retention of Beta Carotene of Sweet Potatoes. J. Food Sci. Technol. Nepal 2020, 12, 20–24. [Google Scholar] [CrossRef]
- Muñoa, L.; Chacaltana, C.; Sosa, P.; Gastelo, M.; zum Felde, T.; Burgos, G. Effect of environment and peeling in the glycoalkaloid concentration of disease-resistant and heat-tolerant potato clones. J. Agric. Food Res. 2022, 7, 100269. [Google Scholar] [CrossRef]
- Omayio, D.G.; Abong, G.O.; Okoth, M.W. A Review of Occurrence of Glycoalkaloids in Potato and Potato Products A Review of Occurrence of Glycoalkaloids in Potato and Potato Products. Curr. Res. Nutr. Food Sci. 2016, 4, 195–202. [Google Scholar] [CrossRef]
- Mulinacci, N.; Ieri, F.; Giaccherini, C.; Innocenti, M.; Andrenelli, L.; Canova, G.; Saracchi, M.; Casiraghi, M.C. Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. J. Agric. Food Chem. 2008, 56, 11830–11837. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Musilová, J.; Hejtmánková, K.; Kotíková, Z.; Pazderů, K.; Domkářová, J.; Pivec, V.; Cimr, J. Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem. 2013, 138, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Pęksa, A.; Gołubowska, G.; Aniołowski, K.; Lisińska, G.; Rytel, E. Changes of glycoalkaloids and nitrate contents in potatoes during chip processing. Food Chem. 2006, 97, 151–156. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, G.; Lv, S.; Guo, H. Steroidal glycoalkaloids in potato foods as affected by cooking methods. Int. J. Food Prop. 2018, 21, 1875–1887. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Roasa, J.; Mats, L.; Zhu, H.; Shao, S. Effect of acid on glycoalkaloids and acrylamide in French fries. Food Addit. Contam. Part A 2020, 37, 938–945. [Google Scholar] [CrossRef]
- Bethke, P.C.; Bussan, A.J. Acrylamide in Processed Potato Products. Am. J. Potato Res. 2013, 90, 403–424. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Acrylamide in Food. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.4104 (accessed on 25 March 2023).
- International Agency for Research on Cancer (IARC). Acrylamide, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Ind. Chem. 1994, 60, 389–433. [Google Scholar]
- Kumari, A.; Bhattacharya, B.; Agarwal, T.; Paul, V.; Chakkaravarthi, S. Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food Res. Int. 2022, 156, 111172. [Google Scholar] [CrossRef]
- Haddarah, A.; Naim, E.; Dankar, I.; Sepulcre, F.; Pujolà, M.; Chkeir, M. The effect of borage, ginger and fennel extracts on acrylamide formation in French fries in deep and electric air frying. Food Chem. 2021, 350, 129060. [Google Scholar] [CrossRef]
- Purcaro, G.; Moret, S.; Conte, L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta 2013, 105, 292–305. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Ashraf, M.W.; Salam, A. Polycyclic aromatic hydrocarbons (PAHs) in vegetables and fruits produced in Saudi Arabia. Bull. Environ. Contam. Toxicol. 2012, 88, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Samsøe-Petersen, L.; Larsen, E.H.; Larsen, P.B.; Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ. Sci. Technol. 2002, 36, 3057–3063. [Google Scholar] [CrossRef] [PubMed]
- Wennrich, L.; Popp, P.; Zeibig, M. Polycyclic aromatic hydrocarbon burden in fruit and vegetable species cultivated in allotments in an industrial area. Int. J. Environ. Anal. Chem. 2002, 82, 667–690. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, M. Some polycyclic aromatic hydrocarbons in vegetables from northern China. J. Environ. Sci. Health Part A 2002, 37, 287–296. [Google Scholar] [CrossRef]
- Fismes, J.; Perrin-Ganier, C.; Empereur-Bissonnet, P.; Morel, J.L. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Environ. Qual. 2002, 31, 1649–1656. [Google Scholar] [CrossRef]
- Kulhánek, A.; Trapp, S.; Sismilich, M.; Janků, J.; Zimová, M. Crop-specific human exposure assessment for polycyclic aromatic hydrocarbons in Czech soils. Sci. Total Environ. 2005, 339, 71–80. [Google Scholar] [CrossRef]
- Balbino, S.; Repajić, M.; Solarić, T.; Dite Hunjek, D.; Škevin, D.; Kraljić, K.; Obranović, M.; Levaj, B. Oil uptake and polycyclic aromatic hydrocarbons (PAH) in fried fresh-cut potato: Effect of cultivar, anti-browning treatment and storage conditions. Agronomy 2020, 10, 1773. [Google Scholar] [CrossRef]
- Shariatifar, N.; Sharifiarab, G.; Kargarghomsheh, P.; Moazzen, M.; Arabameri, M.; Seddighi, M.; Tooryan, F.; Pirhadi, M. Polycyclic aromatic hydrocarbons (PAHs) in potato and related products in Tehran: A health risk assessment study. Int. J. Environ. Anal. Chem. 2022, 1–14. [Google Scholar] [CrossRef]
- Duckham, S.C.; Dodson, A.T.; Bakker, J.; Ames, J.M. Volatile flavour components of baked potato flesh. A comparison of eleven potato cultivars. Food/Nahrung 2001, 45, 317–323. [Google Scholar] [CrossRef]
- Duckham, S.C.; Dodson, A.T.; Bakker, J.; Ames, J.M. Effect of cultivar and storage time on the volatile flavor components of baked potato. J. Agric. Food Chem. 2002, 50, 5640–5648. [Google Scholar] [CrossRef] [PubMed]
- Oruna-Concha, M.J.; Duckham, S.C.; Ames, J.M. Comparison of volatile compounds isolated from the skin and flesh of four potato cultivars after baking. J. Agric. Food Chem. 2001, 49, 2414–2421. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.L.; Shepherd, T.; Verrall, S.R.; McNicol, J.W.; Taylor, M.A. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry 2010, 71, 1765–1773. [Google Scholar] [CrossRef]
- Murray, K.E.; Whitfield, F.B. The occurrence of 3-alkyl-2-methoxypyrazines in raw vegetables. J. Sci. Food Agric. 1975, 26, 973–986. [Google Scholar] [CrossRef]
- Sinden, S.L.; Deahl, K.L.; Aulenbach, B.B. Effect of glycoalkaloids and phenolics on potato flavor. J. Food Sci. 1976, 41, 520–523. [Google Scholar] [CrossRef]
- Vainionpää, J.; Kervinen, R.; De Prado, M.; Laurila, E.; Kari, M.; Mustonen, L.; Ahvenainen, R. Exploration of storage and process tolerance of different potato cultivars using principal component and canonical correlation analyses. J. Food Eng. 2000, 44, 47–61. [Google Scholar] [CrossRef]
Packaging Material | Packaging Method | Storage Conditions | Reference |
---|---|---|---|
PA/PE, 100 μm PCO2 (23 °C, 50% RH): 145 mL/m2 bar 24 h PO2 (23 °C, 50% RH): 35 mL/m2·bar·24 h WVP (23 °C, 50% RH): 7 g/m2·24 h, peeled whole tuber | Vacuum * | 4–6 °C, 7 days | Rocha et al., 2003 [124] |
PA/PE bags, PCO2: 0.121 mL/m2 d atm PO2: 0.024 mL/m2 d atm WVP (90% RH): 22.1 g mm/m2 d atm, slices previously treated with pressurized Ar * and N2 | MAP (4% O2, 2% CO2, 94% N2) | 4 °C, 12 days | Shen et al., 2019 [142] |
Coex.PA/PE-HD, 22 μm OTR: 8 × 104 cm3/m2 Pa, previously edible coating (alginate) on strips | vacuum | 3 ± 1 °C, 12 days, no positive effect | Amaral et al., 2017 [143] |
OPA/CPP (15/60 μm) two-component polyurethane as adhesive, previously slices treated with rosemary essential oil | Sous vide packaging–vacuum | 4 ± 2 °C, 11 days | Rizzo et al., 2018 [107] |
PP trays, sealed with PE film, 200 μm, previously sticks dipped in rosemary oil suspension under a sub-atmospheric pressure of 60 ± 10 mbar/30 min (vacuum impregnation) | - | 4 °C, 14 days | Luo et al., 2019 [106] |
Edible coatings on slices based on Cactus Opuntia dillenii polysaccharide (0.5%, 1% * and 1.5% ODP) | edible coating (slices on racks) | 5 °C, 5 days | Wu, 2019 [144] |
PE-LD -previously edible film (crosslinked whey protein/pectin film) * on sticks | - | 4–6 °C, 6 days | Marquez et al., 2017 [145] |
Edible coating on whole tuber: chitosan (CH) + whey protein (WP) + coconut oil (CO): 1. CH 0.5% 2. CH 0.5% + CO 0.1% 3. CH 0.5% + WP 5% 4. CH 0.5% + WP 5% + CO 0.1% * | - | 20 ± 1 °C, 75–80% RH, 60 days | Saha et al., 2014 [146] |
Polystyrene trays wrapped in PVC films, previously edible coating on cubes based on chitosan containing cinnamon oil (0.2 *, 0.4, and 0.6%) | - | 4 °C, 16 days | Sarengaowa et al., 2022 [138] |
Coex. PP, 19 μm OTR: 1.91 × 10−6 mol/m2 s PPcast, 30 μm; OTR: 1.55 × 10−6 mol/m2 s previously edible coating on sticks based on Locust bean gum * | - | 4 ± 1 °C, 90–95% RH, 8 days | Licciardello et al., 2018 [147] |
alginate coating on cubes | no positive effect | Ceroli et al., 2018 [148] | |
PP trays covered by a cling wrapper, slices previously wrapped by active packaging film by sodium alginate, carboxymethyl cellulose, glycerol, calcium chloride and citric acid by addition of extract of peel shallot onion waste | 4 °C, 5 days no positive effect | Thivya et al., 2021 [149] | |
1. Biodegradable film (30 μm) PO2: 55 c3/m2 24 h atm PCO2: 95 c3/m2 24 h atm WVP: 200 g/m2 24 h 2. PA/PE, 85 μm * PO2: 79 c3/m2 24 h atm PCO2: 347 c3/m2 24 h atm WVP: 8 g/m2 24 h Slices packaged | standard atmosphere conditions | 4 °C, 9 days | Ierna et al., 2017 [150] |
Potato Treatment/Processing/Packaging | Storage | Reference |
---|---|---|
UV-C 2.28, 6.84 *, 11.41 and 13.68 kJ/m2–slices pretreated with ascorbic acid and calcium chloride solution, in permeable plastic boxes | 4 °C, 10 days | Teoh et al., 2016 [182] |
UV-C 3 min, sodium acid sulfate, and their combination–slices in PE bags | 4 °C, 25 days | Xie et al., 2017 [190] |
UV-C 0, 3, 5 * and 10 min (0, 1.62, 2.70 * and 5.40 kJ/m2, respectively)–slices pretreated with sodium ascorbate solution in PA/PE vacuum bags | 6 °C, 23 days | Pelaic et al., 2021, 2022 [191,192] |
UV-C 0–10.08 kJ/m2–tubers UV-C 0–2.70 kJ/m2–slices * | 10 °C, 24 h | Čošić et al., 2021 [193] |
HHP 400 MPa/3 min–slices in plastic jars filled with sodium ascorbate solution | 6 °C, 15 days | Levaj et al., 2020 [194] |
HHP 600 MPa/3 min/10.6 °C peeled tubers, vacuum packaging (PA/PE) | 4 ° C, 14 days | Tsikrika et al., 2021 [195] |
HHP 200 MPa/2, 6 and 10 min 400 MPa/1, 2 and 6 min sticks, packaged in PP bags + distilled water | 4 °C, 12 days | Procaccini et al., 2022 [196] |
US (bath, 53 kHz, 200/5, 10 min, 500 W/5, 10, 15 at 20 °C–sticks packaged in bags 500 W/15 min * | 4 °C, 12 days | Procaccini et al., 2022 [196] |
US 630 W, 40 kHz/10 min, room temperature slices dipped in 0.00, 0.01, 0.02 *, 0.05% purslane solution, packaged in PE self-sealing bag | 4 °C, 8 days | Zhu et al., 2021 [197] |
US (bath, 0.75 W/cm2/5 min, 40 kHz), slices simultaneously dipped in Sonchus oleraceus L. extract (0.1 g/L); treatments alone or in combination * | 4 °C, 8 days | Qiao et al., 2021 [198] |
US (180–900 W/5–25 min, 20–60 °C, 20 kHz, titanium probe, Φ20 mm, inserted approximately 2 cm) whole tuber dipped in distilled water (PPO deactivation 540 W/15 min, 20 °C) * | - | Erihemu et al., 2021 [199] |
US (28 kHz, 100–500 W/0–10 min) slices dipped in 0.5–2.5 g/L L-cys solution, packaged in PE bags; 360 W/6 min/2 g/L * | 4 °C, 48 h | Erihemu et al., 2022 [200] |
US 40 kHz, 480 W, 10 min–slices, control, dipped in cactus polysaccharides (CP), US, US + CP * | 4 °C, 8 days | Cheng et al., 2022 [88] |
US (40 kHz, 200 W, 3 min) slices dipped in ascorbic acid (0.2%, w/v) treatments alone or in combination * | Xu et al., 2022 [201] | |
US (35 or 130 kHz) slices dipped in Natureseal® 7.5% (w/v) and green tea 5% (w/v), US-no significant enhancement | 4 °C, 9 days | Nicolau-Lapeña et al., 2022 [202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levaj, B.; Pelaić, Z.; Galić, K.; Kurek, M.; Ščetar, M.; Poljak, M.; Dite Hunjek, D.; Pedisić, S.; Balbino, S.; Čošić, Z.; et al. Maintaining the Quality and Safety of Fresh-Cut Potatoes (Solanum tuberosum): Overview of Recent Findings and Approaches. Agronomy 2023, 13, 2002. https://doi.org/10.3390/agronomy13082002
Levaj B, Pelaić Z, Galić K, Kurek M, Ščetar M, Poljak M, Dite Hunjek D, Pedisić S, Balbino S, Čošić Z, et al. Maintaining the Quality and Safety of Fresh-Cut Potatoes (Solanum tuberosum): Overview of Recent Findings and Approaches. Agronomy. 2023; 13(8):2002. https://doi.org/10.3390/agronomy13082002
Chicago/Turabian StyleLevaj, Branka, Zdenka Pelaić, Kata Galić, Mia Kurek, Mario Ščetar, Milan Poljak, Draženka Dite Hunjek, Sandra Pedisić, Sandra Balbino, Zrinka Čošić, and et al. 2023. "Maintaining the Quality and Safety of Fresh-Cut Potatoes (Solanum tuberosum): Overview of Recent Findings and Approaches" Agronomy 13, no. 8: 2002. https://doi.org/10.3390/agronomy13082002
APA StyleLevaj, B., Pelaić, Z., Galić, K., Kurek, M., Ščetar, M., Poljak, M., Dite Hunjek, D., Pedisić, S., Balbino, S., Čošić, Z., Dujmić, F., & Repajić, M. (2023). Maintaining the Quality and Safety of Fresh-Cut Potatoes (Solanum tuberosum): Overview of Recent Findings and Approaches. Agronomy, 13(8), 2002. https://doi.org/10.3390/agronomy13082002