Optimizing Soil Moisture Conservation and Temperature Regulation in Rainfed Jujube Orchards of China’s Loess Hilly Areas Using Straw and Branch Mulching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Experimental Index Measurement Method
2.3.1. Measurement of Soil Moisture and Temperature
2.3.2. Meteorological Data
2.4. Data Analysis
2.4.1. Analysis of Soil Moisture and Temperature Variability
2.4.2. Grey Relational Analysis of Soil Moisture in Different Soil Layers
- 1.
- Establish the reference sequence x0(k) and the comparison sequence xi(k):x0 = (x0(1), x0(2), …, x0(k))xi = (xi(1), xi(2), …, xi(k)) i = 1, 2, …, q
- 2.
- Normalize the data using the mean value approach to ensure consistency:The normalized sequence is represented as xi*:
- 3.
- Calculate the gray relational coefficient ξi(k) between x0(k) and xi(k):
- 4.
- When conducting gray relational analysis over a long-time scale, numerous relational coefficients are obtained, providing the degree of connection between the comparison and reference sequences at various time nodes. However, analyzing all of these coefficients collectively would result in duplicate labor, so integration is required. The final gray relational grade (ξi) in this study is calculated as the average value of the relational coefficients across all time nodes:
3. Results
3.1. Effects of Different Mulching Measures on Soil Moisture
3.1.1. Seasonal Variations in Soil Moisture Content under Different Mulching Measures
3.1.2. Vertical Variation Characteristics of Soil Moisture Content under Different Mulching Measures
3.1.3. Variability of Soil Moisture under Different Mulching Measures
3.1.4. Grey Relational Analysis of Soil Moisture under Different Mulching Measures
3.2. Effects of Different Mulching Measures on Soil Temperature
3.2.1. Variations in Daily Average Soil Temperature across Different Soil Layers
3.2.2. Analysis of the Daily Range of Soil Temperature
3.2.3. Vertical Variation Characteristics of Soil Temperature
3.2.4. Response of Soil Temperature to Air Temperature
4. Discussion
4.1. The Impact of Mulching Practices on Soil Moisture
4.2. Effects of Mulching on Soil Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Zhang, J.; Lv, W.; Shan, C.; Lu, M.; Li, Y. Infiltration response of deep dry soil to rainfall in the Loess Hilly Region. Agric. Res. Arid Areas 2021, 39, 29–38. [Google Scholar]
- Wu, C.; Gao, Q.; Kjelgren, R.K.; Guo, X.; Wang, M. Yields, Phenolic Profiles and Antioxidant Activities of Ziziphus jujube Mill. in Response to Different Fertilization Treatments. Molecules 2013, 18, 12029–12040. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Peng, B.; Liu, T. Effects of organic fertilizers on growth characteristics and fruit quality in Pear-jujube in the Loess Plateau. Sci. Rep. 2022, 12, 13372. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tsim, K.W. A Review of edible jujube, the Ziziphus jujuba fruit: A heath food supplement for anemia prevalence. Front. Pharmacol. 2020, 11, 593655. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Shishir, M.R.I.; Bao, T.; Lu, Y.; Chen, W. Jujube fruit: A potential nutritious fruit for the development of functional food products. J. Funct. Foods 2020, 75, 104205. [Google Scholar] [CrossRef]
- Li, L.; Gao, X.; Wu, P.; Zhao, X.; Li, H.; Ling, Q.; Sun, W. Soil water content and root patterns in a rain-fed jujube plantation across stand ages on the Loess Plateau of China. Land Degrad. Dev. 2017, 28, 207–216. [Google Scholar] [CrossRef]
- Zong, Q.; Ai, N.; Yang, F.; Qiang, D.; Li, Y.; Liu, J.; Hao, B.; Liu, C. Ziziphus jujuba (Mill.) Forest in Loess Area of Northern Shaanxi: Change of Soil Physical Properties. Chin. Agric. Sci. Bull. 2020, 36, 48–56. [Google Scholar]
- Ma, J.; Wang, X.; Zhao, X.; Tian, L.; Wang, Y. Experimental study of mulching effects on water restoration of deep, desiccated soil in a loess hilly region. Environ. Technol. 2022, 43, 3462–3472. [Google Scholar]
- Du, S.; Bai, G.; Yu, J. Soil properties and apricot growth under intercropping and mulching with erect milk vetch in the loess hilly-gully region. Plant Soil 2015, 390, 431–442. [Google Scholar] [CrossRef]
- Long, D.; Liu, J.; Han, Q.; Wang, X.; Huang, J. Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau, China. Sci. Rep. 2016, 6, 24336. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Wang, Y.; Hou, T.; Zhang, L.; Mu, Y.; Wu, F. Variation of soil moisture and fine roots distribution adopts rainwater collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China. Agric. Water Manag. 2021, 244, 106573. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, D.; Wang, Y.; Wei, X.; Ma, L. Soil water and root distribution under jujube plantations in the semiarid Loess Plateau region, China. Plant Growth Regul. 2015, 77, 21–31. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Wang, Y.; Zhang, J.; Hui, Q. Growth and water consumption of jujube with water-saving pruning in deep dried soil of Loess Hilly Area. Trans. Chin. Soc. Agric. Eng. 2017, 33, 140–148. [Google Scholar]
- Liu, Y.; Gao, M.; Wu, W.; Tanveer, S.K.; Wen, X.; Liao, Y. The effects of conservation tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the Loess Plateau, China. Soil Tillage Res. 2013, 130, 7–12. [Google Scholar] [CrossRef]
- Hill, N.S.; Levi, M.; Basinger, N.; Thompson, A.; Cabrera, M.; Wallace, J.; Saikawa, E.; Avramov, A.; Mullican, J. White clover living mulch enhances soil health vs. annual cover crops. Agron. J. 2021, 113, 3697–3707. [Google Scholar] [CrossRef]
- Diaz, F.; Jimenez, C.C.; Tejedor, M. Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agric. Water Manag. 2005, 74, 47–55. [Google Scholar] [CrossRef]
- Eberbach, P.L.; Humphreys, E.; Kukal, S.S. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agric. Water Manag. 2011, 98, 1847–1855. [Google Scholar]
- Qiu, Y.; Xie, Z.; Wang, Y.; Ren, J.; Malhi, S.S. Influence of gravel mulch stratum thickness and gravel grain size on evaporation resistance. J. Hydrol. 2014, 519, 1908–1913. [Google Scholar] [CrossRef]
- Saglam, M.; Sintim, H.Y.; Bary, A.I.; Miles, C.A.; Ghimire, S.; Inglis, D.A.; Flury, M. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manag. 2017, 193, 240–250. [Google Scholar] [CrossRef]
- Sun, H.; Shao, L.; Liu, X.; Miao, W.; Chen, S.; Zhang, X. Determination of water consumption and the water-saving potential of three mulching methods in a jujube orchard. Eur. J. Agron. 2012, 43, 87–95. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Zhao, X.; Wu, P.; Horwath, W.R.; Li, H.; Jing, Z.; Chen, X. Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degrad. Dev. 2016, 27, 35–42. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Chen, J.; Xie, X.; Zheng, X.; Xue, J.; Miao, C.; Du, Q.; Xu, Y. Effect of Straw Mulch on Soil Evaporation during Freeze–Thaw Periods. Water 2019, 11, 1689. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Hu, J.; Fan, J.; Fu, W.; Wang, H.; Hao, M. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agric. Ecosyst. Environ. 2021, 309, 107288. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, E.; Ma, R.; Wang, Q.; Liu, Q.; Wang, H. Effects of mulching patterns on root growth and soil environment of Lycium barbarum. Chin. J. Eco-Agric. 2018, 26, 1802–1810. [Google Scholar]
- Suo, G.; Xie, Y.; Zhang, Y.; Luo, H. Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the Loess Plateau of China. Sci. Hortic. 2019, 246, 643–651. [Google Scholar] [CrossRef]
- Shu, Y.; Yu, J.; Wu, C.; Li, H.; Zhao, P.; Wang, X.; Xu, X. The effects of different mulching methods on soil temperature and leaf phenotypes in jujube orchards. Contemp. Hortic. 2022, 45, 51–53. [Google Scholar]
- Shechtman, O. The coefficient of variation as an index of measurement reliability. In Methods of Clinical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–49. [Google Scholar]
- Wei, Y.; Wang, H.; Liu, H.; Wu, Y. Effect of Biochar on Soil Moisture and Its Infiltration Performance in Black Soil Area. Trans. Chin. Soc. Agric. Mach. 2019, 50, 290–299. [Google Scholar]
- Deng, J. Synthesizing Kenning model and grey hazy set. J. Grey Syst. 2001, 13, 254. [Google Scholar]
- Wang, N.; Xing, Y.; Wang, X. Exploring options for improving potato productivity through reducing crop yield gap in Loess Plateau of China based on grey correlation analysis. Sustainability 2019, 11, 5621. [Google Scholar] [CrossRef] [Green Version]
- Youn, W.B.; Hernandez, J.O.; Park, B.B. Effects of shade and planting methods on the growth of Heracleum moellendorffii and Adenophora divaricata in different soil moisture and nutrient conditions. Plants 2021, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Wu, J.; Tian, F.; Yang, J.; Han, X.; Chen, M.; Zhao, B.; Lin, J. Reversal of soil moisture constraint on vegetation growth in North China. Sci. Total Environ. 2023, 865, 161246. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Yasufuku, N.; Liu, Q.; Liu, S. Experimental evaluation and parameterization of evaporation from soil surface. Nat. Hazards 2014, 73, 1405–1418. [Google Scholar] [CrossRef]
- Song, W.; Cui, Y.; Tang, A.; Ding, W.; Wang, Q. Experimental study on water evaporation from compacted clay using environmental chamber. Can. Geotech. J. 2016, 53, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, Y.; Li, Z. Recent changes and future projection of precipitation in Northwest China. Clim. Chang. Res. 2022, 18, 683–694. [Google Scholar]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X.; Zheng, F.; Zhang, J.; Wang, Y.; Sang, Q.; Zhang, X.; Wang, L.; Wang, L. Study on Effect of Surface Wind Erosion on Hillslope Water Erosion in Regions of Typical Thin Layered Mollisol at Early Stages. Acta Pedol. Sin. 2021, 58, 1145–1156. [Google Scholar]
- Yang, M.; Fu, Y.; Li, G.; Ren, Y.; Li, Z.; Ma, G. Microcharacteristics of soil pores after raindrop action. Soil Sci. Soc. Am. J. 2020, 84, 1693–1704. [Google Scholar] [CrossRef]
- Ma, G.; Li, G.; Mu, X.; Hou, W.; Ren, Y.; Yang, M. Effect of raindrop splashes on topsoil structure and infiltration characteristics. Catena 2022, 212, 106040. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.; Liu, X.; Li, H.; Hu, Q.; Xue, W. By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agric. Water Manag. 2021, 253, 106936. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Wang, Y.; Li, Z.; Ma, B. The influence of wheat straw mulching and straw length on infiltration, runoff and soil loss. Hydrol. Process. 2022, 36, e14561. [Google Scholar] [CrossRef]
- Liang, X.; Li, J.; Zhang, Y.; Yu, J.; Huang, X. Responses of vegetation and soil ecological stoichiometry to precipitation in desert steppe. Pratac. Sci. 2022, 39, 864–875. [Google Scholar]
- Judit, G.; Gábor, Z.; Ádám, D.; Tamas, V.; Gyorgy, B. Comparison of three soil management methods in the Tokaj wine region. Mitt. Klosterneuburg 2011, 61, 187–195. [Google Scholar]
- Ma, J.; Ma, B.; Wang, C.; Wang, Y.; Li, C.; Fan, S. Wheat straw reduces runoff, sediment yield and flow velocity in sloping farmland under two straw mulching methods. Plant Soil 2023, 483, 355–377. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res. 2007, 95, 240–254. [Google Scholar] [CrossRef]
- Sun, X.; Li, S.; Du, H. The influence of corn straw mulching on soil moisture, temperature and organic matter. J. Biobased Mater. Bioenergy 2017, 11, 662–665. [Google Scholar] [CrossRef]
- Wang, C.; Ma, B.; Wang, Y.; Li, Z.; Fan, S.; Mao, C.; Huo, D. Effects of wheat straw length and coverage under different mulching methods on soil erosion on sloping farmland on the Loess Plateau. J. Soils Sediments 2022, 23, 923–935. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Wu, P.; Zhao, X.; Gao, X.; Dumlao, M.; Si, B. Effects of soil managements on surface runoff and soil water content in jujube orchard under simulated rainfalls. Catena 2015, 135, 193–201. [Google Scholar] [CrossRef]
- Hou, X.; Li, R. Effects of mulching with no-tillage on soil physical properties and potato yield in mountain area of southern Ningxia. Trans. Chin. Soc. Agric. Eng. 2015, 31, 112–119. [Google Scholar]
- Huang, S.; Gao, S.; Wang, Z.; Li, K.; Zhang, D.; Cao, P.; Xue, W. Effects of different mulching methods on soil moisture, temperature and disease occurrence in jujube orchard. China Fruits 2020, 70–73. [Google Scholar] [CrossRef]
- Goel, L.; Shankar, V.; Sharma, R. Effect of organic mulches on agronomic parameters–A case study of tomato crop (Lycopersicon esculentum Mill.). Int. J. Recycl. Org. Waste Agric. 2020, 9, 297–307. [Google Scholar]
- Biswal, P.; Swain, D.K.; Jha, M.K. Straw mulch with limited drip irrigation influenced soil microclimate in improving tuber yield and water productivity of potato in subtropical India. Soil Tillage Res. 2022, 223, 105484. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Sun, X.; Zhang, H.; Xiong, K.; Qu, B.; Yun, B. Effects of different surface mulches on the physical properties of surface soil. Sci. Soil Water Conserv. 2018, 16, 71–78. [Google Scholar]
- Chen, H.; Liu, J.; Zhang, A.; Chen, J.; Cheng, G.; Sun, B.; Pi, X.; Dyck, M.; Si, B.; Zhao, Y.; et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Sci. Total Environ. 2017, 579, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Xie, J.; Mao, X. Modeling water and heat transfer in soil-plant-atmosphere continuum applied to maize growth under plastic film mulching. Front. Agric. Sci. Eng. 2019, 6, 144–161. [Google Scholar] [CrossRef] [Green Version]
- Abu-Hamdeh, N.H. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 2023, 86, 97–102. [Google Scholar] [CrossRef]
- Guan, X.; Huang, J.; Guo, N.; Bi, J.; Wang, G. Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau. Adv. Atmos. Sci. 2009, 26, 692–700. [Google Scholar] [CrossRef]
Soil Layer (cm) | Soil Bulk Density (g·cm−3) | Soil Particle Composition (%) | Saturated Moisture Content (%) | Field Capacity (%) | Saturated Hydraulic Conductivity (mm·min−1) | ||
---|---|---|---|---|---|---|---|
Silt | Sand | Clay | |||||
0–20 | 1.27 | 64.7 | 19.1 | 16.2 | 50.4 | 27.5 | 1.21 |
20–40 | 1.31 | 64.8 | 18.8 | 16.4 | 50.8 | 27.1 | 1.28 |
40–60 | 1.31 | 63.1 | 17.9 | 19 | 53.1 | 28.4 | 1.16 |
60–80 | 1.45 | 64.5 | 17.4 | 18.1 | 52.8 | 28.1 | 0.91 |
80–100 | 1.37 | 62.8 | 18.7 | 18.5 | 52.3 | 27.8 | 0.85 |
Experimental Year | Grey Relational Grade | Mulching Measures | ||
---|---|---|---|---|
CK | SM | BM | ||
2014 | R12 | 0.6306 | 0.7409 | 0.7255 |
R13 | 0.5371 | 0.6702 | 0.6340 | |
R14 | 0.4906 | 0.6100 | 0.4804 | |
R23 | 0.6872 | 0.6886 | 0.6745 | |
R24 | 0.5367 | 0.6420 | 0.6145 | |
R34 | 0.7545 | 0.9527 | 0.8413 | |
2015 | R12 | 0.6468 | 0.8289 | 0.7334 |
R13 | 0.4663 | 0.7123 | 0.6804 | |
R14 | 0.4568 | 0.4886 | 0.4473 | |
R23 | 0.7329 | 0.7797 | 0.7240 | |
R24 | 0.4524 | 0.6322 | 0.5128 | |
R34 | 0.7469 | 0.9328 | 0.9246 |
Experimental Year | Mulching Measures | Soil Depth | Daily Range of Air Temperature | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 cm | 20 cm | 40 cm | 60 cm | 100 cm | |||||||||
Variation Range | Mean | Variation Range | Mean | Variation Range | Mean | Variation Range | Mean | Variation Range | Mean | Variation Range | Mean | ||
2014 | CK | 0.99–9.45 | 4.96 ± 1.82 a | 0.67–6.00 | 3.31 ± 1.08 a | 0.41–2.98 | 1.03 ± 0.36 a | 0.11–1.25 | 0.41 ± 0.23 a | 0.04–0.52 | 0.18 ± 0.11 a | 0.90–22.20 | 11.17 ± 4.28 |
SM | 0.56–4.94 | 2.72 ± 0.84 b | 0.56–3.58 | 1.42 ± 0.46 b | 0.28–2.69 | 0.67 ± 0.33 b | 0.04–1.11 | 0.36 ± 0.22 b | 0.04–0.38 | 0.15 ± 0.08 b | |||
BM | 0.63–7.48 | 3.81 ± 1.29 c | 0.57–4.07 | 2.08 ± 0.64 c | 0.27–2.82 | 0.81 ± 0.35 c | 0.10–1.17 | 0.39 ± 0.21 b | 0.04–0.49 | 0.17 ± 0.10 ab | |||
2015 | CK | 1.33–9.48 | 5.73 ± 1.90 a | 1.09–5.99 | 3.67 ± 1.12 a | 0.57–3.05 | 1.21 ± 0.32 a | 0.19–1.34 | 0.46 ± 0.21 a | 0.03–0.50 | 0.17 ± 0.11 a | 1.21–18.39 | 10.63 ± 3.38 |
SM | 0.92–6.06 | 3.21 ± 0.93 b | 0.96–3.80 | 1.71 ± 0.45 b | 0.35–2.18 | 0.81 ± 0.28 b | 0.10–1.22 | 0.38 ± 0.20 b | 0.04–0.39 | 0.15 ± 0.08 b | |||
BM | 1.22–8.24 | 4.76 ± 1.52 c | 1.02–5.16 | 2.77 ± 0.75 c | 0.44–2.77 | 1.16 ± 0.34 a | 0.12–1.20 | 0.39 ± 0.19 b | 0.05–0.44 | 0.17 ± 0.10 a |
Soil Layer | Variation Eigenvalue | Mulching Measures | |||||
---|---|---|---|---|---|---|---|
2014 | 2015 | ||||||
CK | SM | BM | CK | SM | BM | ||
Surface layer (0–20 cm) | Ka | 2.646 | 2.331 | 2.429 | 2.481 | 2.22 | 2.366 |
Cv/% | 18.5 | 16.3 | 16.7 | 19.4 | 16.6 | 18.0 | |
Middle layer (20–60 cm) | Ka | 1.968 | 1.870 | 1.865 | 2.026 | 1.853 | 1.884 |
Cv/% | 14.8 | 14.2 | 14.5 | 16.2 | 14.4 | 14.4 | |
Deep layer (60–100 cm) | Ka | 1.871 | 1.748 | 1.850 | 1.796 | 1.636 | 1.666 |
Cv/% | 14.5 | 13.7 | 14.1 | 15.4 | 13.0 | 13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Liu, R.; Li, H.; Gao, X.; Wu, P.; Zhang, C. Optimizing Soil Moisture Conservation and Temperature Regulation in Rainfed Jujube Orchards of China’s Loess Hilly Areas Using Straw and Branch Mulching. Agronomy 2023, 13, 2121. https://doi.org/10.3390/agronomy13082121
Tang M, Liu R, Li H, Gao X, Wu P, Zhang C. Optimizing Soil Moisture Conservation and Temperature Regulation in Rainfed Jujube Orchards of China’s Loess Hilly Areas Using Straw and Branch Mulching. Agronomy. 2023; 13(8):2121. https://doi.org/10.3390/agronomy13082121
Chicago/Turabian StyleTang, Min, Rui Liu, Hongchen Li, Xiaodong Gao, Pute Wu, and Chao Zhang. 2023. "Optimizing Soil Moisture Conservation and Temperature Regulation in Rainfed Jujube Orchards of China’s Loess Hilly Areas Using Straw and Branch Mulching" Agronomy 13, no. 8: 2121. https://doi.org/10.3390/agronomy13082121
APA StyleTang, M., Liu, R., Li, H., Gao, X., Wu, P., & Zhang, C. (2023). Optimizing Soil Moisture Conservation and Temperature Regulation in Rainfed Jujube Orchards of China’s Loess Hilly Areas Using Straw and Branch Mulching. Agronomy, 13(8), 2121. https://doi.org/10.3390/agronomy13082121