Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles
Abstract
:1. Introduction
2. The Literature Review
- Do farmers want to buy an AUAV?
- Do financial incentives influence the purchase decision?
- Are farmers willing to lease the AUAV?
- If so, how much are they willing to pay?
- Are there variables that influence the leasing decision?
3. Material and Methods
3.1. Sample Selection
3.2. Fuzzy Pairwise Comparison Method
3.3. Conditional Valuation Method and Lower Bound Mean
3.4. VIKOR Technique
3.5. Probit Model
4. Findings
4.1. Description of this Study’s Population
4.2. Opinions on the Use of Technology
4.3. Farmers’ Attitudes toward Traditional Spraying Methods
4.4. Farmers’ Intention to Purchase Agricultural Drones
4.4.1. Farmers’ Attitude toward AUAV Technology
4.4.2. The Effect of Borrowing Channels on the Purchasing Attitude for AUAV Technology
4.4.3. Preference for Borrowing Channels
4.4.4. Demographic Variables That Are Influential in the Purchase of an AUAV
4.5. Farmers’ Attitude to Agricultural Drone Rental
4.5.1. Willingness to Pay
4.5.2. Procurement of Services for AUAV Leasing
4.5.3. Factors Affecting the Desire to Rent a Drone
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Is there a need for a more sustainable agriculture? Crit. Rev. Plant Sci. 2011, 30, 6–23. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- UNEP. The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises; United Nations Environment Programme: Nairobi, Kenya, 2009. [Google Scholar]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- Hrustek, L. Sustainability driven by agriculture through digital transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Li, W.; Clark, B.; Taylor, J.A.; Kendall, H.; Jones, G.; Li, Z.; Jin, S.; Zhao, C.; Yang, G.; Shuai, C. A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Comput. Electron. Agric. 2020, 172, 105305. [Google Scholar] [CrossRef]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for sustainable agri-food systems: Potential, status, and risks for the MENA region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- ISPA. Precision Ag Definition. 2018. Available online: https://www.ispag.org/about/definition (accessed on 22 May 2020).
- Fulton, J.P.; Port, K. Precision agriculture data management. In Precision Agriculture Basics; Shannon, D.K., Clay, D.E., Kitchen, N.R., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 169–187. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Lamb, D.W.; Brown, R.B. Pa—Precision agriculture: Remote-sensing and mapping of weeds in crops. J. Agric. Eng. Res. 2001, 78, 117–125. [Google Scholar] [CrossRef]
- Usery, E.L.; Pocknee, S.; Boydell, B. Precision farming data management using geographic information systems. Photogramm. Eng. Remote Sens. 1995, 61, 1383–1392. [Google Scholar]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Schimmelpfennig, D. Crop Production Costs, Profits, and Ecosystem Stewardship with Precision Agriculture. J. Agric. Appl. Econ. 2018, 50, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Feng, S.; Reidsma, P.; Qu, F.; Heerink, N. Identifying entry points to improve fertilizer use efficiency in Taihu Basin, China. Land Use Policy 2014, 37, 52–59. [Google Scholar] [CrossRef]
- Kolady, D.E.; Van der Sluis, E.; Uddin, M.M.; Deutz, A.P. Determinants of adoption and adoption intensity of precision agriculture technologies: Evidence from South Dakota. Precis. Agric. 2021, 22, 689–710. [Google Scholar] [CrossRef]
- Puri, V.; Nayyar, A.; Raja, L. Agriculture drones: A modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 2017, 20, 507–518. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Singhvi, R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675–680. [Google Scholar] [CrossRef]
- Bhalli, J.A.; Ali, T.; Asi, M.R.; Khalid, Z.M.; Ceppi, M.; Khan, Q.M. DNA damage in Pakistani agricultural workers exposed to mixture of pesticides. Environ. Mol. Mutagen. 2009, 50, 37–45. [Google Scholar] [CrossRef]
- Antle, J.M.; Capalbo, S.M. Pesticides, productivity, and farmer health: Implications for regulatory policy and agricultural research. Am. J. Agric. Econ. 1994, 76, 598–602. [Google Scholar] [CrossRef]
- Dhananjayan, V.; Jayakumar, S.; Ravichandran, B. Conventional methods of pesticide application in agricultural field and fate of the pesticides in the environment and human health. In Controlled Release of Pesticides for Sustainable Agriculture; Springer Nature: Cham, Switzerland, 2020; pp. 1–39. [Google Scholar]
- Zheng, S.; Wang, Z.; Waheim, C.J. Technology adoption among farmers in Jilin Province, China: The case of aerial pesticide application. China Agric. Econ. Rev. 2019, 11, 206–216. [Google Scholar] [CrossRef]
- Schmale, D.G., III; Dingus, B.R.; Reinholtz, C. Development and Application of an Autonomous Unmanned Aerial Vehicle for Precise Aerobiological Sampling Above Agricultural Fields. J. Field Robot. 2008, 25, 133–147. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Urbahs, A.; Jonaite, I. Features of the use of unmanned aerial vehicles for agriculture applications. Aviation 2013, 17, 170–175. [Google Scholar] [CrossRef]
- Kim, H.G.; Park, J.-S.; Lee, D.-H. Potential of Unmanned Aerial Sampling for Monitoring Insect Populations in Rice Fields. Fla. Entomol. 2018, 101, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Cavallo, E.; Ferrari, E.; Bollani, L.; Coccia, M. Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A case study in Italian agricultural system. Agric. Syst. 2014, 130, 44–54. [Google Scholar] [CrossRef]
- Sheahan, M.; Black, R.; Jayne, T.S. Are Kenyan farmers under-utilizing fertilizer? Implications for input intensification strategies and research. Food Policy 2013, 41, 39–52. [Google Scholar] [CrossRef]
- Dhraief, M.Z.; Bedhiaf, S.; Dhehibi, B.; Oueslati-Zlaoui, M.; Jebali, O.; Ben-Youssef, S. Factors affecting innovative technologies adoption by livestock holders in arid area of Tunisia. New Medit Mediterr. J. Econ. 2019, 4, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Muraoka, R.; Otsuka, K. Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature. Agric. Econ. 2020, 51, 31–45. [Google Scholar] [CrossRef]
- Nowak, B. Precision agriculture: Where do we stand? A review of the adoption of precision agriculture technologies on field crops farms in developed countries. Agric. Res. 2021, 10, 515–522. [Google Scholar] [CrossRef]
- McBride, W.D.; Daberkow, S.G. Information and the adoption of precision farming technologies. J. Agribus. 2003, 21, 21–38. [Google Scholar] [CrossRef]
- Roberts, R.K.; English, B.C.; Larson, J.A.; Cochran, R.L.; Goodman, W.R.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Shurley, W.D.; Reeves, J.M. Adoption of site-specific information and variable-rate technologies in cotton precision farming. J. Agric. Appl. Econ. 2004, 36, 143–158. [Google Scholar] [CrossRef]
- Briggeman, B.C.; Whitacre, B.E. Farming and the internet: Reasons for non-use. Agric. Resour. Econ. Rev. 2010, 39, 571–584. [Google Scholar] [CrossRef]
- Smith, A.; Goe, W.R.; Kenney, M.; Morrison Paul, C.J. Computer and Internet use by Great Plains farmers. J. Agric. Resour. Econ. 2004, 70, 481–500. Available online: https://www.jstor.org/stable/40987245 (accessed on 11 May 2022). [CrossRef] [Green Version]
- Balogh, P.; Bai, A.; Czibere, I.; Kovách, I.; Fodor, L.; Bujdos, Á.; Sulyok, D.; Gabnai, Z.; Birkner, Z. Economic and social barriers of precision farming in Hungary. Agronomy 2021, 11, 1112. [Google Scholar] [CrossRef]
- Vecchio, Y.; Agnusdei, G.P.; Miglietta, P.P.; Capitanio, F. Adoption of precision farming tools: The case of Italian farmers. Int. J. Environ. Res. Public Health 2020, 17, 869. [Google Scholar] [CrossRef] [Green Version]
- Batte, M.T.; Arnholt, M.W. Precision farming adoption and use in Ohio: Case studies of six leading-edge adopters. Comput. Electron. Agric. 2003, 38, 125–139. [Google Scholar] [CrossRef]
- Adrian, A.M.; Norwood, S.H.; Mask, P.L. Producers’ perceptions and attitudes toward precision agriculture technologies. Comput. Electron. Agric. 2005, 48, 256–271. [Google Scholar] [CrossRef]
- Caffaro, F.; Cremasco, M.M.; Roccato, M.; Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural Stud. 2020, 76, 264–271. [Google Scholar] [CrossRef]
- Tamirat, T.W.; Pedersen, S.M.; Lind, K.M. Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 349–357. [Google Scholar] [CrossRef]
- Tiffin, R.; Balcombe, K. The determinants of technology adoption by UK farmers using Bayesian model averaging: The cases of organic production and computer usage. Aust. J. Agric. Resour. Econ. 2011, 55, 579–598. [Google Scholar] [CrossRef] [Green Version]
- Michels, M.; Fecke, W.; Feil, J.H.; Musshoff, O.; Pigisch, J.; Krone, S. Smartphone adoption and use in agriculture: Empirical evidence from Germany. Precis. Agric. 2020, 21, 403–425. [Google Scholar] [CrossRef]
- Carrer, M.J.; de Souza Filho, H.M.; Batalha, M.O. Factors influencing the adoption of Farm Management Information Systems (FMIS) by Brazilian citrus farmers. Comput. Electron. Agric. 2017, 138, 11–19. [Google Scholar] [CrossRef]
- Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017, 18, 701–716. [Google Scholar] [CrossRef]
- Robertson, M.J.; Llewellyn, R.S.; Mandel, R.; Lawes, R.; Bramley, R.G.V.; Swift, L. Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precis. Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Reichardt, M.; Jürgens, C. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precis. Agric. 2009, 10, 73–94. [Google Scholar] [CrossRef]
- Shockley, J.M.; Dillon, C.R.; Stombaugh, T.S. A whole farm analysis of the influence of auto-steer navigation on net returns, risk, and production practices. J. Agric. Appl. Econ. 2011, 43, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Schimmelpfennig, D.; Ebel, R. Sequential Adoption and Cost Savings from Precision Agriculture. J. Agric. Resour. Econ. 2016, 41, 97–115. Available online: https://www.jstor.org/stable/44131378 (accessed on 14 March 2022).
- Lambert, D.M.; Paudel, K.P.; Larson, J.A. Bundled adoption of precision agriculture technologies by cotton producers. J. Agric. Resour. Econ. 2015, 40, 325–345. Available online: https://www.jstor.org/stable/44131864 (accessed on 20 April 2022).
- Anonymous. 2023. Available online: https://mriha.com/raven-tar16/?gclid=CjwKCAjwlJimBhAsEiwA1hrp5gTZrK8j6AC8g7PPvvtr4EDFVJxuiiRbdK79-o6-lEN6ndCLNAz1rBoChqMQAvD_BwE (accessed on 25 July 2023).
- Munz, J.; Schuele, H. Influencing the Success of Precision Farming Technology Adoption—A Model-Based Investigation of Economic Success Factors in Small-Scale Agriculture. Agriculture 2022, 12, 1773. [Google Scholar] [CrossRef]
- Giua, C.; Materia, V.C.; Camanzi, L. Smart farming technologies adoption: Which factors play a role in the digital transition? Technol. Soc. 2022, 68, 101869. [Google Scholar] [CrossRef]
- Michels, M.; von Hobe, C.F.; von Ahlefeld, P.J.W.; Musshoff, O. The adoption of drones in German agriculture: A structural equation model. Precis. Agric. 2021, 22, 1728–1748. [Google Scholar] [CrossRef]
- Wachenheim, C.; Fan, L.; Zheng, S. Adoption of unmanned aerial vehicles for pesticide application: Role of social network, resource endowment, and perceptions. Technol. Soc. 2021, 64, 101470. [Google Scholar] [CrossRef]
- Chen, Q.; Wachenheim, C.; Zheng, S. Land scale, cooperative membership and benefits information: Unmanned aerial vehicle adoption in China. Sustain. Futures 2020, 2, 100025. [Google Scholar] [CrossRef]
- Skevas, T.; Kalaitzandonakes, N. Farmer awareness, perceptions and adoption of unmanned aerial vehicles: Evidence from Missouri. Int. Food Agribus. Manag. Rev. 2020, 23, 469–485. [Google Scholar] [CrossRef]
- Michels, M.; von Hobe, C.F.; Musshoff, O. A trans-theoretical model for the adoption of drones by large-scale German farmers. J. Rural Stud. 2020, 75, 80–88. [Google Scholar] [CrossRef]
- Bai, A.; Kovách, I.; Czibere, I.; Megyesi, B.; Balogh, P. Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model. Drones 2022, 6, 200. [Google Scholar] [CrossRef]
- Zuo, A.; Wheeler, S.A.; Sun, H. Flying over the farm: Understanding drone adoption by Australian irrigators. Precis. Agric. 2021, 22, 1973–1991. [Google Scholar] [CrossRef]
- Anonymous. 2023. Available online: http://www.vodafoneakillikoy.com/ (accessed on 11 May 2023).
- Newbold, P. Statistics for Business and Economics; Prentice-Hall International: Hoboken, NJ, USA, 1995. [Google Scholar]
- Tanaka, K. An Introduction to Fuzzy Logic for Practical Applications; Springer: New York, NY, USA, 1997. [Google Scholar]
- Carson, R.T. Contingent valuation: A user’s guide. Environ. Sci. Technol. 2000, 34, 1413–1418. [Google Scholar] [CrossRef] [Green Version]
- Blaine, W.T.; Lichtkoppler, F.R.; Standbro, R. An assessment of residents’ willingness to pay for green space and farml and preservation conservation easements using the contingent valuation method (CVM). J. Ext. 2003, 41, 5. [Google Scholar]
- Opricovic, S.; ve Tzeng, G.-H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Walter, A.; Liebisch, F.; Umstätter, C. Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precis. Agric. 2020, 21, 1327–1350. [Google Scholar] [CrossRef]
- Anonymous. 2023. Available online: https://iha.shgm.gov.tr/public/index?ReturnUrl=%2f (accessed on 20 July 2023).
Variable | Category | Frequency | Percent | Mean | Variable | Category | Frequency | Percent | Mean |
---|---|---|---|---|---|---|---|---|---|
Education | Primary education | 256 | 66.7 | - | Age (year) | <42 | 98 | 25.5 | 51.52 |
High school | 94 | 24.5 | 42–53 | 114 | 29.7 | ||||
Associate degree | 18 | 4.7 | 54–61 | 84 | 21.9 | ||||
Licence | 16 | 4.2 | 61< | 88 | 22.9 | ||||
* Annual agricultural income | <95,000 | 127 | 33.1 | 250,106 | Land size (hectare) | <3.1 | 128 | 33.3 | 9.83 |
95,000–200,000 | 127 | 33.1 | 3.1–8.0 | 129 | 33.6 | ||||
>200,000 | 130 | 33.9 | 8.0< | 127 | 33.1 | ||||
Land structure | plain | 310 | 80.7 | - | Experienced (year) | <21 | 99 | 25.8 | 29.47 |
slope | 74 | 19.3 | 21–30 | 115 | 29.9 | ||||
Help with family chores | No | 141 | 36.7 | - | 31–40 | 101 | 26.3 | ||
Yes | 243 | 63.3 | 40< | 69 | 18.0 | ||||
Number of households | 4 and below | 251 | 65.4 | 3.94 | Land type | Horticulture | 111 | 28.9 | - |
5 and above | 133 | 34.6 | Field agriculture | 273 | 71.1 |
Behavioural Statements | Mean | Std. Deviation | Factor Loading | Cronbach’s Alpha If Item Deleted |
---|---|---|---|---|
* I feel uneasy when using a new technological tool | 3.54 | 0.99 | 0.84 | 0.794 |
* I find myself too old to learn about technological developments | 3.51 | 1.28 | 0.80 | 0.797 |
* Learning the use of a new technological tool is troublesome | 3.21 | 1.08 | 0.76 | 0.808 |
* The use of technology always challenges me | 3.38 | 1.02 | 0.73 | 0.813 |
* Learning technological developments is an extra burden for me | 3.67 | 0.92 | 0.68 | 0.820 |
* Using technological elements while farming scares me | 3.00 | 1.33 | 0.66 | 0.829 |
* I think technology is useful while farming | 3.92 | 0.94 | 0.51 | 0.841 |
Behavioural Statements | 1 | 2 | 3 | 4 | 5 | Mean | Std. Deviation | |
---|---|---|---|---|---|---|---|---|
I think traditional spraying is efficient | Frequency (f) | 50 | 133 | 117 | 67 | 17 | 2.6563 | 1.05046 |
Percent (p) | 13 | 34.6 | 30.5 | 17.4 | 4.4 | |||
I think the cost of conventional spraying is high | Frequency (f) | 18 | 61 | 103 | 147 | 55 | 3.4167 | 1.06368 |
Percent (p) | 4.7 | 15.9 | 26.8 | 38.3 | 14.3 | |||
Conventional spraying can leave too much pesticide residue | Frequency (f) | 15 | 46 | 141 | 158 | 24 | 3.3385 | 0.90832 |
Percent (p) | 3.9 | 12.0 | 36.7 | 41.1 | 6.3 | |||
I think traditional spraying is harmful to my own health | Frequency (f) | 16 | 52 | 111 | 159 | 46 | 3.4349 | 1.00439 |
Percent (p) | 4.2 | 13.5 | 28.9 | 41.4 | 12.0 | |||
I think traditional spraying is harmful to the environment | Frequency (f) | 10 | 63 | 135 | 143 | 33 | 3.3281 | 0.93755 |
Percent (p) | 2.6 | 16.4 | 35.2 | 37.2 | 8.6 | |||
I think traditional spraying is the most accurate spraying method | Frequency (f) | 27 | 83 | 176 | 75 | 23 | 2.9583 | 0.96591 |
Percent (p) | 7.0 | 21.6 | 45.8 | 19.5 | 6.0 |
Behavioural Statements | 1 | 2 | 3 | 4 | 5 | Mean | S.D. | |
---|---|---|---|---|---|---|---|---|
I think the agricultural drone will provide convenience in spraying compared to the traditional method | f | 2 | 94 | 170 | 88 | 30 | 3.13 | 0.89 |
p | 0.5 | 24.5 | 44.3 | 22.9 | 7.8 | |||
I think that the agricultural drone will spray in a shorter time than the traditional method | f | 6 | 35 | 75 | 175 | 93 | 3.81 | 0.95 |
p | 1.6 | 9.1 | 19.5 | 45.6 | 24.2 | |||
I can save a lot of diesel using an agricultural drone | f | 1 | 14 | 113 | 156 | 100 | 3.88 | 0.84 |
p | 0.3 | 3.6 | 29.4 | 40.6 | 26.0 | |||
I can increase the yield of my field using agricultural drone | f | 3 | 92 | 115 | 134 | 40 | 3.30 | 0.97 |
p | 0.8 | 24.0 | 29.9 | 34.9 | 10.4 | |||
I think the purchasing cost of an agricultural drone is high | f | 4 | 35 | 87 | 123 | 135 | 3.91 | 1.01 |
p | 1.0 | 9.1 | 22.7 | 32.0 | 35.2 | |||
Thanks to agricultural drones, I think I can spray at every point of my land | f | 21 | 130 | 125 | 94 | 14 | 2.86 | 0.99 |
p | 5.5 | 33.9 | 32.6 | 24.5 | 3.6 | |||
If I attend a course, I will be able to fly an agricultural drone | f | 149 | 81 | 78 | 48 | 28 | 2.28 | 1.29 |
p | 38.8 | 21.1 | 20.3 | 12.5 | 7.3 | |||
I can save labor using an agricultural drone | f | 15 | 104 | 124 | 113 | 28 | 3.09 | 1.00 |
p | 3.9 | 27.1 | 32.3 | 29.4 | 7.3 | |||
I think that spraying with an agricultural drone will harm my health | f | 135 | 139 | 53 | 37 | 20 | 2.13 | 1.15 |
p | 35.2 | 36.2 | 13.8 | 9.6 | 5.2 |
Criteria | Mean | Std. Deviation | Preference | Farmer Feature | Mean | Z | H0 |
---|---|---|---|---|---|---|---|
If the government gives a 75% interest-free loan | 0.878 | 0.069 | 1 | Land Size (da) | 181.85 | −3.499 *** | Rejection |
If the government gives 50% of the loan with normal interest | 0.846 | 0.048 | 2 | Annual Agricultural Income (TRY) | 439,535 | −3.604 *** | Rejection |
If the government lends all of the money at low interest | 0.765 | 0.081 | 3 | Experienced (years) | 29.34 | −0.072 | Acceptance |
If the state provides additional premium support | 0.746 | 0.115 | 4 | Age (years) | 49.60 | −1.029 | Acceptance |
Willingness to Pay (WTP) | Frequency | Percentage | Cumulative Percentage |
---|---|---|---|
800 | 5 | 4.0 | 4.0 |
750 | 1 | 0.8 | 4.8 |
600 | 1 | 0.8 | 5.6 |
500 | 6 | 4.8 | 10.4 |
450 | 6 | 4.8 | 15.2 |
400 | 9 | 7.2 | 22.4 |
350 | 8 | 6.4 | 28.8 |
300 | 41 | 32.8 | 61.6 |
250 | 22 | 17.6 | 79.2 |
200 | 20 | 16.0 | 95.2 |
150 | 1 | 0.8 | 96 |
100 | 5 | 4.0 | 100 |
Total respondents | 125 | 100 |
Criteria | Direction of Criterion | Max. | Max. | Max. | Max. | Max. | Max. | Max. | Max. | |
Criterion | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
Weight of Criterion | 20% | 13% | 10% | 10% | 10% | 10% | 12% | 15% | ||
Alternatives | Private sector institutions | 47.031 | 80.912 | 80.651 | 63.997 | 95.326 | 50.138 | 65.352 | 83.307 | |
Agricultural cooperative | 72.724 | 75.469 | 74.232 | 73.854 | 75.156 | 74.815 | 82.370 | 74.023 | ||
Agriculture chambers | 61.281 | 64.818 | 66.198 | 60.917 | 64.466 | 65.078 | 49.662 | 63.268 | ||
Government personnel | 83.451 | 50.417 | 51.510 | 83.581 | 53.672 | 83.555 | 78.138 | 51.380 | ||
f* | The best point | 83.451 | 80.912 | 80.651 | 83.581 | 95.326 | 83.555 | 82.370 | 83.307 | |
f− | Worst point | 47.031 | 50.417 | 51.510 | 60.917 | 53.672 | 50.138 | 49.662 | 51.380 | |
Weighted Normalized Decision Matrix | ||||||||||
Alternatives | Private sector institutions | 0.200 | 0.000 | 0.000 | 0.086 | 0.000 | 0.100 | 0.062 | 0.000 | |
Agricultural cooperative | 0.059 | 0.023 | 0.022 | 0.043 | 0.048 | 0.026 | 0.000 | 0.044 | ||
Agriculture chambers | 0.105 | 0.069 | 0.050 | 0.100 | 0.074 | 0.055 | 0.120 | 0.094 | ||
Government personnel | 0.000 | 0.130 | 0.100 | 0.000 | 0.100 | 0.000 | 0.016 | 0.150 | ||
Si | Ri | Qi | Row | DQ | Order of preference | |||||
Private sector institutions | 0.449 | 0.200 | 0.728 | A3 | 0.333 | 3 | ||||
Agricultural cooperative | 0.265 | 0.059 | 0.000 | A1 | 1 | |||||
Agriculture chambers | 0.683 | 0.120 | 0.737 | A4 | 4 | |||||
Government personnel | 0.496 | 0.130 | 0.539 | A2 | 2 |
Coefficient | Std. Error | Z Statistic | p-Value | Marginal Effect | |
---|---|---|---|---|---|
Constant term | −1.23714 | 0.632878 | −1.955 | 0.0506 * | |
Farmer adoption of technology | 0.06854 | 0.014719 | 4.657 | 3.21 × 10−6 *** | 0.0236339 |
Agricultural income | 0.31996 | 0.119542 | 2.677 | 0.0074 *** | 0.110318 |
Land type | −0.33653 | 0.169345 | −1.987 | 0.0469 ** | −0.116031 |
Age | −0.02267 | 0.010939 | −2.073 | 0.0382 ** | −0.00781861 |
Land size | 0.00086 | 0.000721 | 1.203 | 0.2289 | 0.000299095 |
Experienced | 0.00659 | 0.009385 | 0.703 | 0.4821 | 0.00227491 |
Education level | −0.09857 | 0.097592 | −1.010 | 0.3125 | −0.0339866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmaksiz, O.; Cinar, G. Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles. Agronomy 2023, 13, 2077. https://doi.org/10.3390/agronomy13082077
Parmaksiz O, Cinar G. Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles. Agronomy. 2023; 13(8):2077. https://doi.org/10.3390/agronomy13082077
Chicago/Turabian StyleParmaksiz, Osman, and Gokhan Cinar. 2023. "Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles" Agronomy 13, no. 8: 2077. https://doi.org/10.3390/agronomy13082077
APA StyleParmaksiz, O., & Cinar, G. (2023). Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles. Agronomy, 13(8), 2077. https://doi.org/10.3390/agronomy13082077